Supporting Information

Polydopamine nanosphere@silver nanoclusters for fluorescent detection of multiplex tumor markers

Yiting Jiang,abc Yuguo Tang,ab and Peng Miaoacd

a Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, People’s Republic of China

b Jihua Laboratory, Foshan 528200, People’s Republic of China

c University of Science and Technology of China, Hefei 230026, People’s Republic of China

d Jinan Guokeyigong Science and Technology Development Co., Ltd., Jinan 250103, People’s Republic of China

* Corresponding author. Tel.: +86-512-69588279.

E-mail address: miaopeng@sibet.ac.cn (P. Miao).
Figure S1. Optimization of AgNCs synthesis conditions: (A) Probe A concentration for A-AgNCs; (B) reaction time for A-AgNCs; (C) Probe C concentration for C-AgNCs; (D) reaction time for C-AgNCs.
Figure S2. Normalized FL peak intensities for (A) A-AgNCs, (B) C-AgNCs for 15 days.
Figure S3. Fluorescence emission spectra of (A) A-AgNCs and (C) C-AgNCs quenched by different concentrations of PDAN. (B) and (D) are corresponding calibration curves showing the relationships between FL peak intensities and PDAN concentrations.
Figure S4. Fluorescence emission spectra of (A) PDAN@A-AgNCs and PDAN@C-AgNCs for the detection of AFP and CEA with different reaction times, respectively.

Figure S5. Fluorescence responses of AgNCs, PDAN@AgNCs before and after the detection of tumor markers spiked in different solutions.