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Section S1

Structure of deep neural networks

For the calculation of Wasserstein distances between systems, deep neural networks

were used. In the all experiments, the same structure of deep neural networks was

applied. In total, the deep neural networks have 6 layers, which are as follows,

Input (64*3) - Affine (1024, LReLU) - Affine (1024, LReLU) - Affine (1024, LReLU) -

Affine (1024, Non-bias) - Output (1).

Then, we defined "Output = f (Input)" and f was optimized by the Adam optimizer

(learning rate = 1e-4, beta1 = 0.5, beta2 = 0.9). The dimension and activation function

in each layer are written in (). For the initialization, the bias terms for Affine layers were

set to 0 and the other parameters were randomly sampled from a normal distribution

(mean = 0, standard deviation = 0.01). All activation functions were LReLU (a = 0.1).

Details of optimization process

To calculate the Wasserstein distances between each system, the following loss func-

tion1 was optimized using deep neural networks.

L = ∑
xxx∼PPP

f (xxx)− ∑
xxx∼QQQ

f (xxx)− ∑
xxx∼RRR

(||∇ f (xxx)||−1)2 (1)

When xxx ∼ RRR : ε = U [0,1], xxx1 ∼ PPP, xxx2 ∼ QQQ, xxx = εxxx1 +(1− ε)xxx2. When the loss function is

minimized, the ∑xxx∼PPP f (xxx)−∑xxx∼QQQ f (xxx) indicates the Wasserstein distance W[PPP,QQQ].

The data format of the input for deep neural networks is the 64 steps of molecular

trajectories. For one molecule, the molecular trajectory is basically defined as the 64

steps of the 3-dimensional position data (x,y,z). According to the purpose, we can also

use the 64 steps of certain vectors such as dipole moment. In the above loss function,

PPP and QQQ denote the sets of molecular trajectories. In this study, we consider that the

molecular trajectories are obtained by sampling from a certain probability distribution.
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Thus, PPP (or QQQ) is considered as a set of all molecular trajectories (= samples) obtained

from one molecular system. In practice, if there are three different systems (PPP, QQQ, RRR),

three individual optimization processes (between PPP−QQQ, QQQ−RRR, RRR−PPP) are performed.

When the loss function for all combinations is optimized, the calculation of Wasserstein

distances is finished.

Error estimation for the calculation of Wasserstein distance

Let us consider the error estimation for the calculation of Wasserstein distance. When

the number of data is finite, the truth distributions PPP′ and QQQ′ given by infinite data can

be approximated by the finite sum of δ function, PPP and QQQ. According to the paper on

optimization using the Wasserstein metric2, the following equation is held under several

assumptions,

P[W (PPP,PPP′′′)≥ ε]∼ exp(−cNε
a) (2)

where c is a constant, a is a constant determined by ε, and N is the number of data.

This equation means that the error by the finitude of data decreases exponentially with

increasing N. Thus, if the N is sufficiently large, the error is negligible. In this study, N

was set to a sufficiently large number (greater than 106). This theoretical estimation of

error is one of the advantages of the using the Wasserstein distance.
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Section S2

Preliminary experiment with the sequence of noise

To confirm the availability of our scheme, we conducted a preliminary experiment using

the simple artificial data that had distinct differences. We assumed that there were

nine systems, and sequences of non-correlated Gaussian noise were considered as the

dynamics observable in each system. Thus, local dynamics ensembles yyyi are defined as

yyyi = N (µi,σ
2
i ) (3)

where yyyi denotes 64 (time-length) × 1 (channel) dimensional random variables. The

3 × 3 values were assigned as each (µi,σi) for i, (−0.1,1), (−0.1,2), (−0.1,3), (0.0,1),

(0.0,2), (0.0,3), (0.1,1), (0.1,2), and (0.1,3). The Wasserstein distances between all

the pairs of local dynamics ensembles were calculated (the distance matrix is shown

in Fig. S1(a)). In Fig. S1(b), embeddings of the systems clearly demonstrate a two-

dimensional structure. Each dimension of the embeddings definitely corresponds to

the assigned mean and variance sets. This indicates that our scheme automatically

identified the existing two types of differences.

To confirm the dynamics that characterize systems, the sequences of noise in S0 and

S6 were compared using g(xxx). The probability distribution of g(xxx) for the sequence of

noise in S6 looked almost symmetric (Fig. S1(c)). This indicates that the dominant

dynamics in each system (S0 and S6) appeared in S6 with the same probability. From

the local dynamics ensemble data of S6, we exhibited the sequence of noise with high

g(xxx) and low g(xxx) (Fig. S1(d)). The sequence of noise with high g(xxx) demonstrated

the higher average. This indicates that g(xxx) appropriately represents dynamics that

characterize systems because the average of the sequence of noise in S6 was set to be

higher than S0.
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Fig. S 1. Experimental analysis (sequence of noise). (a) The distances matrix. The elements
of the matrix are colored by the gradation between yellow (high) and blue (low). (b) Embeddings
of systems based on the Wasserstein distances between the local dynamics ensembles. (c)
Probability distribution of g(xxx) for the trajectories of S6. (d) Comparison of the sequence of
noise, which indicates high g(xxx) and low g(xxx).
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Section S3

Supplementary data for the numerical experiments

Distance matrix

The distance matrix obtained in each experiment using MD data is shown in Fig. S2. In

the experiment for the Lennard-Jones particle system, the temperature of each system

was raised with the increase of the system’s index. This relationship clearly appears

in Fig. S2(a). This indicates that the calculated Wasserstein distances accurately rep-

resented the temperature differences. In the experiment for the ethanol and water

system, the mole fraction of ethanol in each system was reduced with the increase of

the system’s index. Although this relationship appears in Fig. S2(b), it looks noisier

than Supplementary Fig. S2(a). This noise was caused by the lack of samples for the

local dynamics ensemble of each system (the details are discussed in the Results section

of the main text). In the experiment for the amino acid solution system, the differences

in water dynamics had no relation to the system’s index. This is also confirmed in Fig.

