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Section S1. Computational details  

All density functional theory (DFT) computations were performed by adopting the 

projector augmented wave (PAW)1 method and generalized gradient approximation 

(GGA) functional with the form of Perdew-Burke-Ernzerhof (PBE).2 Calculations are 

implemented in the Vienna ab-initio simulation package (VASP).3 The van der Waals 

correction was considered by adopting the DFT-D24 approach. The cutoff energy for 

the plane-wave basis set is 500 eV. The Brillouin-zone (BZ) integration is sampled with 

a Γ centered k-point grid of 9 × 9 × 1 for structural relaxation. The convergence 

thresholds of electronic self-consistent is 10-5 eV and of the Hellmann-Feynman force 

on each particle was reduced to 10-2 eV Å-1 or below.   

A vacuum layer (≥20 Å in the vertical direction) is employed to avoid the artificial 

interaction between two neighboring monolayers. The climbing-image nudged elastic 

band (CI-NEB) method5 was used to optimize the energy path for the migration of Mg 

ions on C2N. The Bader charge6 integration was adopted to count the amount of charge 

transfer between Mg and C2N. The stability of C2N with maximum adatoms (2 × 2 × 1 

supercell) was evaluated through ab-initio molecular dynamics (AIMD) simulations, 

with a time step of 1 fs for 5000 steps at 300 K. 

 

Section S2. Adsorption of Mg atoms on a C2N monolayer and stress-strain 

relationship of C2N 

One of the preconditions to be an anode material is that the metal atoms can be 

adsorbed on it. Based on the symmetry, ten possible sites for Mg adsorption (Figure S1) 

are considered. However, only three sites (A, B, and C sites) retain after the structural 

optimization. Later, the adsorption energy Eads is computed by  
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x 2 2ads Mg C N C N Mg( ) /E E E xE x                                    (S1) 

where
x 2Mg C NE  and

2C NE  are the total energies of a C2N monolayer with and without 

adsorption of Mg atoms, EMg is the energy per atom for a hexagonal close-packed Mg 

bulk, and x is the number of Mg adatoms. Calculated adsE  are -2.495, 1.751, and 1.712 

eV for A, B, and C sites, respectively, implying that A sites are the most stable 

adsorption sites while the B and C sites cannot steadily adsorb the Mg atoms. This is 

different from the case of C2N-Li/Na systems, where Li or Na atoms could be adsorbed 

on the top of the center of a C4N2 hexagon (B site) stably.  

To better understand the effect of strain for the performance of stretchable batteries, 

we also calculate the stress-strain curves of C2N with biaxial strains. It is found that the 

C2N sheet can endure a strain as high as 16% and 11% under biaxial compressive and 

tensile strains (Figure S3), respectively. These large fracture strains suggest that the 

C2N anode is able to accommodate the volume changes during 

magnesiation/demagnesiation process and further verify the good cycling stability.7, 8 

In addition, the Young’s modulus of C2N monolayer is 72.55 GPa (i.e. 145.10 N/m), 

which is larger than that of MoS2 (120 N/m)9 but is smaller than those of graphene (340 

± 50 N/m)10 and h-BN (267 N/m)11. The calculated elastic constants of C2N are 79.21 

GPa (i.e.158.43 N/m), 22.42 GPa (i.e. 44.83 N/m), and 28.40 GPa (i.e. 56.80 N/m) for 

C11 (equal to C22), C12, and C66, respectively, which meet the mechanical stability 

criteria ( 0)( 2
122211 CCC  and 066 C  ) for 2D materials,12 implying the C2N 

monolayer is mechanically stable. The in-plane Young’s modulus (E) and Poisson’s 

ratio (ν) can also be derived from the elastic constants. Using the formula of 

  11
2

12
2

11 / CCCE    and 1112 / CC  , the Young’s modulus and Poisson’s ratio are 

72.87 GPa (i.e. 145.74 N/m) and 0.283, respectively. The calculated Young’s modulus 
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from elastic constants is consistent with the result obtained by fitting the stress–strain 

curves.  

Besides, the phonon dispersion curves of the C2N monolayer with and without 

external strains are also calculated to examine the dynamic stability. As an example, no 

imaginary frequencies appearing in the Brillouin zone indicates that the C2N is not only 

dynamically stable in the strain-free state, but also stable in dynamics under a biaxial 

tensile of 10% (Figure S4). 

 

Section S3. Specific Capacity  

We compute the specific capacity C via F /C xn M , where n, F(=26801 mA h 

mol-1) and M are the valence of Mg2+ in the electrolyte, Faraday constant and molar 

mass of a C2N monolayer. 

