## **Electronic supplementary information (ESI)**

## Polarization of Tumor-Associated Macrophages Phenotype via Hollow Iron Nanoparticles for Tumor Immunotherapy *in vivo*

Ke Li, Lu Lu, Chencheng Xue, Ju Liu, Ye He, Jun Zhou, Zengzilu Xia, Liangliang Dai\*, Zhong Luo\*, Yulan Mao, Kaiyong Cai\*

Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, PR China.

E-mail: dailiangliangnbe@sina.cn; luozhong918@cqu.edu.cn; kaiyong\_cai@cqu.edu.cn



Scheme S1. The synthesis of route diagram of (1)  $N_3$ -PEG-S-S-COOH; (2, a) MA-COOH; (2, b) BSA-MA; and (3) PHNPs@DPA-S-S-PEG-BSA-MA, respectively.



Fig. S1. <sup>1</sup>H NMR spectra of N<sub>3</sub>-PEG-COOH



Fig. S2. <sup>1</sup>H NMR spectra of N<sub>3</sub>-PEG-S-S-COOH



**Fig. S3.** <sup>1</sup>H NMR spectra of s-(2-aminoethylthio)-2-thiopyridine hydrochloride.



Fig. S4. HPLC analysis (a) and <sup>1</sup>H NMR spectra (b) of MA-COOH.



**Fig. S5.** FITR spectra of (a) PHNPs, (b) PHNPs@DPA, (c) PHNPs@DPA-S-S-PEG-N3, (d) PHNPs@DPA-S-S-PEG-COOH, (e) 3-MA, (f) PHNPs@DPA-S-S-PEG-COOH@3-MA, (g) PHNPs@DPA-S-S-PEG-BSA-MA@3-MA respectively. To confirm the successful preparation of surface modified PHNPs, FITR spectra were measured as shown in Fig. S5. The infrared spectrum of the synthesized PHNPs was a strong and broad band centered on 3400 cm<sup>-1</sup>, indicating the chemical reaction of oleic acid and oleylamine on iron oxide nanoparticles. The peaks at 2920 cm<sup>-1</sup> and 2850 cm<sup>-1</sup> were caused by symmetric and asymmetric CH<sub>2</sub> stretching modes, respectively (a). After surface modified by DPA of PHNPs, at 1640 cm<sup>-1</sup>, the contraction vibration peak of dopamine

amino group appeared, indicating that DPA was successfully modified on the surface of PHNPs (b). The contraction vibration peak of N<sub>3</sub> appeared around 2100 cm<sup>-1</sup>. The frequencies of 1659 cm<sup>-1</sup> and 1545 cm<sup>-1</sup> were located in the C=O tensile band (amide I) and the N-H bending band (amide II), respectively (c), indicating that N<sub>3</sub>-PEG-COOH was successfully modified on the surface of PHNPs @DPA through amide reaction. The carboxyl group was symmetrically or asymmetrically stretched at 1700 cm<sup>-1</sup> (d), indicating that the surface carboxylation of PHNPs was successfully achieved by clicking the reaction. To confirm that 3-MA could be loaded into PHNPs, and have no effect on the carboxyl on the surface of PHNPs. The FITR of 3-MA (e) and PHNPs@DPA-S-S-PEG-COOH@3-MA (f) was measured. The carboxyl group was symmetrically or asymmetrically stretched at 1692 cm<sup>-1</sup> (f). The carboxyl peaks around 1700 cm<sup>-1</sup> disappeared, and the amino peaks around 1659 cm<sup>-1</sup> and 1545 cm<sup>-1</sup> were strengthened and widened, indicating that PHNPs@DPA-S-S-PEG-BSA-MA@3-MA was successfully synthesized (e).<sup>[51]</sup>



**g. S6.** A. FTIR spectra of MA (a), MA-COOH (b), BSA (c), BSA-MA (d). B. Fluorescent amine of BSA and BSA-MA, respectively.



**Fig. S7.** Zeta potential change of PHNPs, PHNPs@DPA, PHNPs@DPA-S-S-PEG-N<sub>3</sub>, PHNPs@DPA-S-S-PEG-COOH, PHNPs@DPA-S-S-PEG-COOH@3-MA, PHNPs@DPA-S-S-PEG-BSA-MA@3-MA, respectively (n=6).



**Fig. S8.** The median of MDA-MB-231 and HUVEC cells for phagocytosis of PHNPs@DPA-S-S-BSA@FITC and PHNPs@DPA-S-S-BSA-MA@FITC after incubation for 2 and 4 h. It was detected by Flow cytometry.



