Supporting Information

Liquid-Phase Growth and Optoelectronic Properties of Two-dimensional Hybrid Perovskites CH$_3$NH$_3$PbX$_3$ (X=Cl, Br, I)

Yu Bai, Haixin Zhang, Mingjing Zhang, Di Wang*, Hui Zeng*, Jun Zhao, Hao Xue, Guozheng Wu, Jing Su, Ying Xie, Yuxia Zhang, Hao Jing, Haohai Yu, Zhanggui Hu, Ruwen Peng, Mu Wang, Yicheng Wu

Figure S1. The MAPbBr$_3$ perovskites grown on the mica substrate without oleic acid.

(A, B) Optical images. (C) AFM image of the perovskite denoted by the dotted box in (B).

(D) High profile denoted by the black, green and yellow dash lines in (C). We note that the MAPbBr$_3$ perovskite sheets grown without oleic acid are as large as several hundreds, but it is hard to obtain the sheets thinner than 100 nm thick.
Figure S2. The optical and fluorescent images of 2D MAPbBr$_3$ perovskites grown on the mica substrate with oleic acid.
Figure S3. The liquid-phase growth of 2D MAPbI₃ perovskites on the mica. (A, B and C) Optical images. (D) AFM image of the MAPbI₃ perovskites denoted by the yellow dashed box in (A). (E) 3D image and high profile of the grown 2D MAPbI₃ perovskites. The grown 2D sheet with the thickness of 6 nm, and have the very sharp edge and smoothing surface. (G) PL of the 2D MAPbI₃ perovskites, which has a blue shift to the bulk MAPbI₃ perovskites. (H) Absorption of the 2D MAPbI₃ perovskites. According the Eillot model, the bandgap E_g and the exciton binding energy E_b can be estimated to be 1.62 eV and 10 meV, respectively. (I) The lifetime of the 757 nm peak, which is estimated to be 4 ns and 32 ns.
Figure S4. The liquid-phase growth of 2D MAPbCl$_3$ perovskites on the mica. (A, B and C) Optical images. (D) 3D AFM image and the high profile of the 2D MAPbCl$_3$ perovskite denoted by the yellow dashed box in (C).
Figure S5. The liquid-phase growth of 2D CsPbBr$_3$ perovskites on the mica. (A, B)

Optical and fluorescent images. (C) 3D AFM image and the high profile of the 2D CsPbBr$_3$ perovskite denoted by the yellow dashed box in (A, B).
Figure S6. Rocking-curve spectrum for the (002) face of the 2D MAPbBr$_3$ perovskite on mica.
Figure S7. XPS spectrum of the 2D MAPbBr$_3$ perovskite on mica.
Figure S8. Perovskites grown on the ITO, SiO$_2$/Si and quartz substrate. (A) The MAPbBr$_3$ perovskites grown on the ITO glass. (B) The MAPbBr$_3$ perovskites grown on the SiO$_2$/Si. (C) The MAPbBr$_3$ perovskites grown on the quartz. We note that the MAPbBr$_3$ perovskites prefer to crystallize in the solution with the substrates of ITO, SiO$_2$/Si and quartz, which is different from the liquid-phase growth on the mica surface. The MAPbBr$_3$ perovskites with different morphologies, such as thin MAPbBr$_3$ perovskite sheets (denoted by the yellow arrows), the MAPbBr$_3$ perovskite nanowires (denoted by the black arrows), the bulk MAPbBr$_3$ crystal (denoted by the red arrows), can be found.
Figure S9. The $I-V$ curve of a photodetector fabricated using 2D MAPbBr3 crystal grown by liquid-phase growth on mica without the OA addition.
<table>
<thead>
<tr>
<th>Perovskite interface absorbed with one K ion</th>
<th>MAPbBr₃-cubic-single layer</th>
<th>MAPbBr₃-orth-single Layer</th>
<th>MAPbBr₃-orth-single Layer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface without K ion</td>
<td>-121.77247161 eV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interface absorbed with one K ions</td>
<td>-121.28567324 eV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Energy of single K ion</td>
<td>1.1606341 eV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Formation energy of interface</td>
<td>-19.819 meV/atom</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perovskite interface absorbed with two K ions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interface without K ion</td>
<td>-121.77247161 eV</td>
<td>-224.67433 eV</td>
<td>-244.6944</td>
</tr>
<tr>
<td>Interface absorbed with two K ions</td>
<td>-120.96163574 eV</td>
<td>-243.75209 eV</td>
<td>-243.74841</td>
</tr>
<tr>
<td>Energy of single K ion</td>
<td>1.1606341 eV</td>
<td>1.1606341 eV</td>
<td>1.1606341 eV</td>
</tr>
<tr>
<td>Formation energy of interface</td>
<td>-43.155 meV/atom</td>
<td>-20.574 meV/atom</td>
<td>-20.225 meV/atom</td>
</tr>
</tbody>
</table>