 

Section S4. Zero point energy (ZPE) and quantum mechanical tunneling (QMT) 

effects 

The classical and quantum diffusion rates are taken into account. Considering the 

harmonic approximation for vibrational modes, the transition state theory can provide 

an equation13-15 for the calculation of the classic rate constant of Mg ion diffusion, i.e., 

B

TS
/TST B

c IS
E k Tk TQ

k e
hQ

                                 (S1) 

where kB is the Boltzmann constant, T is the temperature and h represents the Planck’s 

constant. E   is the classic energy barrier computed from the CI-NEB method 

without zero point energy (ZPE) corrections. Considering the vibrational frequencies 

of IS and TS (denoted as 
IS
i   and 

TS
i  , respectively), the ratio of the partition 

functions of the transition state (TS) and initial state (IS) (denoted as QTS and QIS, 
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respectively) can be written by14, 15  

3 6 ISTS

3 7IS TS
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 


                                (S2)   

For the classic energy barrier, the ZPE correction ( ZPEδE ), which is available at low 

temperatures, can be given by 14-16 

TS IS

ZPEδ
2 2

i i

i i

h h
E

 
                                (S3) 

where the first and second terms represent the total ZPE of the transition and initial 

states, respectively.  

Comparing with ZPE correction, which is more accurate only at low temperature 

when the vibrational modes are in their ground states, in the classic energy barrier, the 

Wigner zero point correction ( WigδE  )17, which works better at the intermediate 

temperatures, can be described17 

 
IS IS

Wig B TS TS
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                   (S4) 

where the ratio of the ZPE to the thermal energy at each vibrational mode is

IS/TS IS
B2i ix h k T . Taking the imaginary frequency mode into account, the quantum 

mechanical tunneling (QMT) effects can be considered by the Wigner tunneling 

correction.16, 18 

Figure S15 presents the variations of the Mg diffusion barrier with respect to 

temperature when they migrate on a C2N monolayer. The ZPE corrections of energy 

barriers ( ZPEδE  ) are in the range of 0.004 – 0.032 eV. The temperature dependent 

Wigner ZPE-corrected barriers ( WigδE E  ) and temperature dependent Wigner ZPE- 
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and tunneling-corrected barriers ( Wig/TunnδE E  ) are determined, and they are located 

between the classical barrier ( E  ) and the ZPE corrected barrier ( ZPEδE E   ).

WigδE E    and Wig/TunnδE E    approach to ZPEδE E    at the low temperature 

limit while they reach E  (black line) at the high temperature limit. Figure S15 also 

showed that the QMT effect weakened as the temperature increases. The diffusion 

constants with and without QMT corrections are also provided in Table S2. And one 

can find that (1) the diffusion constants are promoted by the QMT effect, and (2) Mg 

has a two-stage diffusion behavior. 

 

Section S5. Calculations of open circuit voltage (OCV) 

We calculate the open circuit voltage (OCV) via the equation19, 20 of

2 x 2C N Mg Mg C N( ) / eOCV E xE E xn   , where e is the electronic charge.  
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Figure S1. Schematic illustration of all possible positions of a single Mg atom 

adsorption on a C2N monolayer. 

 

 

Figure S2. The most stable configuration (a) and charge density difference (b) of a 

single Mg atom adsorption on a C2N monolayer. In charge density difference, cyan and 

yellow regions represent the charge depletion and accumulation, respectively. 
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Figure S3. Calculated stress-strain curves of a C2N monolayer under biaxial 

compression (a) and tensile (b) strains. The insert in (b) represents the fitting of the 

initial segment of stress-strain curve under biaxial tensile. 

 

 

Figure S4. The phonon spectra of a pristine C2N monolayer (a) and a strained C2N 

monolayer under a biaxial tensile of 10% (b). 
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Figure S5. Top (upper) and side (below) views of optimized structures for the second 

Mg atom adsorption at C (a), D (b), and E sites (c) on a strain-free C2N monolayer in 

the atom pair adsorption model.  

 

 

Figure S6. Top (upper) and side (below) views of optimized structures for the second 

Mg atom adsorption at D (a), F (b), A (c), C (d), E (e) and B sites (f) on a C2N monolayer 

under a –10% biaxial compressive strain in the atom pair adsorption model.  
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Figure S7. Top (upper) and side (below) views of optimized structures for the second 

Mg atom adsorption at D (a), C (b), and B (c) on a C2N monolayer under a –5% biaxial 

compressive strain in the atom pair model.  

