Supplementary Material

A new and different insight into the promotion mechanisms of Ga for carbon dioxide hydrogenation to methanol over Ga doped Ni(211) bimetallic catalyst

Qingli Tang,a,b Wenchao Ji,b Christopher K. Russell,c Yulong Zhang,d Maohong Fan,a,e,* and Zhemin Shenb,*

a School of Energy Resources and Departments of Chemical and Petroleum Engineering, University of Wyoming, 1000 East University Avenue, Laramie, 82071, Wyoming United States

b School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, P.R. China

c Departments of Civil and Environmental Engineering, Stanford University, Stanford 94305, CA, USA.

d College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, 454000, P. R. China

e School of Civil and Environmental Engineering, Georgia Institute of Technology, North Avenue, Atlanta 30332, Georgia United States.

*Corresponding author at: 800 Dongchuan Road, Minhang District, Shanghai 200240, China. E-mail: zmshen@sjtu.edu.cn

1000 E University Ave., Laramie, WY 82071, USA. E-mail: mfan@uwyo.edu
Table S1. The activation barriers and reaction energies of elementary steps on Ni(211) and Ga-Ni(211) surfaces

<table>
<thead>
<tr>
<th>No.</th>
<th>reaction</th>
<th>Ni(211)</th>
<th>Ga-Ni(211)</th>
<th>Ga\textsubscript{3}Ni\textsubscript{3}(111)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>E_a</td>
<td>E_{ZPE}</td>
<td>ΔE</td>
</tr>
<tr>
<td>R1</td>
<td>H\textsubscript{2}\rightarrowH+H</td>
<td>0.10</td>
<td>0.00</td>
<td>-0.70</td>
</tr>
<tr>
<td>R2</td>
<td>CO\textsubscript{2}+H\rightarrowbi-HCOO</td>
<td>0.78</td>
<td>0.85</td>
<td>-0.50</td>
</tr>
<tr>
<td>R3</td>
<td>CO\textsubscript{2}+H\rightarrowtrans-COOH</td>
<td>0.95</td>
<td>0.88</td>
<td>0.03</td>
</tr>
<tr>
<td>R4</td>
<td>CO\rightarrowCO+O</td>
<td>0.79</td>
<td>0.74</td>
<td>-0.72</td>
</tr>
<tr>
<td>R5</td>
<td>bi-HCOO\rightarrowmono-HCOO</td>
<td>0.71</td>
<td>0.70</td>
<td>0.66</td>
</tr>
<tr>
<td>R6</td>
<td>bi-HCOO\rightarrowHCO+O</td>
<td>1.68</td>
<td>1.59</td>
<td>0.82</td>
</tr>
<tr>
<td>R7</td>
<td>bi-HCOO+H\rightarrowH\textsubscript{2}COO</td>
<td>1.72</td>
<td>1.75</td>
<td>1.02</td>
</tr>
<tr>
<td>R8</td>
<td>bi-HCOO+H\rightarrowHCOOH</td>
<td>1.19</td>
<td>1.08</td>
<td>0.83</td>
</tr>
<tr>
<td>R9</td>
<td>H\textsubscript{2}COO+H\rightarrowH\textsubscript{2}COOH</td>
<td>0.74</td>
<td>0.64</td>
<td>-0.15</td>
</tr>
<tr>
<td>R10</td>
<td>HCOOH\rightarrowH\textsubscript{2}COO</td>
<td>0.88</td>
<td>0.88</td>
<td>0.25</td>
</tr>
<tr>
<td>R11</td>
<td>H\textsubscript{2}COOH\rightarrowH\textsubscript{2}CO+OH</td>
