Electronic Supplemental Information for

Hydrogen Plasma–Treated MoSe₂ Nanosheets Enhance the Efficiency and Stability of Organic Photovoltaics

Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu 30010, Taiwan.

Department of Materials Engineering, Ming Chi University of Technology, 24301 New Taipei City, Taiwan.

Department of Materials Science and Engineering, National Taiwan University, Taipei 10617, Taiwan.

Institute of Nuclear Energy Research, Taoyuan 32546, Taiwan

Center for Emergent Functional Matter Science, National Chiao Tung University, Hsinchu 30010, Taiwan
Fig. S1. $J-I^2$ characteristics of devices, allowing calculations of the (a) hole and (b) electron mobilities using the Mott–Gurney equation.

Fig. S2. AFM topographic images (5 × 5 µm) of blend films: (a) PTB7-TH:PC$_{71}$BM:10%MoSe$_2$, (b) PTB7-TH:PC$_{71}$BM:20%MoSe$_2$.

PC$_{71}$BM:10%MoSe$_2$, (b) PTB7-TH:PC$_{71}$BM:20%MoSe$_2$.
Fig. S3. Corresponding 1D GIWAXS profiles reduced from the (a) in-plane and (b) out-plane directions.

Fig. S4. Powder X-ray diffraction pattern of the films.
Fig. S5. TEM images of active layers incorporating (a) MoSe$_2$ and (b) hydrogen plasma–treated MoSe$_2$.

Fig. S6. J–V characteristics incorporating MoSe$_2$ prepared with different concentration.
Table S1 Different concentration of ternary blends devices’ photovoltaic performances.

<table>
<thead>
<tr>
<th>Active layer</th>
<th>$V_{oc} (V)$</th>
<th>$J_{sc} (mA cm^{-2})$</th>
<th>FF(%)</th>
<th>PCE$_{max}$(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PTB7-TH:PC$_{71}$BM:10% MoSe$_2$</td>
<td>0.78 ± 0.01</td>
<td>17.23 ± 0.2</td>
<td>0.7 ± 0.2</td>
<td>9.32</td>
</tr>
<tr>
<td>PTB7-TH:TH:PC$_{71}$BM:20% MoSe$_2$</td>
<td>0.78 ± 0.01</td>
<td>17.6 ± 0.3</td>
<td>0.67 ± 0.3</td>
<td>9.26</td>
</tr>
</tbody>
</table>

a) Weight ratio of D:A = 1:1.5 Twenty devices were fabricated.

Fig. S7. SEM image of MoSe$_2$.

Fig. S8. Schematic representation of the chemical structures of (a) PBDTTBO, and (b) IT-4F.