Supporting Information

Efficient Electrocatalytic Conversion of N₂ to NH₃ on NiWO₄ Under Ambient Conditions

Jia Wang, a* Haeseong Jang, b* Guangkai Li, a Min Gyu Kim, c Zexing Wu, a* Xien Liu a* and Jaephil Cho b*

Dr. J. Wang, G. Li, Prof. Z. Wu, Prof. X. Liu
State Key Laboratory Base of Eco-chemical Engineering, College of Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao 266042, P. R. China
E-mail: splswzx@qust.edu.cn; liuxien@qust.edu.cn

Dr. H. Jang, Prof. J. Cho
Department of Energy Engineering School of Energy and Chemical Engineering Ulsan National Institute of Science and Technology (UNIST), Ulsan, 689-798, Korea
E-mail: jpcho@unist.ac.kr

Prof. M. Kim
Beamline Research Division, Pohang Accelerator Laboratory (PAL), Pohang 790-784, Korea.

List of Contents

Figure S1. SEM image of NiWO₄ (a) and corresponding EDX mappings of Ni (b), W (c) and O (d).

Figure S2. (a) UV-Vis absorption spectra of indophenol assays with NH₄⁺ after incubated for 2 h at room temperature. (b) Calibration curve used for estimation of NH₄Cl.

Figure S3. (a) UV-Vis absorption spectra of various N₂H₄ concentrations after incubated for 10 min at room temperature. (b) Calibration curve used for calculation of N₂H₄ concentrations.

Figure S4. UV-Vis absorption spectra of the 0.1 M HCl electrolyte (after charging at −0.3 V vs. RHE for 1 h) after incubated for 10 min at room temperature.

Figure S5. (a) UV-Vis absorption spectra of the electrolytes coloured with indophenol indicator after charging at -0.3 V for 1 h in different conditions. (b) UV-Vis absorption spectra of the 0.1 M HCl...
electrolyte stained with NH₃ color agent before and after 1 h electrolysis at −0.3 V vs. RHE in N₂ atmosphere. (c) UV-Vis absorption spectra of the 0.1 M HCl electrolyte stained with NH₃ color agent before and after 1 h electrolysis at −0.3 V vs. RHE in Ar atmosphere. (d) UV-Vis absorption spectra of the 0.1 M HCl electrolyte stained with NH₃ color agent before and after 1 h electrolysis at −0.3 V vs. RHE in N₂ atmosphere on the NiWO₄/CC electrode at open-circuit potential under ambient conditions.

Figure S6. (a) UV-Vis absorption spectra of various NH₃ concentrations after incubated for 1 h at room temperature. (b) Calibration curve used for estimation of NH₃.

Figure S7. NH₃ yields and FE of different test numbers at -0.3 V after 1 h of electrolysis.

Figure S8. (a) XRD pattern of NiWO₄ after long-term stability measurement in 0.1 M HCl. High-resolution XPS spectra of Ni 2p (b), W 4f (c) and O 1s (d) after durability test.

Figure S9. SEM image of NiWO₄ after stability measurement in 0.1 M HCl (a) and corresponding EDS mappings of Ni (b), W (c) and O (d).

Figure S10 TEM image of NiWO₄ after stability measurement in 0.1 M HCl (a), (b), (c) and corresponding EDS mappings of Ni, W and O.

Figure S11 CV of NiWO₄ at N₂ or Ar in 0.1 M HCl (a) and 0.1 M Na₂SO₄ (b).

Figure S12 UV-Vis adsorption spectra of the electrolytes after 1 h electrolysis in Ar saturated solution at various potentials in 0.1 M HCl (a) and 0.1 M Na₂SO₄ (b).

Figure S13 UV-Vis adsorption spectra of the electrolytes after 1 h electrolysis in N₂ saturated solution without NiWO₄ at various potentials in 0.1 M HCl (a) and 0.1 M Na₂SO₄ (b).

Figure S14 UV-Vis adsorption spectra of the 0.1 M HCl electrolytes after 1 h electrolysis in N₂ saturated solution at various potentials.

Table S1. Comparison of the NH₃ electro-synthesis activity for NiWO₄ under ambient conditions with other catalysts.
Figure S1. SEM image of NiWO₄ (a) and corresponding EDX mappings of Ni (b), W (c) and O (d).
Figure S2. (a) UV-Vis absorption spectra of indophenol assays with NH$_4^+$ after incubated for 2 h at room temperature. (b) Calibration curve used for estimation of NH$_4$Cl.