S2(c). To visualize the differences more clearly, the embeddings were obtained using

this distance matrix (Fig. 4(a)).
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Fig. S 2. Distance matrix obtained in the experiments using MD data. (a) Lennard-Jones
particle system. (b) Ethanol and water mixture system. (c) Amino acid solution system.
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Fig. S 3. Correlation between the distance of ethanol molecules and g(xxx).

Ethanol and water mixture system

In the experiment for the ethanol and water mixture system, the distance from the initial

position for several ethanol molecules in S23 is shown in Fig. 3(d). This figure implies

that the distance seems to be large with the decrease of g(xxx). To quantitatively confirm

this tendency, we obtained the correlation between the distance of ethanol molecules

after 128 ps elapsed and g(xxx). In Fig. S3, we see a strong correlation between them, in

which the correlation coefficient is -0.78.

Amino acid solution system

In the experiment for the amino acid solution system, the differences between the rota-

tion of water molecules were clarified by g(xxx). To quantitatively confirm the relationship

between the rotation of water molecules and g(xxx), we obtained the correlation between

them. To represent the rotation of water, we calculated an average of inner product

of the dipole moments from a certain time to 128 ps later. In Fig. S4, we see the
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Fig. S 4. Correlation between the inner product of the dipole moments and g(xxx).

correlation between the inner product and g(xxx), in which the correlation coefficient is

0.50. The correlation coefficient is not so high, because most of the behavior of the

water molecules was similar (see the histogram of g(xxx) in Fig. 4(c)). To confirm the

relationship between the rotation of water molecules and g(xxx), we also calculated the

rotational time-correlation function of water molecules in each system. The relaxation

time given by the correlation function has a very strong correlation with the first prin-

cipal component of the embeddings (Fig. S5), in which the correlation coefficient is

0.99.
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Fig. S 5. Correlation between the rotational relaxation time of water molecules and the first
principal component in the embedding space.

9



Section S4

Details of MD simulations

In the three numerical experiments, we performed isothermal-isobaric MD simulations

using the GROMACS packages3. The leapfrog algorithm was used for time integra-

tion. The SHAKE algorithm was used to constrain the bond lengths and angles of water

molecules. A time step of 2 fs was used, with short-range interactions truncated at 1

nm. Long-range electrostatic interactions were calculated using the particle mesh Ewald

method4,5. In the calculation of interactions between different molecular species, the

Lorentz-Berthelot combining rules6 were used. The temperature was controlled by the

Nosé-Hoover thermostat7,8, except for the Lennard-Jones particle system (see below).

The pressure was controlled by the Parrinello-Rahman barostat9. Periodic boundary

conditions were applied in all directions of systems. The specific simulation conditions

are as follows.

Lennard-Jones particles

We prepared 16 systems, each of which consisted of 216 argon molecules. The OPLS-

UA force field10 was used for the Lennard-Jones parameters of argon molecules. The

temperature was controlled using the velocity scaling method. The MD data of each

system consisted of positions (x, y, z coordinates) of all molecules every 1 ps. The local

dynamics ensembles were extracted from the 5 ns of data.

Ethanol and water mixture

We prepared 25 systems, each of which consisted of 1023 molecules. The S0 con-

tained only ethanol molecules, and the 33 ethanol molecules were exchanged for water

molecules, with the increase of the system’s index. OPLS-UA and TIP4P/200511 force

fields were applied to the ethanol and water molecules, respectively12. The MD data of

each system consisted of positions (x, y, z coordinates) of all molecules every 2 ps. The
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local dynamics ensembles were extracted from the 1 ns of data.

Amino acid solution

We prepared 20 amino acid solutions (800 water and 40 single-species amino acid

molecules in each system) plus one pure water system (800 water molecules). The

modified AMBER FF99SB-ILDN13,14 was applied to model zwitterionic forms of amino

acids, and TIP4P-Ew15 force fields were applied to the water molecules. The partial

charges for amino acids reported by Horn16 were used. The MD data of each system

consisted of positions (x, y, z coordinates) of all molecules every 2 ps. The local dynam-

ics ensembles were extracted from the 20 ns of data.

Analysis method for the rotation of water molecules

The rotation of water molecules is typically described by the rotational time-correlation

function 〈P2[uuu(0) · uuu(t)]〉, where P2 is the second-order Legendre polynomial, and uuu(t)

is the rotation of the dipole moment at time t 17. The rotational relaxation of wa-

ter molecules near amino acids demonstrates a slower decay than that in a bulk wa-

ter system. For each time-correlation function, the rotational relaxation time of water

molecules is given by an exponential fit on the 2-10 ps interval. In this interval, the con-

tributions of fast librational relaxation and long-time migration to other environments

are avoided.
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