Porphyrin-Based Metal-Organic Frameworks: Hydrogen
Protonation Induced Q band Absorption

Yuewu Zhao, a Xue Cai, a,c Ye Zhang, a Changchong Chen, a Jine Wang, *a,a and Renjun Pei, *a,b

aCAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics,
Chinese Academy of Sciences, Suzhou, 215123, China.
bSchool of Nano Technology and Nano Bionics, University of Science and Technology of China,
Hefei, 230026, China.
cDepartment of Obstetrics and Gynecology, The Second Affiliated Hospital of Soochow
University, Suzhou, 215004, China.

E-mail: jewang2012@sinano.ac.cn; rjpei2011@sinano.ac.cn; Tel: +86-512-62872776.
Figure S1. (a) FT-IR, (b) XRD, (c) N$_2$ adsorption-desorption isotherms, and (d) pore size distribution of the prepared Gd-TCPP MOFs nanosheets. The Gd-TCPP shows an approximate type I Langmuir isotherms with a Brunauer-Emmett-Teller surface area of 646.4 m2 g$^{-1}$.
Figure S2. (a) Remaining rate of Gd-TCPP MOFs nanosheets obtained by hydrochloric acid treatment and centrifugation with the different pH. Inset is the photograph of supernatants obtained after hydrochloric acid treatment and centrifugation. (b) UV-vis absorption of the initial concentration of Gd-TCPP MOFs nanosheets, and UV-vis absorption of the residues in the solution after hydrochloric acid treatment and centrifugation at pH=0.5, 1.
Figure S3. (a) FT-IR, (b) XRD, (c) N₂ adsorption-desorption isotherms, and (d) pore size distribution of the Gd-(H₂TCPP)²⁺. The Gd-(H₂TCPP)²⁺ showed an approximate type II Langmuir isotherms with a Brunauer-Emmett-Teller (BET) surface area of 169.96 m² g⁻¹.
Figure S4. UV-vis absorption of (a) Zn-TCPP MOFs nanosheets and (b) acid-treated Zn-TCPP MOFs nanosheets.
Figure S5. UV-vis absorption of (a) TPPS and (b) acid-treated TPPS.
Figure S6. UV-vis absorption and photograph of the acid-treated and recovered TCPP.
Figure S7. UV-vis absorption of TCPP, CuTCPP, and acid-treated CuTCPP (pH=1.0).

The CuTCPP was prepared by reacting TCPP with copper acetate.
Figure S8. TEM and EDS images of (a) Gd-TCPP/MnO, (b) Gd-TCPP/MgO, (c) Gd-TCPP/Fe$_2$O$_3$, and (d) Gd-TCPP/CuO nanohybrids.
Figure S9. XRD patterns of the Gd-TCPP/MnO, Gd-TCPP/MgO, Gd-TCPP/Fe$_2$O$_3$, Gd-ZnTCPP/ZnO, and Gd-TCPP/CuO nanohybrids.
Figure S10. Tyndall effect has been observed for the Gd-TCPP, Gd-TCPP/CuO, Gd-ZnTCPP/ZnO, Gd-TCPP/Fe$_2$O$_3$, Gd-TCPP/MgO, and Gd-TCPP/MnO nanohybrids.
Figure S11. FT-IR of the (a) Gd-ZnTCPP/ZnO and (b) Gd-TCPP/MgO nanohybrids.
Figure S12. (a) N\textsubscript{2} adsorption-desorption isotherms and (b) pore size distribution of the Gd-TCPP/MgO nanohybrids. The Gd-TCPP/MgO shows an approximate type I Langmuir isotherms with a Brunauer-Emmett-Teller surface area of 608.6 m2 g-1.
Figure S13. (a) Full XPS spectrum, N 1s spectrum, and C 1s spectrum of the Gd-TCPP nanosheets. (b) Full XPS spectrum, N 1s spectrum, and Mg 1s spectrum of the Gd-TCPP/MgO nanohybrids. (c) Full XPS spectrum, N 1s spectrum, and Zn 2p spectrum of the Gd-ZnTCPP/ZnO nanohybrids.
Figure S14. TEM image of the acid-treated Gd-TCPP/Fe$_2$O$_3$ nanohybrids.
Figure S15. TEM images of the acid-treated Gd-ZnTCPP/ZnO nanohybrids.
<table>
<thead>
<tr>
<th>MOFs</th>
<th>Porphyrin</th>
<th>Porphyrin core</th>
<th>S\text{BET} (m^2 g^{-1})</th>
<th>Q-band number</th>
<th>Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>COF-366-Co</td>
<td>Co(TAP)</td>
<td>Co</td>
<td>1360</td>
<td>2</td>
<td>S1</td>
</tr>
<tr>
<td>Co-TCPP(Fe)</td>
<td>TCPP(Fe)</td>
<td>Fe</td>
<td>-</td>
<td>2</td>
<td>S2</td>
</tr>
<tr>
<td>M-UiO</td>
<td>H_2DBP-Pt</td>
<td>Pt</td>
<td>-</td>
<td>2</td>
<td>S3</td>
</tr>
<tr>
<td>Zn-TCPP(BP)</td>
<td>TCPP</td>
<td>Zn</td>
<td>483</td>
<td>2</td>
<td>S4</td>
</tr>
<tr>
<td>{CuL-[AlOH]_2}_n</td>
<td>H_6L</td>
<td>Cu</td>
<td>-</td>
<td>2</td>
<td>S5</td>
</tr>
<tr>
<td>Ru-TBP-Zn</td>
<td>H_3TBP</td>
<td>Zn</td>
<td>422</td>
<td>2</td>
<td>S6</td>
</tr>
<tr>
<td>Ru-TBP</td>
<td>H_3TBP</td>
<td>None</td>
<td>441</td>
<td>4</td>
<td>S6</td>
</tr>
<tr>
<td>DBP-UiO</td>
<td>H_2DBP</td>
<td>None</td>
<td>558</td>
<td>4</td>
<td>S7</td>
</tr>
<tr>
<td>PCN-222</td>
<td>H_2TCPP</td>
<td>None</td>
<td>1728</td>
<td>4</td>
<td>S8</td>
</tr>
<tr>
<td>Gd-TCPP</td>
<td>TCPP</td>
<td>None</td>
<td>646.4</td>
<td>4</td>
<td>This work</td>
</tr>
<tr>
<td>Gd-TCPP/MgO</td>
<td>TCPP</td>
<td>None</td>
<td>608.6</td>
<td>4</td>
<td>This work</td>
</tr>
<tr>
<td>Gd-(H_2TCPP)^{2+}</td>
<td>TCPP</td>
<td>H</td>
<td>169.96</td>
<td>1</td>
<td>This work</td>
</tr>
</tbody>
</table>

Table S1. Summary of the different porphyrin-based MOFs materials.
Figure S16. (a) Schematic diagram of the layered Gd-TCPP nanosheets. (b, c) TEM and (d) SEM images of the acid-treated Gd-TCPP nanosheets.
Figure S17. SEM images of the Gd-TCPP with the acid-treated at (a) pH=3.0 and (b) pH=0.5.
References

