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Figure S1. SEM images of a) AuNPs decorated un-SWCNTs and b) AuNPs decorated sc-SWCNTs. Both 

SEM images show an area of 1578 nm X 2353 nm on the device surface. It can be observed that less un-

SWCNTs were deposited on the substrate than sc-SWCNT, indicating that sc-SWCNT formed denser 

networks than un-SWCNTs. (Scale bar: a) 200 nm; b) 200 nm) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 S3 

 

Figure S2. a) Atomic force microscopy (AFM) image of AuNP decorated sc-SWCNTs. b) AFM image of 
Au-SWCNTs after CaM binding. c) Height profile of Au-sc-SWCNTs. d) Height profile of CaM-Au-sc-
SWCNTs. 
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Figure S3. RBM peaks of a) un-SWCNT and b) sc-SWCNT under 785 nm laser excitation. Peaks in the 

shaded area from 120 cm-1 to 170 cm-1 are associated with the metallic features of SWCNTs. un-SWCNT 

has an RBM peak centered around 145 cm-1. In contrast, this peak is absent in sc-SWCNT, a broad and 

splitting RBM peak arises at 204 cm-1 instead. This result confirms the high purity content of sc-SWCNT.S1-

S3 
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Figure S4. Circular Dichroism solution spectra of calcium-free CaM (apo-CaM) and calcium-bound CaM 

with different concentrations of CaCl2. 
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Figure S5. a) Successful expression of EGFP-CaM in HEK293T cells was confirmed by live-cell imaging 

using Zeiss microscope. b) In-gel fluorescence showing purified EGFP-CaM protein.  
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Figure S6. Device reproducibility of a) un-SWCNT and b) sc-SWCNT FET devices. For both types of 

devices, the calibration curve was constructed by plotting the averaged relative conductance changes from 

multiple devices at – 0.5 Vg against concentrations of Ca2+ solution. Error bars were calculated from 4 

different devices for un-SWCNT devices, and 5 different devices for sc-SWCNT devices. The larger error 

bars for sc-SWCNT devices suggest larger device-to-device variations for sc-SWCNT devices. 
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Figure S7. a) SEM image of CaM on un-SWCNT networks. b) SEM image of CaM on sc-SWCNT 

networks. c) Calibration plot of the active system and control systems of un-SWCNT FET devices. d) 

Calibration plot of the active system and control systems of sc-SWCNT FET devices in the corresponding 

linear range. 
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Figure S8. Comparison of source-drain current (Id) and gate leakage current (Ig) for a) sc-SWCNT and b) 

un-SWCNT FET devices. The gate current is insignificant compared to the source-drain current, therefore 

the effect of leakage current is negligible.  
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Figure S9. a) FET characteristic curves of CaM-Au-un-SWCNT FET device during each step of 

functionalization plotting in linear scale and b) logarithmic scale. c) FET characteristic curves of CaM-Au-

sc-SWCNT FET device during each step of functionalization plotting in linear scale and d) logarithmic 

scale. The on/off ratio of un-SWCNT FET device was ~3, while the on/off ratio of sc-SWCNT FET device 

was ~104. sc-SWCNT FET devices show better on/off ratio due to the lack of metallic carbon nanotubes, 

therefore efficiently turning off the device. 
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Figure S10. Absolute relative response of a) CaM-Au-un-SWCNT FET device and b) CaM-Au-sc-

SWCNT FET device to 10-11 M Ca2+. With higher on/off ratio, sc-SWCNT FET device had a significant 

higher absolute relative response than un-SWCNT FET device, even though the shift of gate voltage was 

similar. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 S12 

 

Table S1. Comparison of various methods for Ca2+ detection 

Ca2+ detection method Ca2+ detection limit Reference in the main text 

Ca2+ selective PVC-membrane 

electrode 

7.5 × 10'( M 61 

Solid-contact Ca2+ selective 

electrode 

(3.4-8.2)	× 10'* M 62 

NiCo2O4/3-D Graphene 0.38 µM 63 

Fluorescent carbon quantum 

dot 

77 pM (in human serum) 64 

CaM-Au-sc-SWCNT FET 10-15 M This work 
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