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Figure S1 Structures of FeAs monolayers predicted by our structural search.
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Figure S2 Structures of Fe,As monolayers predicted by our structural search.
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Figure S3 (a-d) Different magnetic configurations for the FeAs-III monolayer. The arrows indicate the

spin directions on the Fe atoms. AFM1 is found to be the ground state.

We adopted a 2 x 2 supercell and compared the different magnetic configurations for FeAs-III on the
PBE+U level. As shown in Fig. S3, AFM1 has the lowest energy (set as the reference), which is lower
than that of the FM (+1.606 eV per cell), AFM2 (+0.581 eV per cell) and AFM3 (+0.149 eV per cell).
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Figure S4 Snapshots of (a) FeAs-I and (b) FeAs-III monolayer after 5 ps AIMD simulation at 300 K.
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The thermal stability of FeAs monolayers at room temperature were examined by performing spin-
polarized ab initio molecular dynamics simulations (AIMD). In this calculation, the 3 x 3 supercells
were constructed and a Nose-Hoover thermostat at 300 K was employed. After heating up and
maintained at the targeted temperature for 5 ps with a time step of 1 fs, we find FeAs-I and III

monolayer can retain their structures, indicating they are thermally stable at room temperature.

To test if these FeAs monolayers can sustain themselves (i.e., to form a freestanding membrane), we
adopt the standard approach [Nano Lett. 8, 2442 (2008)] by calculating their individual in-plane
stiffness constant C = (1/A()(0%Es/0€?)|¢~g, where A, is the equilibrium area, Eg is the strain energy, and
g is the applied uniaxial strain. We find C ~1.15 eV/A? for FeAs-I and 0.49 eV/A? for FeAs-III.
Consider the deformation of a freestanding FeAs flake under gravity. From the elastic theory, by
balancing gravity and 2D strain energy, we find the ratio between the out-of-plane deformation and the
lateral scale for a 10* um? flake is as small as 10°~107* for both monolayers. This suggests that they
are strong enough to form freestanding 2D structures even without support of a substrate.
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Figure S5 Angular dependence of MAE for single-layer FeAs-II.
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Figure S6 (a) Band structure and (b) PDOS of FeAs-II without SOC.
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Figure S7 Band structures of (a) FeAs-I and (b) FeAs-II monolayers with SOC.
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Figure S8 Band structure of FeAs-III on the HSEO06 level.
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Figure S9 This picture indicates the exchange coupling J; and J, for the three structures.
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Figure S10 MC result for FeAs-II, showing a critical temperature of about 170 K.



Table S1. Energy difference (per atom, in eV) AE = Epy ~Egpy , magnetic ground state, space

group and formation energy E¢ (in eV) for virious FeAs and Fe,As monolayers.

FeAs AE (PBE+U) Ground state Space group Es
v -0.201 FM P2/m -0.162
\Y% -0.1155 FM C2/m -0.155
VI 0.258 AFM Pmm?2 0.160
VII 0.122 AFM Pmm?2 0.191
VIII 0.002 AFM Pmmm 0.223
IX 0.129 AFM Pmma 0.240
X 0.0035 AFM Pma2 0.356
Fe,As
I -0.007 FM Cmmm 0.036
11 -0.171 FM P-6m2 0.061
I -0.166 FM Pmmm 0.107

Table S2 Calculated elastic constants (N/m) for FeAs-I, -IT and -I1I.

FeAs Cu Cpz Cyy
I 46.8 43.5 23.8
II 75.9 51.6 0.8

11 39.2 -36.9 17.3

Table S3. Exchange constants (in meV) and critical temperature (T./Ty) for FeAs-I and III monolayers,
calculated by the PBE+U method with different U values.

U (eV) I I-J, I-T. (K) 1-J, M-J,  HI-Tx(K)
3.0 47.78 7.56 605 -38.5 3.9 335
4.0 50.0 8.15 645 -39.9 438 350

6.0 574 8.19 710 -42.4 4.45 360