Figure S3. (a) UV-Vis absorption spectra of various N$_2$H$_4$ concentrations after incubated for 10 min at room temperature. (b) Calibration curve used for calculation of N$_2$H$_4$ concentrations.
Figure S4. UV-Vis absorption spectra of the 0.1 M HCl electrolyte (after charging at
−0.3 V vs. RHE for 1 h) after incubated for 10 min at room temperature.

Figure S5. (a) UV-Vis absorption spectra of the electrolytes coloured with
indophenol indicator after charging at -0.3 V for 1 h in different conditions. (b) UV-
Vis absorption spectra of the 0.1 M HCl electrolyte stained with NH$_3$ color agent
before and after 1 h electrolysis at −0.3 V vs. RHE in N$_2$ atmosphere. (c) UV-Vis
absorption spectra of the 0.1 M HCl electrolyte stained with NH$_3$ color agent before
and after 1 h electrolysis at −0.3 V vs. RHE in Ar atmosphere. (d) UV-Vis absorption
spectra of the 0.1 M HCl electrolyte stained with NH$_3$ color agent before and after 1h
electrolysis at −0.3 V vs. RHE in N$_2$ atmosphere on the NiWO$_4$/CC electrode at open-
circuit potential under ambient conditions.
Figure S6. (a) UV-Vis absorption spectra of various NH$_3$ concentrations after incubated for 1h at room temperature. (b) Calibration curve used for estimation of NH$_3$.

Figure S7. NH$_3$ yields and FE of different test numbers at -0.3 V in 0.1 M HCl after 1 h of electrolysis.
Figure S8. (a) XRD pattern of NiWO₄ after long-term stability measurement in 0.1 M HCl. High-resolution XPS spectra of Ni 2p (b), W 4f (c) and O 1s (d) after durability test.
Figure S9. SEM image of NiWO₄ after stability measurement in 0.1 M HCl (a) and corresponding EDS mappings of Ni (b), W (c) and O (d).
Figure S10 TEM image of NiWO$_4$ after stability measurement in 0.1 M HCl (a), (b), (c) and corresponding EDS mappings of Ni, W and O.
Figure S11 CV of NiWO₄ at N₂ or Ar in 0.1 M HCl (a) and 0.1 M Na₂SO₄ (b).

Figure S12 UV-Vis adsorption spectra of the electrolytes after 1 h electrolysis in Ar saturated solution at various potentials in 0.1 M HCl (a) and 0.1 M Na₂SO₄ (b).

Figure S13 UV-Vis adsorption spectra of the electrolytes after 1 h electrolysis in N₂ saturated solution without NiWO₄ at various potentials in 0.1 M HCl (a) and 0.1 M Na₂SO₄ (b).
Figure S14 UV-Vis adsorption spectra of the 0.1 M HCl electrolytes after 1 h electrolysis in N₂ saturated solution at various potentials.
Table S1. Comparison of the NH$_3$ electrosynthesis activity for NiWO$_4$ under ambient conditions with other catalysts.

