Supporting Information

Atomic Structures of RNA Nanotubes and comparison with DNA nanotubes

Supriyo Naskar1, Himanshu Joshi1,\$, Banani Chakraborty2, Nadrian C. Seeman3, Prabal K Maiti1,*

1Center for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore 560012, India

2Department of Chemical Engineering, Indian Institute of Science, Bangalore 560012, India

3Department of Chemistry, New York University, New York 10012, United States

*Corresponding author. E-mail: maiti@iisc.ac.in

Electronic Supplementary Material (ESI) for Nanoscale. This journal is © The Royal Society of Chemistry 2019
Section 1: Design of The RNTs

Figure S1. The structure of the RNT is built using NAB of AmberTools16. (a) RNT1: The design of crossovers and nicks are same as DNT as previously reported\(^1\). Only the thymine is replaced by uracil. (b) RNT2: The structure is taken from experimental design by Endo et. al.\(^2\). The structure is a portion of the original RNA origami Nanotube. RNT1 has 57bp dsRNA per helical domain whereas RNT2 has 56bp dsRNA per helical domain. Different color represents different staple strands.
Section 2: Cross-sectional Area of Moment of Inertia (AMI) of the RNTs

The second moment of inertia or Cross-sectional area of moment of inertia for an arbitrary shape V with respect to a given axis ZZ’ is defined as,

\[I_{ZZ'} = \iint_A r^2 dA \]

Where, \(r \) is distance of the infinite small area element \(dA \).

Assuming, dsRNA as a cylindrical tube we can write the AMI of a single dsRNA with respect to the long axis as following,

\[I_{ZZ'} = I_0 = \frac{\pi R_1^4}{4} \]

Now, according to the parallel axis theorem, the AMI for RNT consisting of 6 dsRNA arranged in hexagonal manner with respect to the long axis is \(1.5 \).
In our all analysis, we took $R_1 = 1.125 \text{ nm}$. To calculate R_2, we average the pore radius of the RNTs.
Section 3: Definition of Slice and Segments

Figure S2. (a) Definition of Slice used for different analysis. Each RNT is composed of six 57-mer (RNT1) or 56-mer (RNT2) ds-RNA. So, the RNT is divided into 57/56 slices containing 1 bp from each helical domain. (b) To define segments, we divide the RNTs into 9 parts. Each part contains 7 bp per helical domain except the terminal ones, which have 4 bp per helical domain. For RNT2 the middle segment has 1 less bp per helical domain. Different color represents different segments.
Section 4: Comparison of radius profile of DNT and RNTs

Figure S4. Radius of the pore of RNT1, RNT2 and DNT.
Section 5: RNTs in charge neutral Mg\(^{2+}\) and 10mM of MgCl\(_2\) Solution

Details of the Systems

<table>
<thead>
<tr>
<th>Type of the RNT</th>
<th>Box dimension [Å]</th>
<th>Total No. of Atoms</th>
<th>No. of Mg(^{2+}) added to neutralize</th>
<th>No. of Cl(^-)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RNT1 in charge neutral Mg(^{2+})</td>
<td>[118.9×125.5×234.6]</td>
<td>299857</td>
<td>333</td>
<td>-</td>
</tr>
<tr>
<td>RNT2 in charge neutral Mg(^{2+})</td>
<td>[118.9×125.5×232.1]</td>
<td>296720</td>
<td>328</td>
<td>-</td>
</tr>
<tr>
<td>RNT1 in 10mM of MgCl(_2) Solution</td>
<td>[118.9×125.5×234.6]</td>
<td>299731</td>
<td>354</td>
<td>42</td>
</tr>
<tr>
<td>RNT2 in 10mM of MgCl(_2) Solution</td>
<td>[118.9×125.5×232.1]</td>
<td>296594</td>
<td>349</td>
<td>42</td>
</tr>
</tbody>
</table>
RMSD and RMSF

Figure S4. RMSD of the different RNTs in charge neutral Mg\(^{2+}\) solution and 10mM MgCl\(_2\) solution. RMSD is calculated with respect to the energy minimized structure.

Figure S5. RMSF of the RNTs as a function of Slice Index.
Radius of the Pore

Figure S6. Radius of the pore of RNT1 in charge neutral Mg\(^{2+}\) solution.

Figure S7. Radius of the pore of RNT1 in 10mM MgCl\(_2\) solution.
Figure S8. Radius of the pore of RNT2 in charge neutral Mg$^{2+}$ solution.

Figure S9. Radius of the pore of RNT2 in 10mM MgCl$_2$ solution.
Reference

