Antenna array enhanced attenuated total reflection IR analysis in aqueous solution

Jian Li*, Zhendong Yan, Jin Li, Zhenlin Wang, William Morrison, Xing-Hua Xia

*State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
College of Science, Nanjing Forestry University, Nanjing 210037, China
School of Physics, Nanjing University, Nanjing, 210093, China
Molecular Vista Inc., 6840 Via Del Oro, Suite 110, San Jose, CA 95119, USA.
*Correspondence: xhxia@nju.edu.cn

Table of contents

S1. Water induced antenna resonance shift on Si and Al₂O₃.

S2. Details of simulations.
S1. Water induced antenna resonance shift on Si and Al$_2$O$_3$

Figure S1. Simulated resonance spectra of the antenna arrays on Si (a) and Al$_2$O$_3$ prisms (b) in air and water with p-polarization, respectively.
S2. Details of simulations

Figure S2. Scheme of the numerical models used in simulations. The simulation parameter of incident angle ($\theta=70^\circ$) in ATR mode is the same as in experiments. (a) The incident light polarization (E) is in the incident plane (p-polarization, -p). (b) E is in the incident plane perpendicular to the incident plane (s-polarization, -s). (c) E polarization in (a) is 30° or 90° rotated as indicated (-p, R). (d) E polarization in (b) is 30° or 90° rotated as indicated (-s, R).

In the present study, numerical simulations are performed using a commercial finite element method (FEM)-based software package (COMSOL Multiphysics). The refractive index of Si prism and water is taken as 3.4 and 1.33, respectively. The permittivity of gold is described by a Lorenz-Drude model. Periodic boundary conditions are applied to the four faces (parallel to the propagation direction) of a simulation domain, mimicking the antenna array shown in Figure 2(c).

Reference