Supplementary Information: Nanoscale: Gate-tunable large spin polarization in few-layer black phosphorus based spintronic device

Liwen Zhang,^{*a,f*} Jun Chen,^{*b,f*} Xiaohong Zheng,^{*c,a*} Bin Wang,^{*d,e*,[†]} Lei Zhang,^{*a,f*,*} Liantuan Xiao,^{*a,f*} Suotang Jia,^{*a,f*}

^aState Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan 030006, China ^bInstitute of Theoretical Physics, Shanxi University, Taiyuan 030006, China

^cKey Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, China

^dCollege of Physics and Optoelectronic Engineering, Shenzhen Key Laboratory of Advanced Thin Films and Applications, Shenzhen University, Shenzhen, 518060, China

^eCenter for Quantum Computing, Peng Cheng Laboratory, Shenzhen 518060, China

 $[^]f$ Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China

^{*}zhanglei@sxu.edu.cn

[†]binwang@szu.edu.cn

Figure S1 Bond lengths between the trilayer BP and Ni electrode interface.

Figure S2 The transmission coefficients T_{σ} versus energy when $V_g = 0$ V, $V_b = 0$ V (a) in PC and (b) in APC.

Figure S3 The transmission coefficients $T_{\sigma}(k_y)$ versus transverse momentum k_y when $V_g = 0, 5$ V. (a) Spin up component in PC. (b) Spin down component in PC.

Figure S4 (a) Isosurface plot of four scattering states of trilayer BP based spintronic device when $V_g = 5V$ and momentum $k_y = k_B$ denoted as B in figure 5(b) in the main text. (b) Isosurface plot of six scattering states of trilayer BP based spintronic device when $V_g = 6V$ and momentum $k_y = k_D$ denoted as D in figure 5(b) in the main text. (c) The transmission coefficient of the corresponding channel when momentum k_y is equal to k_B . (d) The transmission coefficient of the corresponding channel when momentum k_y is equal to k_D . Note that the isosurface value is fixed as 0.5 in (a,b).

$V_b(V)$	N _{real}	ΔQ
-0.05	4	5.1177E-03
-0.04	7	9.0088E-03
-0.03	2	9.4702E-03
-0.02	1	1.3602E-02
-0.01	1	1.5195E-02
0.01	1	1.5585E-02
0.02	1	1.3291E-02
0.03	2	7.3376E-03
0.04	3	5.2070E-03
0.05	4	3.7321E-03

Table 1 The number of integration points N_{real} in the real energy axis under different bias voltage.