Electronic Supplementary Information

Exploring and Suppressing Kink Effect of Black Phosphorus Field-Effect Transistors Operating in Saturation Regime

Ying Xia,‡ a Guoli Li,‡* b Bei Jiang, a Zhenyu Yang, a Xingqiang Liu, b Xiangheng Xiao, a Denis Flandre, b,c Chunlan Wang, d Yuan Liu b and Lei Liao* a,b

a. School of Physics and Technology, Wuhan University, Wuhan 430072, China. E-mail: liaolei@whu.edu.cn
b. State Key Laboratory for Chemo/Biosensing and Chemometrics, School of Physics and Electronics, Hunan University, Changsha 410082, China. E-mail: liguoli_lily@hnu.edu.cn
c. Institute of Information and Communication Technologies, Electronics and Applied Mathematics, Université catholique de Louvain, Louvain-la-Neuve B-1348, Belgium
d. School of Science Xi’an Polytechnic University, Xi’an 710048, China

*Corresponding author email: liaolei@whu.edu.cn; liguoli_lily@hnu.edu.cn.
Fig. S1 Transfer characteristics (I_{DS}—V_{GS}) of the BP FETs at $V_{DS} = -1.0$ V, with various BP thicknesses of ~5, ~9, ~11 and 19 nm and fixed channel length L of 3 μm.
Fig. S2 Leakage current characteristics ($I_{GS}-V_{DS}$) of the BP FETs at $V_{GS} = -5.0$ V, with various BP thicknesses of ~5, ~9, ~11 and ~19 nm and fixed channel length L of 3 μm.
Fig. S3 The transfer (at $V_{GS} = -1.0$ V) and output (at V_{DS} of 20 ~ 20 V) curves of the BP FETs using a 100 nm-thick SiO$_2$ layer as gate dielectric and with channel length L of 3 μm.
Fig. S4 Transfer (I_{DS}–V_{GS}) curves of the BP FETs at (a) $V_{DS} = -1.0$ V and (b) $V_{DS} = -0.1$ V with channel length of 0.3, 3 and 10 μm.
Fig. S5 Transfer characteristics (I_{DS}–V_{GS}) of the BP FETs under different N_2 plasma treatment duration (0, 5, 10, 15 and 20 s) at $V_{DS} = -1.0$ V