<td>0.73</td>
<td>0.60</td>
<td>-0.28</td>
</tr>
<tr>
<td>R12</td>
<td>HCOOH\rightarrowHCO+OH</td>
<td>0.91</td>
<td>0.87</td>
<td>-0.31</td>
</tr>
<tr>
<td>R13</td>
<td>HCO+H\rightarrowH\textsubscript{2}CO</td>
<td>0.59</td>
<td>0.57</td>
<td>0.34</td>
</tr>
<tr>
<td>R14</td>
<td>H\textsubscript{2}CO+H\rightarrowCH\textsubscript{2}OH</td>
<td>1.16</td>
<td>1.05</td>
<td>0.34</td>
</tr>
<tr>
<td>R15</td>
<td>H\textsubscript{2}CO+H\rightarrowCH\textsubscript{2}O</td>
<td>0.49</td>
<td>0.46</td>
<td>-0.31</td>
</tr>
<tr>
<td>R16</td>
<td>trans-COOH\rightarrowcis-COOH</td>
<td>0.49</td>
<td>0.44</td>
<td>0.02</td>
</tr>
<tr>
<td>R17</td>
<td>cis-COOH\rightarrowCO+OH</td>
<td>1.04</td>
<td>0.93</td>
<td>-1.07</td>
</tr>
<tr>
<td>R18</td>
<td>CO+H\rightarrowCOH</td>
<td>1.95</td>
<td>1.87</td>
<td>1.00</td>
</tr>
<tr>
<td>R19</td>
<td>CO+H\rightarrowHCO</td>
<td>1.34</td>
<td>1.37</td>
<td>1.16</td>
</tr>
<tr>
<td>R20</td>
<td>trans-COOH+H\rightarrowt,t-COOH</td>
<td>0.53</td>
<td>0.45</td>
<td>-0.12</td>
</tr>
<tr>
<td>R21</td>
<td>t,t-COOH\rightarrowt,c-COOH</td>
<td>0.42</td>
<td>0.39</td>
<td>0.10</td>
</tr>
<tr>
<td>No.</td>
<td>reaction</td>
<td>Ni(211)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>----------------------------------</td>
<td>---------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>E_a</td>
<td>E_a^{ZPE}</td>
<td>ΔE</td>
</tr>
<tr>
<td>R22</td>
<td>t,c-COOH→c,c-COOH</td>
<td>0.57</td>
<td>0.53</td>
<td>0.55</td>
</tr>
<tr>
<td>R23</td>
<td>t,t-COOH→COH+OH</td>
<td>1.21</td>
<td>1.12</td>
<td>-0.47</td>
</tr>
<tr>
<td>R24</td>
<td>t,c-COOH→COH+OH</td>
<td>1.05</td>
<td>0.98</td>
<td>-0.72</td>
</tr>
<tr>
<td>R25</td>
<td>c,c-COOH→COH+OH</td>
<td>0.36</td>
<td>0.38</td>
<td>-1.09</td>
</tr>
<tr>
<td>R26</td>
<td>COH+H→HCOH</td>
<td>0.62</td>
<td>0.64</td>
<td>0.29</td>
</tr>
<tr>
<td>R27</td>
<td>HCOH+H→CH₂OH</td>
<td>0.61</td>
<td>0.60</td>
<td>0.43</td>
</tr>
<tr>
<td>R28</td>
<td>CH₂OH+H→CH₃OH</td>
<td>0.66</td>
<td>0.62</td>
<td>0.00</td>
</tr>
<tr>
<td>R29</td>
<td>CH₃O+H→CH₃OH</td>
<td>1.44</td>
<td>1.37</td>
<td>0.58</td>
</tr>
<tr>
<td>R30</td>
<td>O+H→OH</td>
<td>1.26</td>
<td>1.19</td>
<td>-0.15</td>
</tr>
<tr>
<td>R31</td>
<td>OH+H→H₂O</td>
<td>1.53</td>
<td>1.44</td>
<td>0.67</td>
</tr>
</tbody>
</table>

ZPE denotes zero point energy correction, E_a, E_a^{ZPE}, ΔE and ΔE^{ZPE} are in eV.
Table S2. The reaction rate constants at the temperature of 500-600 K of elementary steps in the process of CO$_2$ hydrogenation to CH$_3$OH.

