Supporting Information

Enhancement of Ultralow-Intensity NIR Light Triggered Photodynamic Therapy based on Exo- and Endogenous Synergistic effects through Combination of Glutathione-depletion Chemotherapy

Jun-hui Shi,† a Tian-ran Wang,† b Yong-qiang You,a Muhammad Luqman Akhtar, b Zong-jun Liu,§ Fang Han, b Yu Li, b You, Wang*a

a School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China

† School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China

§ School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China

Author Contributions:

Jun-hui Shi and Tian-ran Wang contributed equally to this work.

*Corresponding Author:

Professor You Wang, E-mail: y-wang@hit.edu.cn.
Experimental details

Synthesis of NaYF₄:Yb,Er nanoparticles. YCl₃·6H₂O (3.12 mmol, 946.5 mg), YbCl₃·6H₂O (0.80 mmol, 310.7 mg), and ErCl₃·6H₂O (0.08 mmol, 30.5 mg) were added to a three necked flask (250 mL) containing OA (24 mL) and ODE (60 mL). The solution was heated to 160 °C and kept 3 h under argon flow and magnetic stirring. The temperature was then cooled to 50 °C, and 40 mL of methanol containing NH₄F (16 mmol, 592.6 mg) and NaOH (10 mmol, 400.0 mg) was added. The mixture was stirred for another 30 min and heated to 100 °C to evaporate the methanol and then heated to 300 °C and kept 1 h under argon protection. After it was cooled to room temperature, the product was collected by centrifugation and washed three times with ethanol/cyclohexane, and finally re-dispersed in cyclohexane (40 mL) for further use.

Synthesis of NaYF₄:Yb,Er@NaYF₄:Yb,Nd nanoparticles. YCl₃·6H₂O (1.50 mmol, 455.1 mg), YbCl₃·6H₂O (0.30 mmol, 116.5 mg), NdCl₃·6H₂O (1.2 mmol, 345.3 mg), and pre-prepared NaYF₄:Yb,Tm (3.00 mmol, 30 mL) were added to a three necked flask having OA (18 mL) and ODE (45 mL). The solution was heated to 160 °C and kept 3 h under argon protection. After the temperature was cooled to 50 °C, 30 mL of methanol containing NH₄F (12 mmol, 444.4 mg) and NaOH (7.5 mmol, 300.0 mg) was added and the mixture was stirred for another 30 min. Subsequently, the solution was heated to 100 °C to evaporate the methanol and then heated to 300 °C and kept 1.5 h under argon protection. The final product was dispersed in cyclohexane (30 mL) for further use.

Synthesis of NaYF₄:Yb,Er@NaYF₄:Yb,Nd@NaYF₄ nanoparticles (UCNP). YCl₃·6H₂O (1.00 mmol, 303.4 mg), and pre-prepared NaYF₄:Yb,Er@NaYF₄:Yb,Nd (2.00 mmol, 20 mL) were added to a three necked flask having OA (12 mL) and ODE (30 mL). The solution was heated to 160 °C and kept 3 h under argon protection. After the temperature was cooled to 50 °C, 30 mL of methanol containing NH₄F (8 mmol, 296.3 mg) and NaOH (5 mmol, 200.0 mg) was added and the mixture was stirred for another 30 min. Subsequently, the solution was heated to 100 °C to evaporate the
methanol and then heated to 300 °C and kept 2 h under argon protection. The final product was dispersed in cyclohexane (20 mL) for further use.

Figure S1. Digital photographs of UCNP@SiO$_2$ nanoparticles: A) loading with APTES only, B) loading with RB only, and C) loading with RB and APTES.

Figure S2. The intensity calibration curve of 808 nm laser obtained using laser power density meter (Thorlabs PM100D). The set distance between laser source and sample was 6 cm.
Figure S3. The upconversion emission spectrum of NaYF₄:Yb,Er@NaYF₄:Yb,Nd and UCNP (NaYF₄:Yb,Er@NaYF₄:Yb,Nd@NaYF₄) under 808 nm NIR light irradiation.

Figure S4. Step-by-step synthesis protocol of UCNP@SiO₂(RB)-S-S-CPT. a) UCNP@SiO₂(RB); b) UCNP@SiO₂(RB)-SH; c) UCNP@SiO₂(RB)-COOH; d) UCNP@SiO₂(RB)-S-S-OH; e) UCNP@SiO₂(RB)-S-S-CPT.
Figure S5. Leaking of RB molecules from UCNP@SiO$_2$(RB) during 6 days extraction in PBS.

Figure S6. Original UV-Vis data on CPT release for UCNP@SiO$_2$(RB)-S-S-CPT without GSH.
Figure S7. Fluorescence microscopy images of HeLa cells incubated with UCNP@SiO$_2$(RB)-S-S-OH and UCNP@SiO$_2$(RB)-S-S-CPT nanoparticles respectively, suggesting as-synthesized nanoparticles can be effectively uptake by HeLa cells.

Figure S8. Photodamage of the mice in Laser group after 808 nm laser irradiation with 0.30 and 2.0 W/cm2 intensity for 10 min. This result strongly suggests that the necessity of using ultralow-intensity NIR light for phototherapy to avoid photodamage.
Figure S9. Ki-67-stained cellular proliferation in tumor tissues sections after two-week treatment.

Figure S10. Representative histological H&E stained tissue sections from mice to monitor the histological changes in heart, liver, spleen, lung, and kidney were collected from different groups followed by dissections at 14 days post injection.