**Fig. S9.** Cell viability assay of RAW 264.7 cells and MDA-MB-231 cells treated with various concentrations of 3-MA (a), PHNPs@DPA-S-S-BSA-MA (b) and PHNPs@DPA-S-S-BSA-MA@3-MA (c) for 24 h. (d) Cell viability assay of RAW 264.7 cells and MDA-MB-231 cells treated with PHNPs@DPA-S-S-BSA-MA (200 μg/mL), 3-MA (66.9 μM), and PHNPs@DPA-S-S-BSA-MA@3-MA(200 μg/mL), respectively (n=6).



**Fig. S10.** (a) Western blotting assay to investigate that various concentration of 3-MA inhibited P13K γ expression and activated NF-κBp65 expression in MDA-MB-231 cells. (b) Quantitative analysis of PI3K γ, NF-κBp65 and p-NF-κBp65 expression in MDA-MB-231 cells under various concentrations of 3-MA. (c) Western blotting of PI3K γ, NF-κBp65 and p-NF-κBp65 expression in MDA-MA-231 cells under different treatments: control( I ), 66.9 µM of 3-MA ( II ), 200 µg/mL of PHNPs@DPA-S-S-BSA-MA ( III ) and 200 µg/mL of PHNPs@DPA-S-S-BSA-MA@3-MA ( IV). (d) Quantitative analysis of PI3K γ, NF-κBp65 and p-NF-κBp65, expression in the MDA-MB-231 cells under different treatments. Error bars are standard error of the mean (n=3), \*p< 0.05, \*\*p<0.01.



**Fig. S11.** (a) Western blotting was detected to investigate that various concentration of 3-MA inhibit the expression of P13K γ and activated the expression of NF-κBp65 in RAW 264.7 cells. (b) Quantitative analysis of PI3K γ, NF-κBp65 and p-NF-κBp65, expression in the RAW 264.7 cells under various concentration of 3-MA. Error bars are standard error of the mean (n=3), \*p<0.05, \*\*p<0.01.<sup>[52]</sup>



Fig. S12. Flow cytometry analysis the expression of CD 206 (a) and CD 86 (b) in RAW

264.7 cells.



Fig. S13. The qRT-PCR analysed the gene expression of RAW 264.7 cells: a, M2

associated genes and b, M1 associated genes (n=3).



**Fig. S14.** Quantitative analysis of IL-1 $\beta$ , TNF- $\alpha$ , IL-10 and TGF- $\beta$  expression in the tumor sections under different treatments for 21 days. Error bars are standard error of the mean (n=3), \*p<0.05, \*\*p<0.01.



**Fig. S15.** Flow cytometry detection of the tumor-infiltrating CD 4 cells (CD4<sup>+</sup>CD3<sup>+</sup>CD45<sup>+</sup>), CD8 cells (CD8<sup>+</sup>CD3<sup>+</sup>CD45<sup>+</sup>), B cells (CD45R<sup>+</sup>CD45<sup>+</sup>), NK cells (CD49B<sup>+</sup>CD45<sup>+</sup>) and Treg cells (FoXP3<sup>+</sup>CD4<sup>+</sup>CD25<sup>+</sup>) in MDA-MB-231 tumor-bearing Balb/c mice under different treatments for 21 days.

![](_page_18_Figure_0.jpeg)

F4/80 FL9-A

**Fig. S16.** Flow cytometry detection of the tumor-associated macrophages M2 phenotype (CD206<sup>+</sup>F4/80<sup>+</sup>CD11b<sup>+</sup>) and M1 phenotype (CD86<sup>+</sup>F4/80<sup>+</sup>CD11b<sup>+</sup>) in MDA-MB-231 tumor-bearing Balb/c mice under different treatments for 21 days.<sup>[S3]</sup>

![](_page_19_Figure_0.jpeg)

Fig. S17. The curve of body weight change of bearing MDA-MB-231 tumors mice after different treatments. Error bars are standard error of the mean (n=6), \*p<0.05, \*\*p<0.01.

![](_page_20_Figure_0.jpeg)

Fig. S18. Mice survival rate after different treatments.

