Supplementary Information

Dual pH-Triggered Catalytic Selective Mn Clusters for Cancer Radiosensitization and Radioprotection

Shuxin Lv,‡a Wei Long,‡c Junchi Chen,†b Qinjuan Ren,†b Junying Wang,‡b Xiaoyu Mu,‡b Haile Liu,‡b Xiao-Dong Zhang,*b and Ruiping Zhang*a

a The Affiliated Da Yi Hospital of Shanxi Medical University; Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan 030001, China.

b Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin 300350, China.

c Tianjin Key Laboratory of Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China

*Correspondence should be addressed to zrp_7142@sxmu.edu.cn and X.Z. (xiaodongzhang@tju.edu.cn)

‡Authors contributed equally to this work.
Figure S1. XPS full spectrum of Mn$_{12}$ clusters.
Figure S2. Absorption curves with or without Mn$_{12}$ clusters under different pH characterized by SA assays.
Figure S3. Cytotoxicity measurement of CHO cells treated with Mn$_{12}$ clusters at various concentrations (n=6).
Figure S4. Body weight of different groups during the radiotherapy (n=5).
Figure S5. Hematological analysis of irradiated mice treated with and without Mn12 clusters, including white blood cells (WBC), platelets (PLT), red blood cells (RBC), hemoglobin (HGB), hematocrit (HCT), mean corpuscular volume (MCV), mean corpuscular hemoglobin (MCH), and mean corpuscular hemoglobin concentration (MCHC) (n=5).