Microlens Array Enhanced Upconversion Luminescence at Low Excitation Irradiance

Qingyun Liu,a,b Haichun Liu,a Deyang Li,b Wen Qiao,c Guanying Chen,b Hans Ågrena,b,d

a Department of Theoretical chemistry and Biology, KTH Royal Institute of Technology, Stockholm, Sweden.
b School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, P.R. China.
c School of Optoelectronic Science and Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006, P.R. China
d College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, P.R. China

*Corresponding authors:
*E-mail: hagren@kth.se (Hans Ågren); chenguanying@hit.edu.cn (Guanying Chen); haichun@kth.se (Haichun Liu)
Figure S1 TEM images of (a) core NaYF₄:20%Yb³⁺,2%Er³⁺, (b) core-shell NaYF₄:20%Yb³⁺, 2%Er³⁺@20%Yb³⁺,30%Nd³⁺, (c) core NaYF₄:20%Yb³⁺,0.5%Tm³⁺, (d) core-shell NaYF₄:20%Yb³⁺, 0.5%Tm³⁺@20%Yb³⁺,30%Nd³⁺ nanoparticles. Scale bars: 50 nm.
Figure S2 (a) Upconversion emission spectra of NaYF₄:20%Yb³⁺, 2%Er³⁺@20%Yb³⁺,30%Nd³⁺ nanoparticles under CW 980 nm and 808 nm excitation. Excitation power density for both lasers was 1.3 W/cm². Excitation power-density response of NaYF₄:20%Yb³⁺, 2%Er³⁺@20%Yb³⁺,30%Nd³⁺ under (b) CW 980 nm excitation and (c) CW 808 nm excitation. (d) Upconversion emission spectra of NaYF₄:20%Yb³⁺, 0.5%Tm³⁺@20%Yb³⁺,30%Nd³⁺ nanoparticles under CW 980 nm and 808 nm excitation. Excitation power density for both lasers was 14.5 W/cm². Excitation power-density response of NaYF₄:20%Yb³⁺, 0.5%Tm³⁺@20%Yb³⁺,30%Nd³⁺ under (e) CW 980 nm excitation and (f) CW 808 nm excitation. Laser beam diameter for both lasers: ~1.0 mm.
Figure S3 Transmission spectrum of the microlens array

Figure S4 Upconversion luminescence spectra of NaYF₄:20%Yb³⁺, 2%Er³⁺ @ 20%Yb³⁺, 30%Nd³⁺ nanoparticles under 980 nm CW excitation (Average excitation intensity: 3.9 W/cm²) without and with the addition of microlens array (MLA), using different solvents as the interface medium (ethanol, water, methanol).