 

 

Figure S8. Top (upper) and side (below) views of optimized structures for the second 

Mg atom adsorption at D (a) and C sites (b) on a C2N monolayer under a 5% biaxial 

tensile strain, and D (c) and C sites (d) under a 10% biaxial tensile strain in the atom 

pair adsorption model.  
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Figure S9. The charge density difference for the most stable configurations of two Mg 

atoms adsorption on a C2N monolayer under biaxial strains of –10% (a), –5% (b), 0 (c), 

5% (d), and 10% (e). 

 

 

Figure S10. Top (upper) and side (below) views of the most stable configurations for 

three (a) and four (b) Mg atoms adsorption on a C2N monolayer. 

 

 

 



S12 
 

 

Figure S11. Snapshots of the most stable configurations of five (strain-free) (a) and 

thirteen (under –10% compressive strain) (b) Mg atoms adsorption on a C2N monolayer 

at the end of a 5ps AIMD simulation under 300 K from top (upper) and side (below) 

views. 

 

 

Figure S12. Top (upper) and side (below) views of the most stable configurations for 

the maximum Mg atoms adsorption on a C2N monolayer under biaxial strains of –10% 

(a), –5% (b), 2% (c), 5% (d), and 10% (e). 
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Figure S13. Top (upper) and side (below) views of charge density differences for the 

most stable configurations of the maximum Mg atoms adsorption on a C2N monolayer 

under biaxial strains of –10% (a), –5% (b), 0 (c), 5% (d), and 10% (e). 

 

 

Figure S14. Diffusion paths and their corresponding energy barriers of a single (a) and 

two (b) Mg atoms diffusion on a C2N monolayer under a biaxial tensile strain of 10%. 
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Figure S15. Variations of the classical energy barrier E  , ZPE-corrected barrier

ZPE+δE E  , Wigner ZPE-corrected barrier Wig+δE E  , Wigner ZPE- and tunneling-

corrected barrier Wig/Tunn+δE E  with respect to temperature for a single Mg (a) and 

Mg atomic pair (b) diffusion on the pristine C2N monolayers, for a single Mg (c) and 

Mg atomic pair (d) diffusion on the C2N monolayers under biaxial compression of    

–10%, and for a single Mg (e) and Mg atomic pair (f) diffusion on the C2N monolayers 

under biaxial tensile of 10%. 
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Figure S16. Total density of states for the most stable configurations of a single Mg 

atom adsorption on a C2N monolayer under biaxial strains of –10% (a), –5% (b), 5% 

(c), and 10% (d). The Fermi level was set as 0 eV and labeled with a red vertical dash 

line. 

 

 

Figure S17. Open-circuit voltage profile versus concentration of Mg adatoms on a C2N 

monolayer with and without strains.  
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Table S1. Adsorption energies Eads (eV) of a single Mg atom adsorption on a C2N 

monolayer with and without external strains. Total energies Et (eV) of a C2N monolayer 

with and without external strains. Bader charge (|e|) per Mg atom from a single Mg 

atom (Bone), from two Mg atoms in the atom pair approach (Btwo) and from the 

maximum capacity (Bmax) for a C2N monolayer with and without external strains. 

 

Strain -10% -5% 0 5% 10% 
Eads -4.725 -3.601 -2.495 -1.629 -0.817 
Et -147.5 -154.9 -157.1 -155.4 -151.2 

Bone 1.706 1.697 1.680 1.649 1.630 
Btwo 0.922 0.942 1.033 0.994 0.966 
Bmax 1.081 0.788 0.776 0.803 0.818 

 
 
 
Table S2. Classical diffusion constant kc, Wigner ZPE- and tunneling-corrected 

diffusion constant kWig/Tunn, and percentages of tunneling effect (QMT) at 300 K of a 

single Mg (single atom) and of Mg atomic pair (atomic pair) diffusion on a C2N 

monolayer without strain (0%) and under a biaxial compression (-10%) as well as under 

a biaxial tensile (10%). 

System kcl (s-1) kWig/Tunn (s-1) QMT (%) 

0%-single atom 2.12×10-59 2.26×10-59 6.33 

0%-atomic pair 1.41×10-02 1.52×10-02 6.80 

10%-single atom 5.02×10-30 5.97×10-30 15.88 

10%-atomic pair 2.61×10-34 2.97×10-34 12.26 

-10%-single atom 3.90×10-40 4.57×10-40 14.60 

-10%-atomic pair 9.01×109 9.12×109 1.27 
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