Supporting Information

Modulation of Lanthanide Luminescence via Electric Field

Yangbo Wang1,3, Jiaxin Gao1, Chao Gao1, Hui Ma1, Bingxiao Yang1, Yingdong Han1,4, Enlong Zhou1, Qianya Cheng2, Su Jing2*, and Ling Huang1*

1Y. Wang, J. Gao, C. Gao, H. Ma, Dr. B. Yang, Dr. Y. Han, Dr. E. Zhou, and Prof. L. Huang
Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816 China
E-mail: iamlhuang@njtech.edu.cn

2Q. Cheng, and Prof. S. Jing
School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816 China
E-mail: sjing@njtech.edu.cn

3Dr. Y. Wang
School of Materials Science and Engineering, Liaocheng University, 1 Hunan Road, Liaocheng 252059, China

4Dr. Y. Han
School of Precision Instrument and Opto-Electronics Engineering, Tianjin University, 92 Weijin Road, Tianjin 300072, China

Keywords: semiconductor nanocrystals, photoluminescence, modulation, lanthanide, electric field
Figure S1. XRD patterns of SnO$_2$:Eu nanocrystals doped with 0, 0.1, 0.3, 0.5, and 0.7 mol% Eu$^{3+}$, respectively. The black and red bars represent the standard XRD patterns of tetragonal SnO$_2$ (JCPDS: 41-1445) and cubic Eu$_2$Sn$_2$O$_7$ (JCPDS: 13-0182), respectively. The peaks intentionally marked with red stars represent the Eu$_2$Sn$_2$O$_7$ phase.
Figure S2. SEM images of SnO\(_2\):Eu nanocrystals doped with (a) 0, (b) 0.1, (c) 0.3, (d) 0.5, and (e) 0.7 mol\% Eu\(^{3+}\), respectively. TEM image (f) of SnO\(_2\):Eu (0.5 mol\%) nanocrystals.
Table S1 Elemental analysis of SnO$_2$:Eu nanocrystals doped with 0.1, 0.3, and 0.5 mol% Eu$^{3+}$.

<table>
<thead>
<tr>
<th>Eu$^{3+}$ Doping (mol%)</th>
<th>Eu$^{3+}$ Detected (mol%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>0.11</td>
</tr>
<tr>
<td>0.3</td>
<td>0.27</td>
</tr>
<tr>
<td>0.5</td>
<td>0.39</td>
</tr>
</tbody>
</table>
Figure S3. Photoluminescence spectra of SnO$_2$:Eu nanocrystals doped with 0.1, 0.3, and 0.5 mol% Eu$^{3+}$, respectively, and under 339 nm UV light excitation.
Figure S4. (a) Excitation and (b) emission spectra of SnO$_2$:Eu (0.5 mol%) nanocrystals and the mixture of SnO$_2$ and Eu$_2$O$_3$ at atom ratio [Eu/(Eu + Sn)] of 0.5%, the mixture was ground several times for good uniformity.
Figure S5. (a) Emission spectra of SnO$_2$:Eu (0.5 mol%) nanocrystals under 339 nm UV light excitation or 30 V dc voltage, respectively. (b) Photoluminescence intensity of SnO$_2$:Eu (0.5 mol%) nanocrystals at 586 nm under 339 nm UV light excitation to exclude the influence of prolonged illumination time on luminescence intensity.
Figure S6. (a) SEM image and (b) XRD patterns of SnO$_2$:Er (0.5 mol%) nanocrystals. The black bars in (b) represent the standard XRD patterns of tetragonal SnO$_2$ (JCPDS: 41-1445). (c) UV-vis absorption spectra and (d) plot of $(\alpha h\nu)^2$ versus photo energy (h\nu) of SnO$_2$ and SnO$_2$:Er (0.5 mol%) nanocrystals. (e) Excitation and (f) emission spectra of SnO$_2$:Er (0.5 mol%) nanocrystals.
Figure S7. Energy transfer mechanism from SnO$_2$ host to Er$^{3+}$ doped inside.
Figure S8. In-situ (a) photoluminescence spectra and (b) emission intensity variation (1500-1600 nm) of SnO$_2$:Er (0.5 mol%) nanocrystals as a function of applied dc voltages, under 323 nm UV light excitation.
Figure S9. In-situ photoluminescence intensity variation at 1535 nm of SnO$_2$:Er (0.5 mol%) nanocrystals follows the ON/OFF of applied dc voltage (10, 20 and 30 V), under 323 nm UV light excitation.
Figure S10. In-situ photoluminescence intensity variation at 1535 nm of SnO$_2$:Er (0.5 mol%) nanocrystals as a function of voltage, under 323 nm UV light excitation.
Figure S11. In-situ photoluminescence spectra of SnO$_2$:Er nanocrystals at varying dc voltages, under 980 nm laser excitation.
Figure S12. (a) XRD pattern and (b) TEM image of the synthesized CsPbBr$_3$ nanocrystals. The bars in the bottom in (a) represent the standard XRD patterns of cubic CsPbBr$_3$ (JCPDS: 75-0412). (c) In-situ photoluminescence spectra and (d) emission intensity variation of CsPbBr$_3$ nanocrystals as a function of applied dc voltages, under 365 nm UV light excitation.