<table>
<thead>
<tr>
<th>Reactions</th>
<th>k/s$^{-1}$</th>
<th>500K</th>
<th>525K</th>
<th>550K</th>
<th>575K</th>
<th>600K</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 $\text{H}_2 \rightarrow \text{H} + \text{H}$</td>
<td>1.59E+13</td>
<td>1.57E+13</td>
<td>1.56E+13</td>
<td>1.54E+13</td>
<td>1.53E+13</td>
<td></td>
</tr>
<tr>
<td>2 CO$_2$ + H \rightarrow bi-HCOO</td>
<td>7.57E+06</td>
<td>1.61E+07</td>
<td>3.20E+07</td>
<td>5.99E+07</td>
<td>1.06E+08</td>
<td></td>
</tr>
<tr>
<td>3 CO$_2$ + H \rightarrow $trans$-COOH</td>
<td>2.53E+08</td>
<td>5.23E+08</td>
<td>1.02E+09</td>
<td>1.86E+09</td>
<td>3.26E+09</td>
<td></td>
</tr>
<tr>
<td>4 CO$_2$ + CO + O</td>
<td>3.00E+03</td>
<td>9.05E+03</td>
<td>2.47E+04</td>
<td>6.20E+04</td>
<td>1.44E+05</td>
<td></td>
</tr>
<tr>
<td>5 bi-HCOO \rightarrow $mono$-HCOO</td>
<td>8.93E+11</td>
<td>1.02E+12</td>
<td>1.15E+12</td>
<td>1.29E+12</td>
<td>1.44E+12</td>
<td></td>
</tr>
<tr>
<td>6 bi-HCOO \rightarrow HCO + O</td>
<td>1.81E-05</td>
<td>1.30E-04</td>
<td>7.84E-04</td>
<td>4.05E-03</td>
<td>1.32E-02</td>
<td></td>
</tr>
<tr>
<td>7 bi-HCOO + H \rightarrow H$_2$COO</td>
<td>2.01E-06</td>
<td>1.68E-05</td>
<td>1.16E-04</td>
<td>6.83E-04</td>
<td>3.46E-03</td>
<td></td>
</tr>
<tr>
<td>8 bi-HCOO + H \rightarrow HCOOH</td>
<td>7.72E+03</td>
<td>2.31E+04</td>
<td>6.26E+04</td>
<td>1.56E+05</td>
<td>3.61E+05</td>
<td></td>
</tr>
<tr>
<td>9 H$_2$COO + H \rightarrow H$_2$COOH</td>
<td>4.51E+08</td>
<td>7.92E+08</td>
<td>1.32E+09</td>
<td>2.12E+09</td>
<td>3.28E+09</td>
<td></td>
</tr>
<tr>
<td>10 HCOOH + H \rightarrow H$_2$COOH</td>
<td>6.14E+03</td>
<td>1.74E+04</td>
<td>4.50E+04</td>
<td>1.07E+05</td>
<td>2.39E+05</td>
<td></td>
</tr>
<tr>
<td>11 H$_2$COOH \rightarrow H$_2$CO + OH</td>
<td>1.08E+08</td>
<td>2.04E+08</td>
<td>3.65E+08</td>
<td>6.21E+08</td>
<td>1.01E+09</td>
<td></td>
</tr>
<tr>
<td>12 HCOOH \rightarrow HCO + OH</td>
<td>4.89E+05</td>
<td>1.06E+06</td>
<td>2.14E+06</td>
<td>4.07E+06</td>
<td>7.37E+06</td>
<td></td>
</tr>
<tr>
<td>13 HCO + H \rightarrow H$_2$CO</td>
<td>2.41E+08</td>
<td>3.89E+08</td>
<td>6.01E+08</td>
<td>8.98E+08</td>
<td>1.30E+09</td>
<td></td>
</tr>
<tr>
<td>14 H$_2$CO + H \rightarrow CH$_2$OH</td>
<td>2.84E+04</td>
<td>7.57E+04</td>
<td>1.85E+05</td>
<td>4.19E+05</td>
<td>8.88E+05</td>
<td></td>
</tr>
<tr>
<td>15 H$_2$CO + H \rightarrow CH$_3$O</td>
<td>4.48E+08</td>
<td>7.28E+08</td>
<td>1.13E+09</td>
<td>1.70E+09</td>
<td>2.47E+09</td>
<td></td>
</tr>
<tr>
<td>16 $trans$-COOH \rightarrow cis-COOH</td>
<td>2.08E+08</td>
<td>3.60E+08</td>
<td>5.95E+08</td>
<td>9.43E+08</td>
<td>1.44E+09</td>
<td></td>
</tr>
<tr>
<td>17 cis-COOH \rightarrow CO + OH</td>
<td>6.23E+03</td>
<td>1.81E+04</td>
<td>4.78E+04</td>
<td>1.16E+05</td>
<td>2.63E+05</td>
<td></td>
</tr>
<tr>
<td>18 CO + H \rightarrow COH</td>
<td>1.58E+07</td>
<td>1.44E+06</td>
<td>1.07E+05</td>
<td>6.71E+05</td>
<td>3.62E+04</td>
<td></td>
</tr>
<tr>
<td>19 CO + H \rightarrow HCO</td>
<td>1.10E+00</td>
<td>4.73E+00</td>
<td>1.79E+01</td>
<td>6.02E+01</td>
<td>1.83E+02</td>
<td></td>
</tr>
<tr>
<td>20 $trans$-COOH + H \rightarrow t,t-COOH</td>
<td>2.96E+06</td>
<td>6.05E+06</td>
<td>1.16E+07</td>
<td>2.11E+07</td>
<td>3.65E+07</td>
<td></td>
</tr>
<tr>
<td>21 t,t-COOH \rightarrow t,c-COOH</td>
<td>3.27E+09</td>
<td>5.21E+09</td>
<td>7.98E+09</td>
<td>1.18E+10</td>
<td>1.69E+10</td>
<td></td>
</tr>
<tr>
<td>22 t,c-COOH \rightarrow c,c-COOH</td>
