## Electronic Supplementary Information (ESI)

## Oxidative nucleation and growth of Janus-type MnO<sub>x</sub>-Ag and MnO<sub>x</sub>-AgI nanoparticles

Lei Zhang,<sup>a,b</sup> Lei Jin,<sup>b</sup> Yue Yang,<sup>b,d</sup> Xingsong Su,<sup>a,b</sup> Peter Kerns,<sup>b</sup> Michael Meng,<sup>b</sup> Ben Liu<sup>a,\*</sup> and Jie He<sup>b,c,\*</sup>

<sup>b</sup>Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, USA

<sup>c</sup>Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, USA

<sup>d</sup>Department of Chemical Engineering, Nanjing University of Science and Technology, Jiangsu 210094, China

<sup>&</sup>lt;sup>a</sup>Jiangsu Key Laboratory of New Power Batteries, Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China

|          | Peak Position / eV  |                     |               |                      |                      |                     |                     |
|----------|---------------------|---------------------|---------------|----------------------|----------------------|---------------------|---------------------|
| Sample   | Mn2P <sub>1/2</sub> | Mn2P <sub>3/2</sub> | riangle Mn 3S | Ag 3d <sub>3/2</sub> | Ag 3d <sub>5/2</sub> | I 3d <sub>3/2</sub> | I 3d <sub>5/2</sub> |
| MnO      | 652.5               | 640.8               | 5.9           | /                    | /                    | /                   | /                   |
| MnOx-Ag  | 652.6               | 641.4               | 5.3           | 373.8                | 367.8                | /                   | /                   |
| MnOx-Agl | 653.3               | 641.5               | 5.1           | 373.5                | 367.5                | 630.5               | 619                 |

**Table S1.** The summary of peak position obtained from the deconvoluted Mn 2p, Mn 3s, Ag 3d and I 3d XPS spectra of the initial MnO octahedrons, Janus MnO<sub>x</sub>-Ag and MnO<sub>x</sub>-AgI NPs.

**Table S2.** The percentage of Mn<sup>2+</sup>, Mn<sup>3+</sup> and Mn<sup>4+</sup> in the Mn 2p XPS spectra of the initial MnO octahedrons, Janus MnO<sub>x</sub>-Ag and MnO<sub>x</sub>-AgI NPs.

| Sample             | Mn <sup>2+</sup> | Mn <sup>3+</sup> | Mn <sup>4+</sup> |  |
|--------------------|------------------|------------------|------------------|--|
| Peak position / eV | 640.8            | 641.6            | 643.8            |  |
| MnO                | 100              | /                | /                |  |
| MnOx-Ag            | 37.5             | 50.9             | 11.6             |  |
| MnOx-Agl           | 24               | 66               | 10               |  |



Figure S1. TEM images of the primary MnO octahedra showing the uniformity structures of MnO octahedrons.



Figure S2. Low-magnification TEM image of the Janus-type MnO<sub>x</sub>-Ag NPs.



**Figure S3.** Size distributions of the MnO domain in (a) MnO octahedron, (b) Janus-type  $MnO_x$ -Ag NPs, and (c) Janus-type  $MnO_x$ -AgI NPs, measured from their low-magnification TEM images.



**Figure S4.** Size distributions of (a) the Ag domain in the Janus-type  $MnO_x$ -Ag NPs, and (b) the AgI domain in the Janus-type  $MnO_x$ -AgI NPs, measured from their low-magnification TEM images.



**Figure S5.** Evolution of the Janus-type  $MnO_x$ -Ag NPs obtained at different growth stages of nanocrystals. TEM images of the intermediates after (a–b) 5 min, (c) 10 min, (d) 30 min, (e) 50 min of the reaction, respectively. (f) The corresponding UV spectra of the intermediates as a function of the reaction time.



**Figure S6.** Size distributions of (a) Ag domains and (b)  $MnO_x$  domains in the reaction intermediates of Janus-type  $MnO_x$ -Ag after 5 min, 10 min, 30 min, 50 min of the typical reaction, respectively.



**Figure S7.** TEM images of the Janus  $MnO_x$ -Ag with different size of Ag domain obtained from a typical synthesis at different feed amount of AgNO<sub>3</sub> (50 mg/mL): (a) 500  $\mu$ L, (b) 1 mL, (c) 1.5 mL, and 2 mL. The corresponding mole ratio of AgNO<sub>3</sub> to MnO for a-d is 0.5, 1, 1.5 and 2, respectively. The other reaction conditions were same.



**Figure S8.** Size distribution of (a) Ag domain and (b) MnO octahedron from the corresponded TEM images in Figure S5. From bottom to up of the histogram, the molar ratio of  $AgNO_3$  to MnO is 0.5, 1, 1.5 and 2, respectively.



**Figure S9.** (a) TEM image and (b) corresponding size distribution of the MnO octahedron obtained by reducing heating rate.



**Figure S10.** (a) TEM images of  $MnO_x$ -Ag nanostructure with different morphology grown on the ~ 48 nm MnO by adjusting the molar ratio of AgNO<sub>3</sub> to MnO. (a–b) 0.25, (c) 1. (d) Corresponding UV spectra of ~ 48 nm MnO and MnO<sub>x</sub>-Ag with different morphology.



Figure S11. Low magnification TEM image of Janus-type  $MnO_x$ -AgI NPs.



**Figure S12.** (a) Low magnification SEM image and EDX mapping of Janus-type  $MnO_x$ -AgI exhibiting the homogeneous distribution of (b) O, (c) Si, (d) Mn, (e) Ag and (f) I.



**Figure S13.** (a) The UV vis spectra of original Janus-type  $MnO_x$ -Ag NPs (red line) and  $MnO_x$ -Ag after iodizing with I<sub>2</sub> (blue line) and KI (black line). (b) The typical TEM image of Janus-type  $MnO_x$ -Ag after iodizing with I<sub>2</sub>. The nanostructures were disrupted due to the iodization.



**Figure S14.** TEM images of (a) Ag and (b) AgI NPs. (c) The UV spectra of Ag NPs before and after iodization with iodomethane. (d) XRD patterns of Ag and AgI NPs. Standard positions for Ag and AgI are indicated by vertical lines at the bottom.



NPs.



**Figure S16.** Reaction mechanism of photocatalytic water oxidation using (a)  $MnO_x$  using a  $Ru(bpy)_3^{2+}/S_2O_8^{2-}$  system and (b) Janus-type  $MnO_x$ -AgI NPs without  $Ru(bpy)_3^{2+}$ .



**Figure S17.** Dissolved oxygen evolution profiles of mixture of AgI and MnO in molar ratio of 1 to1 for the photochemical water oxidation without  $Ru(bpy)_3Cl_2$ . Photocatalytic conditions: 4 mg of catalysts, 13 mM  $Na_2S_2O_8$ , and 68 mM  $Na_2SO_4$  in 15 mL of  $H_2O$ .



**Figure S18.** Dissolved oxygen evolution profiles of Janus-type  $MnO_x$ -AgI NPs for the photochemical water oxidation without buffer. Photocatalytic conditions: 4 mg of catalysts, 13 mM  $Na_2S_2O_8$ , and 68 mM  $Na_2SO_4$  in 15 mL of H<sub>2</sub>O.



**Figure S19.** (a) Powder XRD pattern, (b) a TEM and (c) HR-TEM image of Janus-type  $MnO_x$ -AgI NPs recovered after five cycles for visible light driven WORs.



Figure S20. Perpendicular mode EPR spectra of MnOx-AgI after stability test.