Micro-CT as a Non-Destructive Tool for Imaging the Uptake of Metal Nanoparticles by Graphene Based 3D Carbon Structures

Christopher T. G. Smith1, Christopher A. Mills1,2, Silvia Pani3, Rhys Rhodes1, Josh J. Bailey4, Samuel J. Cooper5, Tanveerkhan S. Pathan4, Vlad Stolojan1, Paul Shearing4 and S. Ravi P. Silva1*

1 Nano-Electronics Centre, Advanced Technology Institute, University of Surrey, Guildford, GU2 7XH, UK.
2 Advanced Coatings Group, Surface Engineering Department, Tata Steel Research Development and Technology, 9 Sir William Lyons Road, Coventry, CV4 7EZ, UK.
3 Centre for Nuclear and Radiation Physics, Department of Physics, University of Surrey, Guildford, Surrey GU2 7XH, UK.
4 Electrochemical Innovation Laboratory, Department of Chemical Engineering, University College London, Torrington Place, London WC1E 7JE
5 Dyson School of Design Engineering, Imperial College London, South Kensington, London, SW7 1NA, UK

*corresponding author: s.silva@surrey.ac.uk

S1 Segmentation Procedure

The segmentation procedure undertaken on the X-ray nano-CT images in Figure 8 is progressed in the following way:

1. Apply a 3D 3x3x3 Gaussian Filter
2. Convert the image type from 32-bit to 8-bit
3. Crop the volume to exclude bright artefacts outside volume of interest
4. Labelling:
 a. Simple threshold for NPs (bright) and 1 x volume expansion (1 pixel in all directions)
 b. Simple threshold for C-sponge (light grey) and 3 x volume contraction and expansion
 c. Watershed segmentation based on seeds detailed above

S2 Analysis

S2.1 Full FOV

Volumes and Areas

VSSA = Volume-specific surface area

VISA = Volume-specific interfacial area

Total volume of carbon = 21.3 mm3

Total volume of NPs = 9.7 mm3

Absolute surface area of carbon = 1880 mm2

Absolute surface area of NPs = 670 mm2

VSSA of carbon (/Vol C) = 89 mm$^{-1}$

VSSA of carbon (/Vol Tot Solids) = 61 mm$^{-1}$

VSSA of NPs (/Vol NP) = 68 mm$^{-1}$

S2 Analysis cont.:

VSSA of NPs (/Vol Tot Solids) = 21 mm$^{-1}$

Absolute interfacial area C-NPs = 320 mm2

VISA C-NPs = 10 mm$^{-1}$

Conclusions:

Volume of carbon = 2.2 x Volume of NP

Surface area of carbon = 2.8 x Surface area of NP

VSSA (/C) of carbon = 1.3 x VSSA (/NP) of NP

VSSA (/Tot) of carbon = 2.9 x VSSA (/Tot Solids) of NP

VISA (/Tot) of carbon-NP) = 1/6 of total VSSA of carbon (/Tot) (10 / 61)

S2.2 Sub-volume Porosity estimation

Extracted sub-volume with dimensions: 376 x 306 x 180

Volume of extracted sub-volume 1 = 2.50 mm3

Estimated porosity = 70 %

Volume of extracted sub-volume 2 = 1.38 mm3

Estimated porosity = 77 %

Volume of extracted sub-volume 3 = 1.03 mm3

Estimated porosity = 73 %

Average percentage porosity = (70 + 77 + 73) / 3 = 73 %

Porosity range = 70 - 77 %

Std. deviation = 2.9 %

Conclusion:

Estimated porosity of carbon sponge = 73 ± 3 % (1 s.d. of error)