<td>4.43E+08</td>
<td>7.72E+08</td>
<td>1.28E+09</td>
<td>2.04E+09</td>
<td>3.12E+09</td>
<td></td>
</tr>
<tr>
<td>23 t,c-COOH \rightarrow CO + OH</td>
<td>5.19E+01</td>
<td>1.93E+02</td>
<td>6.37E+02</td>
<td>1.90E+03</td>
<td>5.18E+03</td>
<td></td>
</tr>
<tr>
<td>24 t,c-COOH \rightarrow COH + OH</td>
<td>1.39E+03</td>
<td>4.47E+03</td>
<td>1.30E+04</td>
<td>3.44E+04</td>
<td>8.42E+04</td>
<td></td>
</tr>
<tr>
<td>25 c,c-COOH \rightarrow COH + OH</td>
<td>5.78E+05</td>
<td>1.39E+06</td>
<td>3.09E+06</td>
<td>6.43E+06</td>
<td>1.26E+07</td>
<td></td>
</tr>
<tr>
<td>26 COH + H \rightarrow HCOH</td>
<td>2.41E+07</td>
<td>4.70E+07</td>
<td>8.65E+07</td>
<td>1.51E+08</td>
<td>2.52E+08</td>
<td></td>
</tr>
<tr>
<td>27 HCOH + H \rightarrow CH$_2$OH</td>
<td>3.07E+07</td>
<td>5.62E+07</td>
<td>9.75E+07</td>
<td>1.62E+08</td>
<td>2.57E+08</td>
<td></td>
</tr>
<tr>
<td>28 CH$_2$OH + H \rightarrow CH$_3$OH</td>
<td>4.16E+06</td>
<td>8.50E+06</td>
<td>1.63E+07</td>
<td>2.96E+07</td>
<td>5.13E+07</td>
<td></td>
</tr>
<tr>
<td>29 CH$_3$O + H \rightarrow CH$_3$OH</td>
<td>2.55E+02</td>
<td>1.27E+01</td>
<td>5.47E-01</td>
<td>2.08E+00</td>
<td>7.08E+00</td>
<td></td>
</tr>
<tr>
<td>30 O + H \rightarrow OH</td>
<td>1.81E+01</td>
<td>7.13E+01</td>
<td>2.48E+02</td>
<td>7.76E+02</td>
<td>2.21E+03</td>
<td></td>
</tr>
<tr>
<td>31 OH + H \rightarrow H$_2$O</td>
<td>8.65E+03</td>
<td>2.47E+04</td>
<td>6.40E+04</td>
<td>1.53E+05</td>
<td>3.42E+05</td>
<td></td>
</tr>
</tbody>
</table>
Figure S1. The side views (top) and top views (bottom) of optimized structures of potential intermediates in the process of CH$_3$OH synthesis on Ni(211) surface.
Figure S2. The side views (top) and top views (bottom) of the optimized structures of potential intermediates in the process of CH$_3$OH synthesis on Ga-Ni(211) surface.
<table>
<thead>
<tr>
<th>IS</th>
<th>TS</th>
<th>FS</th>
<th>IS</th>
<th>TS</th>
<th>FS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\text{R1.} \text{H}_2 \rightarrow \text{H} + \text{H}$</td>
<td>$\text{R2.} \text{CO}_2 + \text{H} \rightarrow \text{bi-} \text{HCOO}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\text{R3.} \text{CO}_2 + \text{H} \rightarrow \text{trans-} \text{COOH}$</td>
<td>$\text{R4.} \text{CO}_2 \rightarrow \text{CO} + \text{O}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\text{R5.} \text{mono-} \text{HCOO} \rightarrow \text{bi-} \text{HCOO}$</td>
<td>$\text{R6.} \text{bi-} \text{HCOO} \rightarrow \text{HCO} + \text{O}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\text{R7.} \text{bi-} \text{HCOO} + \text{H} \rightarrow \text{H}_2 \text{COO}$</td>
<td>$\text{R8.} \text{bi-} \text{HCOO} + \text{H} \rightarrow \text{HCOO}_2$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IS</td>
<td>TS</td>
<td>FS</td>
<td>IS</td>
<td>TS</td>
<td>FS</td>
</tr>
<tr>
<td>-----</td>
<td>------</td>
<td>------</td>
<td>-----</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>R9.$\text{H}_2\text{COO}+\text{H} \rightarrow \text{H}_2\text{COOH}$</td>
<td>R10.$\text{HCOOH}+\text{H} \rightarrow \text{H}_2\text{COOH}$</td>
<td>R11.$\text{H}_2\text{COOH} \rightarrow \text{H}_2\text{CO}+\text{OH}$</td>
<td>R12.$\text{HCOOH} \rightarrow \text{HCO}+\text{OH}$</td>
<td>R13.$\text{HCO}+\text{H} \rightarrow \text{H}_2\text{CO}$</td>
<td>R14.$\text{H}_2\text{CO}+\text{H} \rightarrow \text{CH}_2\text{OH}$</td>
</tr>
<tr>
<td>IS</td>
<td>TS</td>
