Supporting Information

Engineering the coupling interface of rhombic dodecahedral NiCoP/C@FeOOH nanocages toward advanced water oxidation

Jian-Gang Li,^a Yu Gu,^a Huachuan Sun,^a Lin Lv,^a Zhishan Li,^a Xiang Ao,^a Xinying

Xue,^b Guo Hong,^{c,d} and Chundong Wang^{*a}

^a School of Optical and Electronic Information, Huazhong University of Science and

Technology, Wuhan 430074, PR China

^bDepartment of Physics, College of Science, Shihezi University, Xinjiang 832003, PR

China

^c Institute of Applied Physics and Materials Engineering, University of Macau, Macao

SAR, PR China

^dDepartment of Physics and Chemistry, Faculty of Science and Technology, University of Macau, Macao SAR, P.R. China

*E-mail: apcdwang@hust.edu.cn

Fig. S1 XRD patterns of ZIF-67 (a), CoNi LDH/C and bare FeOOH (b), NiCoP/C and NiCoP/C@FeOOH (c).

Fig. S2 SEM image of CoNi LDH/C and the corresponding EDS and elements analysis of the selected area.

Fig. S3 SEM image of NiCoP/C and the corresponding EDS and elements analysis of the selected area.

Fig. S4 Line profiles of NiCoP/C collected from the HRTEM image.

Fig. S5 SEM image of NiCoP/C@FeOOH and the corresponding EDS and elements analysis of the selected area.

Fig. S6 SEM images of bare FeOOH with different magnifications.

Fig. S7 XPS spectra of NiCoP/C@FeOOH: (a) C 1s, (b) N 1s and (c) O 1s.

In Fig. S7(a), after carefully deconvolution and fitting, four peaks were split, namely 284.6 (C-C/C=C), 285.6 (C=N), 286.3 (C-O/C-N) and 289.2 (O-C=O) eV, confirming that the carbon framework was in-situ nitrogen-doped.^{5, 6} More evidences were provided in Fig. S7(b)—N 1s core-level spectrum, in which four peaks were split, which were located at 397.6, 398.8, 401.1 and 402.1 eV, being associated to pyridinc-N, pyrrolic-N, graphitic-N and oxidized-N, respectively. This nitrogen signals unanimously validate the nitrogen doping of carbon framework.⁷ Fig. S7(c) shows the XPS spectra of O 1s of the NiCoP/C@FeOOH, in which the peaks C=O (533.2 eV), Fe-O-H (532.2 eV) and Fe-O-Fe (531.2 eV) were deconvoluted.^{3, 4, 8}

Fig. S8 XPS spectra of Fe 2p (a) and O 1s (b) of FeOOH.

The XPS spectra of Fe 2p are shown in Fig. S8(a). The peaks of Fe $2p_{1/2}$ and Fe $2p_{3/2}$ locating at 724.8 and 711.7 eV confirm that Fe element is mainly of Fe(III).^{1, 2} The two satellite peaks at 733.59 and 719.39 eV further prove the +3 oxidation state of Fe.^{3, 4} The XPS spectra of O 1s can be deconvoluted into two peaks at 529.8 and 531.6 eV (Fig. S8(b)), suggesting being associated to Fe-O-Fe and Fe-O-H units in this case, respectively, which are in agreement with FeOOH.³

Fig. S9 The Fe 2p XPS spectra comparison of FeOOH and NiCoP/C@FeOOH.

Fig. S10 CV curves of FeOOH, NiCoP/C and NiCoP/C@FeOOH.

Fig. S11 CV curves of (a) NiCoP/C@FeOOH, (b) NiCoP/C and (c) FeOOH with different scan rate.

Fig. S12 SEM images of NiCoP/C@FeOOH with different magnifications which after 14 h stability test (a, b, c) and the corresponding EDS and elements analysis of the selected area (d).

