Cation substitution enables the complete conversion of 1D to 3D perovskite for photovoltaic application

Fuchang Wanga, Weiping Lia, Huicong Liua, Liqun Zhua, Haining Chena*.

a School of Materials Science and Engineering, Beihang University, No. 37 Xueyuan Road, Haidian District, Beijing 100191, People’s Republic of China.
*Corresponding email: chenhaining@buaa.edu.cn

Supporting Information
Supplementary results:

![Graph showing normalized PL spectra of different perovskite films](image)

Fig. S1 The normalized PL spectra of the different perovskite films

Fig. S2 The calibration results from The National Institute of Metrology (NIM)
Fig. S3 The histogram of power conversion efficiencies (PCEs) of the device fabricated from PbI₂/EAI=1/1 precursor.

Fig. S4 J-V curves of the cell recorded in reverse and forward scanning directions.
Fig. S5 XRD patterns of the 1D EAPbI$_3$ films obtained from the EAPbI$_3$ solutions with different PbI$_2$/EAI ratios (the ratio of PbI$_2$/EAI=1/0, 1/0.5, 1/1.5) before and after the MA gas treatment.

Fig. S6 The top-view SEM images of the 1D EAPbI$_3$ films obtained from the PbI$_2$/EAI solutions with different ratios (the ratio of PbI$_2$/EAI=1/0, 1/0.5, 1/1.5) before and after the MA gas treatment.