![](_page_21_Figure_0.jpeg)

**Fig. S19.** Images of H&E analysis of major tissues of MDA-MB-231 tumor-bearing Balb/c mice after administration with various treatments for 21 days (a: Saline; b:PHNPs@DPA-S-S-BSA-MA; c:3-MA; d: PHNPs@DPA-S-S-BSA-MA@3-MA). Scale bar: 50 μm.

| Genes      | Primers                         |
|------------|---------------------------------|
| iNOS       | 5'- GTTCTCAGCCCAACAATACAAGA-3'  |
|            | 5'- GTGGACGGGTCGATGTCAC-3'      |
| CD86       | 5'- TCAATGGGACTGCATATCTGCC-3'   |
|            | 5'- GCCAAAATACTACCAGCTCACT-3'   |
| IL-12p40   | 5'- ATGGAGTCATAGGCTCTGGAAA-3'   |
|            | 5'- CCGGAGTAATTTGGTGCTTCAC-3'   |
| Arginase I | 5'- TGTCCCTAATGACAGCTCCTT-3'    |
|            | 5'- GCATCCACCCAAATGACACAT-3'    |
| CD206      | 5'- AGGCTGATTACGAGCAGTGG-3'     |
|            | 5'- CCATCACTCCAGGTGAACCC-3'     |
| TGF-β      | 5'-CTAAGGCTCGCCAGTCCCC-3'       |
|            | 5'-TGCGTTGTTGCGGTCCAC-3'        |
| IL-10      | 5'-GCATGGCCCAGAAATCAAGG-3'      |
|            | 5'-GAGAAATCGATGACAGCGCC-3'      |
| TNF-α      | 5'- CCATCACTCCAGGTGAACCC-3'     |
|            | 5'- CGATCACCCCGAAGTTCAGTAG-3'   |
| β-actin    | 5'- GGAGATTACTGCCCTGGCTCCTA-3'  |
|            | 5'- GACTCATCGTACTCCTGCTTGCTG-3' |

 Table S1. Primers used for qRT-PCR (Mus musculus) in this study.

| Genes      | Primers                          |
|------------|----------------------------------|
| iNOS       | 5'- TCATCCGCTATGCTGGCTAC-3'      |
|            | 5'- CCCGAAACCACTCGTATTTGG-3'     |
| CD86       | 5'- CTGCTCATCTATACACGGTTACC-3'   |
|            | 5'- GGAAACGTCGTACAGTTCTGTG-3'    |
| IL-12p40   | 5'- TATCTTTCTTTTCTCTCTTGCTCTT-3' |
|            | 5'- CATCAGGGACATCATCAA-3'        |
| Arginase I | 5'- TGGACAGACTAGGAATTGGCA-3'     |
|            | 5'- CCAGTCCGTCAACATCAAAACT-3'    |
| CD206      | 5'- TCCGGGTGCTGTTCTCCTA-3'       |
|            | 5'- CCAGTCTGTTTTTGATGGCACT-3'    |
| IL-10      | 5'- TCAAGGCGCATGTGAACTCC-3'      |
|            | 5'- GATGTCAAACTCACTCATGGCT-3'    |
| TNF-α      | 5'- CCTCTCTCTAATCAGCCCTCTG-3'    |
|            | 5'- GAGGACCTGGGAGTAGATGAG-3'     |
| β-actin    | 5'- CATGTACGTTGCTATCCAGGC-3'     |
|            | 5'- CTCCTTAATGTCACGCACGAT-3'     |

Table S2. Primers used for qRT-PCR (Homo sapiens ) in this study.

## References.

[S1] Z. Luo, K. Cai, Y. Hu, J. Li, X. Ding, B. Zhang, D. Xu, W. Yang and P. Liu, *Adv. Mater.*, 2012, 24, 431-435.

[S2] M.M. Kaneda, K.S. Messer, N. Ralainirina, H. Li, C.J. Leem, S. Gorjestani, G. Woo,

A.V. Nguyen, C.C. Figueiredo, P. Foubert, M.C. Schmid, M. Pink, D.G. Winkler, M. Rausch, V.J. Palombella, J. Kutok, K. McGovern, K.A. Frazer, X. Wu, M. Karin, R. Sasik, E.E. Cohen and J.A. Varner, *Nature*, 2016, **539**, 437-447.

[S3] G.-T. Yu, L. Rao, H. Wu, L.-L. Yang, L.-L. Bu, W.-W. Deng, L. Wu, X. Nan, W. F.

Zhang, X.-Z. Zhao, W. Liu and Z.-J. Sun, Adv. Funct. Mater., 2018, 28, 1801389.