Supporting Information

Room Temperature Ferromagnetism and Antiferromagnetism in

Two-Dimensional Iron Arsenides

Yalong Jiao¹, Weikang Wu¹, Fengxian Ma², Zhi-Ming Yu¹, Yunhao Lu³, Xian-Lei Sheng^{1,4*}, Yunwei Zhang^{5*}, Shengyuan A. Yang¹

¹Research Laboratory for Quantum Materials, Singapore University of Technology and Design,

Singapore 487372, Singapore

² Department of Physics, Hebei Normal University, Shijiazhuang 050024, China

³ State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang

University, Hangzhou 310027, China

⁴ Department of Physics, Key Laboratory of Micro-nano Measurement-Manipulation and Physics

(Ministry of Education), Beihang University, Beijing 100191, China

⁵ Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, United Kingdom

*email: xlsheng@buaa.edu.cn; yz618@cam.ac.uk

Figure S1 Structures of FeAs monolayers predicted by our structural search.

Figure S2 Structures of Fe₂As monolayers predicted by our structural search.

Figure S3 (a-d) Different magnetic configurations for the FeAs-III monolayer. The arrows indicate the spin directions on the Fe atoms. AFM1 is found to be the ground state.

We adopted a 2 x 2 supercell and compared the different magnetic configurations for FeAs-III on the PBE+U level. As shown in Fig. S3, AFM1 has the lowest energy (set as the reference), which is lower than that of the FM (+1.606 eV per cell), AFM2 (+0.581 eV per cell) and AFM3 (+0.149 eV per cell).

Figure S4 Snapshots of (a) FeAs-I and (b) FeAs-III monolayer after 5 ps AIMD simulation at 300 K.

The thermal stability of FeAs monolayers at room temperature were examined by performing spinpolarized ab initio molecular dynamics simulations (AIMD). In this calculation, the 3 x 3 supercells were constructed and a Nose-Hoover thermostat at 300 K was employed. After heating up and maintained at the targeted temperature for 5 ps with a time step of 1 fs, we find FeAs-I and III monolayer can retain their structures, indicating they are thermally stable at room temperature.

To test if these FeAs monolayers can sustain themselves (i.e., to form a freestanding membrane), we adopt the standard approach [Nano Lett. 8, 2442 (2008)] by calculating their individual in-plane stiffness constant $C = (1/A_0)(\partial^2 E_S/\partial\epsilon^2)|_{\epsilon=0}$, where A_0 is the equilibrium area, E_S is the strain energy, and ϵ is the applied uniaxial strain. We find $C \approx 1.15 \text{ eV}/\text{Å}^2$ for FeAs-I and 0.49 eV/Å² for FeAs-III. Consider the deformation of a freestanding FeAs flake under gravity. From the elastic theory, by balancing gravity and 2D strain energy, we find the ratio between the out-of-plane deformation and the lateral scale for a $10^4 \ \mu \ m^2$ flake is as small as $10^3 \sim 10^{-4}$ for both monolayers. This suggests that they are strong enough to form freestanding 2D structures even without support of a substrate.

Figure S5 Angular dependence of MAE for single-layer FeAs-II.

Figure S6 (a) Band structure and (b) PDOS of FeAs-II without SOC.

Figure S7 Band structures of (a) FeAs-I and (b) FeAs-II monolayers with SOC.

Figure S8 Band structure of FeAs-III on the HSE06 level.

Figure S9 This picture indicates the exchange coupling J_1 and J_2 for the three structures.

Figure S10 MC result for FeAs-II, showing a critical temperature of about 170 K.

Table S1. Energy difference (per atom, in eV) $\Delta E = E_{FM} - E_{AFM}$, magnetic ground state, space
group and formation energy E_f (in eV) for virious FeAs and Fe ₂ As monolayers.

FeAs	ΔE (PBE+U)	Ground state	Space group	$\mathbf{E_{f}}$
IV	-0.201	FM	P2/m	-0.162
V	-0.1155	FM	C2/m	-0.155
VI	0.258	AFM	Pmm2	0.160
VII	0.122	AFM	Pmm2	0.191
VIII	0.002	AFM	Pmmm	0.223
IX	0.129	AFM	Pmma	0.240
X	0.0035	AFM	Pma2	0.356
Fe ₂ As				
Ι	-0.007	FM	Cmmm	0.036
II	-0.171	FM	P-6m2	0.061
III	-0.166	FM	Pmmm	0.107

Table S2 Calculated elastic constants (N/m) for FeAs-I, -II and -III.

FeAs	C ₁₁	C ₁₂	C ₄₄
Ι	46.8	43.5	23.8
II	75.9	51.6	0.8
III	39.2	-36.9	17.3

Table S3. Exchange constants (in meV) and critical temperature (T_c/T_N) for FeAs-I and III monolayers, calculated by the PBE+U method with different U values.

U (eV)	I-J ₁	I-J ₂	I-T _c (K)	III-J ₁	III-J ₂	III-T _N (K)
3.0	47.78	7.56	605	-38.5	3.9	335
4.0	50.0	8.15	645	-39.9	4.38	350
6.0	57.4	8.19	710	-42.4	4.45	360