MoS₂ nanoflowers encapsulated in carbon nanofibers containing

amorphous SnO₂ as an anode for lithium-ion batteries

Huanhui Chen, Jiao He, Guanxia Ke, Lingna Sun*, Junning Chen, Yongliang Li, Xiangzhong Ren*, Libo

Deng, Peixin Zhang

College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, P.R. China

orresponding author:

Xiangzhong Ren, Email: renxz@szu.edu.cn, Tel/Fax: +86-755-26558134

Lingna Sun, Email: lindasun1999@126.com, Tel: +86-755-26538657

Fig. S1. TG curve of CNF precursor films under N_2 atmosphere.

Fig.S2. (a-b) The SEM images of MoS₂ nanoflowers at different magnification.

Fig.S3. (a-b) The SEM images of MoS₂@CNF composites at different magnifications; mapping of Mo (c), S (d), C (e) and N(f) elements.

Fig.S4. (a-b) The SEM images of SnO₂@CNF composites at different magnifications; mapping of Sn (c), O (d) , C (e) and N(f) elements.

Fig.S5. XRD patterns of the MoS₂ nanoflowers.

Fig. S6. (a) XPS survey scan spectrum and core level spectra of (b) Mo 3d, (c) S 2p, (d) C 1s and (e) N 1s for MoS₂@CNF.

Fig. S7. (a) XPS survey scan spectrum and core level spectra of (b) Sn 3d, (c) O 1s, (d) C 1s and (e) N 1s for MoS₂-SnO₂@CNF.

Fig.S8. The first three consecutive CV curves of MoS_2 @CNF (a) and SnO_2 @CNF (b).

Fig. S9. Discharge–charge curves of the MoS₂@CNF (a) and SnO₂@CNF (b) electrode at current density of 200 mA g⁻¹.

Fig. S10. SEM image of SnO_2@CNF electrode after the 430th cycle at 2000 mA g^-1.

Fig. S11. The equivalent circuit of the sample.

Fig.S12. (a) The MoS₂-SnO₂@CNF under bending states; (b) photograph of a flexible battery and a LED lightened by the flexible battery

under (c) flatting and (d) bending (180°) states.

	Reversible capacity (mAhg ⁻¹)/Cycle number			_	
Materials	Current	Current	Current	Current	Ref.
	density	density	density 500mA	density	
	100mA g ⁻¹	200mA g ⁻¹	g-1	2000mA g ⁻¹	
SnO ₂ @C@VO ₂	765/100th		424/600th		1
SnO _{2-x} :RGO		950/100th		700/100th	2
MoC-N-C				675/500th	3
SnS/C		648/500th	548/500th		4
SnS/MoS ₂ –C		989/60th		718/700th	5
NDG/MoS ₂ /NDG	750/100th				6
MoS ₂ /NC		904/100th		534/400th	7
MoS ₂ @EPF			854/200th	531/200th	8
SnO₂/GA	700/80th	512/10th			9
Sn@SnO _x @MoS ₂ @C			791/100th	530/800th	10
MoS ₂ -SnO ₂ @CNF		983/100th		710/800th	This work

 $\label{eq:stable_stab$

Table. S2. $R_{\rm ct}$, σ and $D_{\rm Li^+}$ values determined from the EIS for all the electrodes

	$R_{\rm ct}$ (Ω)	$\sigma (\Omega \mathrm{cm}^2 \mathrm{s}^{-0.5})$	$D_{\text{Li+}}$ (cm ² s ⁻¹)
MoS ₂ -SnO ₂ @CNF-1	182.6	56.8	4.9×10 ⁻¹⁵
MoS ₂ -SnO ₂ @CNF-2	147.6	43.8	8.2×10 ⁻¹⁵
MoS ₂ -SnO ₂ @CNF-3	197.2	69.6	3.3×10 ⁻¹⁵
MoS₂@CNF	266.1	82.3	2.3×10 ⁻¹⁵
SnO₂@CNF	254.8	79.4	2.5×10 ⁻¹⁵

References

- W. Guo, Y. Wang, Q. Li, D. Wang, F. Zhang, Y. Yang and Y. Yu, ACS Appl Mater Interfaces, 2018, 10, 14993-15000.
- W. Dong, J. Xu, C. Wang, Y. Lu, X. Liu, X. Wang, X. Yuan, Z. Wang, T. Lin, M. Sui, I. W. Chen and F. Huang, *Adv Mater*, 2017, 29.
- 3. X. Chen, L.-P. Lv, W. Sun, Y. Hu, X. Tao and Y. Wang, *Journal of Materials Chemistry A*, 2018, **6**, 13705-13716.
- 4. J. Xia, L. Liu, S. Jamil, J. Xie, H. Yan, Y. Yuan, Y. Zhang, S. Nie, J. Pan, X. Wang and G. Cao, Energy Storage Materials, 2019, **17**, 1-11.
- 5. Q. Pan, F. Zheng, Y. Wu, X. Ou, C. Yang, X. Xiong and M. Liu, *Journal of Materials Chemistry A*, 2018, **6**, 592-598.
- B. Chen, Y. Meng, F. He, E. Liu, C. Shi, C. He, L. Ma, Q. Li, J. Li and N. Zhao, *Nano Energy*, 2017, 41, 154-163.
- 7. X. Wang, J. Tian, X. Cheng, R. Na, D. Wang and Z. Shan, *ACS Appl Mater Interfaces*, 2018, **10**, 35953-35962.
- 8. X. Zheng, Y. Zheng, H. Zhang, Q. Yang and C. Xiong, *Chemical Engineering Journal*, 2019, **370**, 547-555.
- 9. L. Fan, X. Li, B. Yan, X. Li, D. Xiong, D. Li, H. Xu, X. Zhang and X. Sun, *Applied Energy*, 2016, **175**, 529-535.
- 10. Q.-c. Pan, Y.-g. Huang, H.-q. Wang, G.-h. Yang, L.-c. Wang, J. Chen, Y.-h. Zan and Q.-y. Li, *Electrochimica Acta*, 2016, **197**, 50-57.