Catalysts	Overpotential	Current	electrolyte	Ref.
(substrate)	(mV)	density		
		(mAm cm ⁻²)		
NiCoP@FeOOH	271	10	1.0 M KOH	This work
Nanocages (GC)	321	50		
Nest-like NiCoP	290	10	1.0 M KOH	9
(CC)				,
NiCoP nanocone	370	10	1.0 M KOH	10
(NF)				10
NiCoP nanoparticles	320	10	1.0 M KOH	11
(ITO)				
NiCoP nanosheets	300	50	1.0 M KOH	12
Array (NF)				
FeOOH/Co/FeOOH	265	50	1.0 M NaOH	4
Nanotubes (NF)				·
Crystalized a-FeOOH	500	10	1.0 M KOH	13
(FTO)				15
CNTs@FeOOH	250	10	1.0 M KOH	14
Nanoflake (CC)				11
NiCo/NiCoOx	278	10	1.0 M KOH	15
with FeOOH (NF)				10
FeOOH/CeO ₂	250	20	1.0 M KOH	3
Nanotubes (NF)				5
Porous Ni-Fe selenide	255	35	1.0 M KOH	16
Nanosheets (CC)				10
NiCoP/C nanoboxes	330	10	1.0 M KOH	17
(CC)				17
$(Co_{0.54}Fe_{0.46})_2P$	370	10	0.1 M KOH	18
(CC)				10
Janus Ni _{0.1} Co _{0.9} P	570	5	1.0 M PBS	19
(CC)				17

Table S1. OER performance for some very recent reported 3d transition-metal based catalysts

Notes: Substrates NF: nickel foam; GC: glassy carbon electrode; CC: carbon cloth.

FTO: conducting glass (F: SnO₂, FTO).

References

- 1. W. Zhang, J. Qi, K. Liu and R. Cao, Adv. Energy Mater., 2016, 6, 1502489.
- 2. J. Wang, L. Ji, S. Zuo and Z. Chen, Adv. Energy Mater., 2017, 7, 1700107.
- J. X. Feng, S. H. Ye, H. Xu, Y. X. Tong and G. R. Li, *Adv. Mater.*, 2016, 28, 4698-4703.
- 4. J. X. Feng, H. Xu, Y. T. Dong, S. H. Ye, Y. X. Tong and G. R. Li, Angew. Chem. Int. Ed., 2016, 55, 3694-3698.
- 5. X. Li, Z. Niu, J. Jiang and L. Ai, J. Mater. Chem. A, 2016, 4, 3204-3209.
- 6. Z. Zhang, J. Hao, W. Yang and J. Tang, ChemCatChem, 2015, 7, 1920-1925.
- 7. X. Ao, W. Zhang, Z. Li, L. Lv, Y. Ruan, H.-H. Wu, W.-H. Chiang, C. Wang, M. Liu

and X. C. Zeng, J. Mater. Chem. A, 2019, 7, 11792-11801.

8. F. Li, J. Du, X. Li, J. Shen, Y. Wang, Y. Zhu and L. Sun, Adv. Energy Mater., 2018,

8, 1702598.

C. Du, L. Yang, F. Yang, G. Cheng and W. Luo, *ACS Catal.*, 2017, 7, 4131-4137.
 J. Li, G. Wei, Y. Zhu, Y. Xi, X. Pan, J. Yuan, I. V. Zatovsky and H. Wei, *J. Mater.*

Chem. A, 2017, **5**, 14828-14837.

11. Y. Li, Y. Tian, Y. Yan, H. Chang, R. Ouyang and Y. Miao, Int. J. Electrochem. Sci,

2016, **11**, 9917-9927.

- 12. Y. Li, H. Zhang, M. Jiang, Y. Kuang, X. Sun and X. Duan, *Nano Res.*, 2016, **9**, 2251-2259.
- 13. W. Luo, C. Jiang, Y. Li, S. A. Shevlin, X. Han, K. Qiu, Y. Cheng, Z. Guo, W. Huang and J. Tang, *J. Mater. Chem. A*, 2017, **5**, 2021-2028.
- 14. Y. Zhang, G. Jia, H. Wang, B. Ouyang, R. S. Rawat and H. J. Fan, *Mater. Chem. Front.*, 2017, **1**, 709-715.
- 15. Y. Shao, M. Zheng, M. Cai, L. He and C. Xu, Electrochim. Acta, 2017, 257, 1-8.
- 16. Z. Wang, J. Li, X. Tian, X. Wang, Y. Yu, K. A. Owusu, L. He and L. Mai, ACS Appl. Mater. Interfaces, 2016, 8, 19386-19392.
- 17. P. He, X. Y. Yu and X. W. Lou, Angew. Chem. Int. Ed., 2017, 56, 3897-3900.
- 18. A. Mendoza-Garcia, D. Su and S. Sun, Nanoscale, 2016, 8, 3244-3247.
- 19. R. Wu, B. Xiao, Q. Gao, Y. R. Zheng, X. S. Zheng, J. F. Zhu, M. R. Gao and S. H.

Yu, Angew. Chem., 2018, 130, 15671-15675.