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>Electrolyte</th>
<th>NH$_3$ Yield Rate</th>
<th>FE (%)</th>
<th>NH$_4^+$-N Testing Method</th>
<th>Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>NiWO$_4$</td>
<td>0.1M HCl</td>
<td>48.86 µg h$^{-1}$ mg$^{-1}$</td>
<td>19.32</td>
<td>Indophenol method</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.1M Na$_2$SO$_4$</td>
<td>28.4 µg h$^{-1}$ mg$^{-1}$</td>
<td>10.18</td>
<td>This Work</td>
<td></td>
</tr>
<tr>
<td>Sn/SnS$_2$</td>
<td>0.1M PBS</td>
<td>23.8 µg h$^{-1}$ mg$^{-1}$</td>
<td>6.5</td>
<td>Indophenol method</td>
<td></td>
</tr>
<tr>
<td>W$_2$N$_3$</td>
<td>0.1M HCl</td>
<td>11.66 µg h$^{-1}$ mg$^{-1}$</td>
<td>11.67</td>
<td>Indophenol method</td>
<td></td>
</tr>
<tr>
<td>Ru$_{55}$/N-C</td>
<td>0.05M H$_2$SO$_4$</td>
<td>120.9 µg h$^{-1}$ mg$^{-1}$</td>
<td>29.6</td>
<td>Indophenol method</td>
<td></td>
</tr>
<tr>
<td>pAu/NF</td>
<td>0.1M Na$_2$SO$_4$</td>
<td>9.42 µg h$^{-1}$ cm$^{-2}$</td>
<td>13.36</td>
<td>Indophenol method</td>
<td></td>
</tr>
<tr>
<td>BiNCs</td>
<td>0.5M K$_2$SO$_4$</td>
<td>200 mmol g$^{-1}$ h$^{-1}$</td>
<td>66</td>
<td>Nessler’s reagent</td>
<td></td>
</tr>
<tr>
<td>Bi NS</td>
<td>0.1M Na$_2$SO$_4$</td>
<td>13.23 µg h$^{-1}$ mg$^{-1}$</td>
<td>10.46</td>
<td>Indophenol method</td>
<td></td>
</tr>
<tr>
<td>FeS@MoS$_2$/CFC</td>
<td>0.1M Na$_2$SO$_4$</td>
<td>8.45 µg h$^{-1}$ cm$^{-2}$</td>
<td>2.96</td>
<td>Indophenol method</td>
<td></td>
</tr>
<tr>
<td>N@MoS$_2$</td>
<td>0.1M Na$_2$SO$_4$</td>
<td>69.82 µg h$^{-1}$ mg$^{-1}$</td>
<td>9.14</td>
<td>Indophenol method</td>
<td></td>
</tr>
<tr>
<td>Fe@Fe$_3$O$_4$</td>
<td>0.2M NaHCO$_3$</td>
<td>7.956 µg h$^{-1}$ cm$^{-2}$</td>
<td>6.25</td>
<td>Nessler’s reagent</td>
<td></td>
</tr>
<tr>
<td>Mn$_3$O$_4$</td>
<td>0.1M Na$_2$SO$_4$</td>
<td>11.6 µg h$^{-1}$ mg$^{-1}$</td>
<td>3</td>
<td>Indophenol method</td>
<td></td>
</tr>
<tr>
<td>AuNPs</td>
<td>0.1M Li$_2$SO$_4$</td>
<td>9.22 µg h$^{-1}$ cm$^{-2}$</td>
<td>73.32</td>
<td>Indophenol method</td>
<td></td>
</tr>
<tr>
<td>Fe$_{54}$-N-C</td>
<td>0.1M KOH</td>
<td>7.48 µg h$^{-1}$ mg$^{-1}$</td>
<td>56.55</td>
<td>Indophenol method</td>
<td></td>
</tr>
<tr>
<td>O-MoC@NC</td>
<td>0.5M Li$_2$SO$_4$</td>
<td>22.5 µg h$^{-1}$ mg$^{-1}$</td>
<td>25.1</td>
<td>Indophenol method</td>
<td></td>
</tr>
<tr>
<td>p-Fe$_2$O$_3$/CC</td>
<td>0.1M Na$_2$SO$_4$</td>
<td>13.56 µg h$^{-1}$ mg$^{-1}$</td>
<td>7.69</td>
<td>Indophenol method</td>
<td></td>
</tr>
<tr>
<td>Ag$_3$Cu BPNs</td>
<td>0.1M Na$_2$SO$_4$</td>
<td>24.59 µg h$^{-1}$ mg$^{-1}$</td>
<td>13.28</td>
<td>Indophenol method</td>
<td></td>
</tr>
<tr>
<td>PC/Sb/SbPO$_4$</td>
<td>0.1M HCl</td>
<td>25 µg h$^{-1}$ mg$^{-1}$</td>
<td>31</td>
<td>Indophenol method</td>
<td></td>
</tr>
<tr>
<td>Mo$_2$C/C</td>
<td>0.5 m Li$_2$SO$_4$</td>
<td>11.3 µg h$^{-1}$ mg$^{-1}$</td>
<td>7.8</td>
<td>Nessler’s reagent</td>
<td></td>
</tr>
<tr>
<td>Fe-TiO$_2$</td>
<td>0.5M LiClO$_4$</td>
<td>25.47 µg h$^{-1}$ mg$^{-1}$</td>
<td>25.6</td>
<td>Indophenol method</td>
<td></td>
</tr>
<tr>
<td>Eex-COF/NC</td>
<td>0.1M KOH</td>
<td>12.53 µg h⁻¹ mg⁻¹</td>
<td>45.43</td>
<td>Indophenol method</td>
<td>[19]</td>
</tr>
<tr>
<td>------------</td>
<td>----------</td>
<td>------------------</td>
<td>------</td>
<td>------------------</td>
<td>------</td>
</tr>
<tr>
<td>BCC PdCu</td>
<td>0.5M LiCl</td>
<td>35.7 µg h⁻¹ mg⁻¹</td>
<td>11.5</td>
<td>Indophenol method</td>
<td>[20]</td>
</tr>
</tbody>
</table>

References