Table S1. The formation energy of the K/perovskite interface calculated by DFT
<table>
<thead>
<tr>
<th>Device type</th>
<th>Material</th>
<th>Synthesis method</th>
<th>Responsivity (AW²)</th>
<th>Rise/Decay time (μs)</th>
<th>Voltage (V)</th>
<th>reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-layered perovskite</td>
<td>MAPbBr₃</td>
<td>Liquid growth</td>
<td>126</td>
<td>5.0/4.1</td>
<td>5</td>
<td>This work</td>
</tr>
<tr>
<td></td>
<td>MAPbI</td>
<td>Liquid epitaxy</td>
<td>20.7</td>
<td><17/-</td>
<td>5</td>
<td>[1]</td>
</tr>
<tr>
<td></td>
<td>MAPbI</td>
<td>Two-steps</td>
<td>22</td>
<td><2×10⁻³/<4×10⁻³</td>
<td>4</td>
<td>[2]</td>
</tr>
<tr>
<td></td>
<td>MAPbBr₃</td>
<td>Solution growth</td>
<td>1.6×10⁻¹</td>
<td>81/892</td>
<td>0</td>
<td>[3]</td>
</tr>
<tr>
<td>Layered perovskite</td>
<td>(CH₃(CH₂)₃NH₃)₂(CH₂NH₃)₂PbI₃</td>
<td>Solution synthesis</td>
<td>1.278×10⁻²</td>
<td>1×10⁻⁷/7.5×10⁻⁷</td>
<td>30</td>
<td>[5]</td>
</tr>
<tr>
<td></td>
<td>(CH₃(CH₂)₃NH₃)₂PbBr₃</td>
<td>Solution synthesis</td>
<td>2.3×10⁻¹</td>
<td>3.1×10⁻⁷/3.3×10⁻⁷</td>
<td>5</td>
<td>[6]</td>
</tr>
<tr>
<td></td>
<td>(IBA)₃(MA)ₙ⁻(PbI₃)n⁺⁺⁻⁻</td>
<td>Solution synthesis</td>
<td>0.117</td>
<td>2×10⁻⁷/1.7×10⁻⁷</td>
<td>1.5</td>
<td>[7]</td>
</tr>
<tr>
<td>Other 2D materials</td>
<td>MoS₂</td>
<td>exfoliation</td>
<td>7.5×10⁻¹</td>
<td><5×10⁻⁷/<5×10⁻⁷</td>
<td>1</td>
<td>[8]</td>
</tr>
<tr>
<td></td>
<td>MoS₂</td>
<td>CVD</td>
<td>880</td>
<td>4×10⁻⁹/9×10⁻⁹</td>
<td>8</td>
<td>[9]</td>
</tr>
<tr>
<td></td>
<td>MoS₂</td>
<td>exfoliation</td>
<td>1.1×10⁻¹</td>
<td></-</td>
<td>1.5</td>
<td>[10]</td>
</tr>
<tr>
<td></td>
<td>WS₂</td>
<td>CVD</td>
<td>20</td>
<td></-</td>
<td>4</td>
<td>[11]</td>
</tr>
<tr>
<td></td>
<td>Graphene</td>
<td>exfoliation</td>
<td>8.61</td>
<td>>1×10⁻⁷/>1×10⁻⁷</td>
<td>1</td>
<td>[12]</td>
</tr>
</tbody>
</table>

Table S2. Device performance comparisons of 2D MAPbBr₃ perovskite photodetector in this work with the reported perovskite-based photodetectors.

References