<td>FS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----</td>
<td>----</td>
<td>----</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figure S3. The side views (top one) and top views (bottom one) of ISs, TSs and FSs of all the elementary steps that are considered in the process of CO$_2$ hydrogenation to CH$_3$OH on Ni(211) surface.
<table>
<thead>
<tr>
<th>IS</th>
<th>TS</th>
<th>FS</th>
<th>IS</th>
<th>TS</th>
<th>FS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IS</td>
<td>TS</td>
<td>FS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----</td>
<td>----</td>
<td>----</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R9 (\text{H}_2\text{COOH} \rightarrow \text{H}_2\text{C}=\text{O})</td>
<td>R9 (\text{H}_2\text{COOH} \rightarrow \text{H}_2\text{C}=\text{O})</td>
<td>R9 (\text{H}_2\text{COOH} \rightarrow \text{H}_2\text{C}=\text{O})</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R10 (\text{HCOOH} \rightarrow \text{H}_2\text{COOH})</td>
<td>R10 (\text{HCOOH} \rightarrow \text{H}_2\text{COOH})</td>
<td>R10 (\text{HCOOH} \rightarrow \text{H}_2\text{COOH})</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R11 (\text{H}_2\text{COOH} \rightarrow \text{H}_2\text{CO})</td>
<td>R11 (\text{H}_2\text{COOH} \rightarrow \text{H}_2\text{CO})</td>
<td>R11 (\text{H}_2\text{COOH} \rightarrow \text{H}_2\text{CO})</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R12 (\text{HCOOH} \rightarrow \text{HCO})</td>
<td>R12 (\text{HCOOH} \rightarrow \text{HCO})</td>
<td>R12 (\text{HCOOH} \rightarrow \text{HCO})</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R13 (\text{HCO} \rightarrow \text{H}_2\text{CO})</td>
<td>R13 (\text{HCO} \rightarrow \text{H}_2\text{CO})</td>
<td>R13 (\text{HCO} \rightarrow \text{H}_2\text{CO})</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R14 (\text{H}_2\text{CO} \rightarrow \text{CH}_3\text{OH})</td>
<td>R14 (\text{H}_2\text{CO} \rightarrow \text{CH}_3\text{OH})</td>
<td>R14 (\text{H}_2\text{CO} \rightarrow \text{CH}_3\text{OH})</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R15 (\text{HCO} \rightarrow \text{CH}_3\text{OH})</td>
<td>R15 (\text{HCO} \rightarrow \text{CH}_3\text{OH})</td>
<td>R15 (\text{HCO} \rightarrow \text{CH}_3\text{OH})</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R16 (\text{trans-COOH} \rightarrow \text{cis-COOH})</td>
<td>R16 (\text{trans-COOH} \rightarrow \text{cis-COOH})</td>
<td>R16 (\text{trans-COOH} \rightarrow \text{cis-COOH})</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>IS</td>
<td>TS</td>
<td>FS</td>
<td></td>
<td>IS</td>
</tr>
<tr>
<td>---</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>---</td>
<td>----</td>
</tr>
<tr>
<td>R17</td>
<td>cis-COOH→CO+OH</td>
<td>R18</td>
<td>CO+H→COH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R19</td>
<td>CO+H→HCO</td>
<td>R20</td>
<td>trans-COOH+H→t,t-COHOH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R21</td>
<td>t,t-COHOH→t,c-COHOH</td>
<td>R22</td>
<td>t,c-COHOH→e,c-COHOH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R23</td>
<td>t,t-COHOH→CO+OH</td>
<td>R24</td>
<td>t,c-COHOH→COH+OH</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figure S4. The side views (top one) and top views (bottom one) of ISs, TSs and FSs of all the elementary steps that are considered in the process of CO$_2$ hydrogenation to CH$_3$OH on Ga-Ni(211) surface.
Computational details of micro-kinetic modeling

