Proteinase-Sculptured 3D-Printed Graphene/Polylactic Acid Electrodes as Potential Biosensing Platform: Towards Enzymatic Modeling of 3D-Printed Structures

Carmen Lorena Manzanares-Palenzuela, a Sona Hermanova, a,b Zdenek Sofer, a Martin Pumera a,c *

a. Center for Advanced Functional Nanorobots, Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28, Czech Republic
b. Department of Polymers, Faculty of Chemical Technology, University of Chemistry and Technology Prague, Technická 5, 16628, Czech Republic
c. Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
d. Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, Brno, CZ-616 00, Czech Republic

* E-mail: martin.pumera@vscht.cz

Contents

Table S1. Comparison of electrochemical naphthol detection methods in terms of electrode materials, limit of detection and linear ranges.

Figure S1. SEM image showing a close look on an exposed graphene sheet after proteinase K treatment of a 3D-printed electrode. The red arrows show the wrinkled features of graphene. Scale bar: 200 nm.

Figure S2. SEM/EDS images at different digestion times: A-D) low-magnification images of as-printed electrodes and digested surfaces after 3, 6 and 28 h, respectively; E-H) SEM/EDS mapping showing carbon and oxygen distribution of as-printed electrodes and digested surfaces after 3, 6 and 28 h, respectively. White and yellow asterisks in F represent the PLA-covered and exposed parts of the electrodes after 3 h of activation, respectively. I and J) detailed morphologies of conductive parts of the electrodes exposed after 3 h of digestion and K and L) PLA-rich (not-digested) boundary regions after 3 h of digestion.

Figure S3. XPS high-resolution spectra of C 1s regions taken at four different spots at the surface of: A) as-printed electrodes and B) proteinase-K-treated electrodes.

Figure S4. Typical SEM images of different treatments: DMF-assisted partial PLA dissolution followed by electrochemical pre-treatment as described in Ref. 4.; DMF treatment as described in Ref. 5; proteinase-K treatment as described in this work. Scale bars: 5 µm.
Table S1. Comparison of electrochemical naphthol detection methods in terms of electrode materials, limit of detection and linear ranges.

<table>
<thead>
<tr>
<th>Electrode</th>
<th>Analyte</th>
<th>Limit of detection</th>
<th>Linear range</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>High-index facet SnO$_2$ modified glassy carbon</td>
<td>1-naphthol</td>
<td>5 nM</td>
<td>20–400 nM</td>
<td>1</td>
</tr>
<tr>
<td>Tosflex polymer modified glassy carbon electrode</td>
<td>2-naphthol</td>
<td>0.2 µM</td>
<td>0.8–10 µM</td>
<td>2</td>
</tr>
<tr>
<td>Boron-doped diamond</td>
<td>2-naphthol</td>
<td>Not reported</td>
<td>0.125–1 mM</td>
<td>3</td>
</tr>
<tr>
<td>3D-printed graphene/polylactic acid</td>
<td>1-naphthol</td>
<td>< 3 µM</td>
<td>3–96 µM</td>
<td>This work</td>
</tr>
</tbody>
</table>
Figure S1. SEM image showing a close look on an exposed graphene sheet after proteinase K treatment of a 3D-printed electrode. The red arrows show the wrinkled features of graphene. Scale bar: 200 nm.
Figure S2. SEM/EDS images at different digestion times: A-D) low-magnification images of as-printed electrodes and digested surfaces after 3, 6 and 28 h, respectively; E-H) SEM/EDS mapping showing carbon and oxygen distribution of as-printed electrodes and digested surfaces after 3, 6 and 28 h, respectively. White and yellow asterisks in F represent the PLA-covered and exposed parts of the electrodes after 3 h of activation, respectively. I and J) detailed morphologies of conductive parts of the electrodes exposed after 3 h of digestion and K and L) PLA-rich (not-digested) boundary regions after 3 h of digestion.
Figure S3. XPS high-resolution spectra of C 1s regions taken at four different spots at the surface of: A) as-printed electrodes and B) proteinase-K-treated electrodes.
Figure S4. Typical SEM images of different treatments: DMF-assisted partial PLA dissolution followed by electrochemical pre-treatment as described in Ref. 4.; DMF treatment as described in Ref. 5; proteinase-K treatment as described in this work. Scale bars: 5 µm.

References