The site balance of intermediates can be written in the coverage of the species.1 Pseudo steady-state approximation2 was used to describe the adsorbed surface species, based on the assumption that the production and consumption rate are equal for the species. In addition, the adsorptions of CO\textsubscript{2} and H\textsubscript{2} are assumed to be in equilibrium in the micro-kinetic modeling. The equations are displayed as follows:

\[
\begin{align*}
\theta_{CO_2} + \theta_H + \theta_{trans-COOH} + \theta_{cis-COOH} + \theta_{OH} + \theta_{t,t-COHOH} + \theta_{t,c-COHOH} \\
+ \theta_{c,c-COHOH} + \theta_{HCOH} + \theta_{CH_2OH} + \theta^* &= 1
\end{align*}
\]

(1)

\[
k_3 \cdot \theta_{CO_2} \cdot \theta_H - k_{16} \cdot \theta_{trans-COOH} - k_{20} \cdot \theta_{trans-COOH} \cdot \theta_H = 0
\]

(2)

\[
k_{17} \cdot \theta_{cis-COOH} + k_{23} \cdot \theta_{t,t-COHOH} + k_{24} \cdot \theta_{t,c-COHOH} + k_{25} \cdot \theta_{c,c-COHOH} - k_{31} \cdot \theta_{OH} \cdot \theta_H = 0
\]

(3)

\[
k_{16} \cdot \theta_{trans-COOH} - k_{17} \cdot \theta_{cis-COOH} = 0
\]

(4)

\[
k_{20} \cdot \theta_{trans-COOH} \cdot \theta_H - (k_{21} \cdot \theta_{t,t-COHOH} + k_{23} \cdot \theta_{t,t-COHOH}) = 0
\]

(5)

\[
k_{21} \cdot \theta_{t,t-COHOH} - (k_{22} \cdot \theta_{t,c-COHOH} + k_{24} \cdot \theta_{t,c-COHOH}) = 0
\]

(6)

\[
k_{22} \cdot \theta_{t,c-COHOH} - k_{25} \cdot \theta_{c,c-COHOH} = 0
\]

(7)

\[
k_{23} \cdot \theta_{t,t-COHOH} + k_{24} \cdot \theta_{t,c-COHOH} + k_{25} \cdot \theta_{c,c-COHOH} - k_{26} \cdot \theta_{COH} \cdot \theta_H = 0
\]

(8)

\[
k_{26} \cdot \theta_{COH} - k_{27} \cdot \theta_{HCOH} = 0
\]

(9)

\[
k_{27} \cdot \theta_{HCOH} - k_{28} \cdot \theta_{CH_2OH} = 0
\]

(10)

\[
\theta_{CO_2} = \frac{P_{CO_2} \cdot k \cdot \theta^*}{k_{17} \cdot \theta_H}
\]

(11)

\[
\theta_H = \sqrt{\frac{P_{H_2} \cdot k_{11} \cdot \theta^*}{k_{17} \cdot \theta_H}}
\]

(12)

where \(\theta_x\) represents the coverage rate of x. \(\theta^*\) is the coverage of free site.