Supporting Information

Efficient Electrocatalytic Conversion of N₂ to NH₃ on NiWO₄ Under

Ambient Conditions

Jia Wang, ^{a+} Haeseong Jang, ^{b+} Guangkai Li, ^a Min Gyu Kim,^c Zexing Wu, ^{a*} Xien Liu^{a*} and Jaephil Cho^{b*}

Dr. J. Wang, G. Li, Prof. Z. Wu, Prof. X. Liu
State Key Laboratory Base of Eco-chemical Engineering, College of Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao 266042, P. R. China
E-mail: splswzz@qust.edu.cn; liuxien@qust.edu.cn
Dr. H. Jang, Prof. J. Cho
Department of Energy Engineering School of Energy and Chemical Engineering Ulsan National
Institute of Science and Technology (UNIST), Ulsan, 689-798, Korea
E-mail: jpcho@unist.ac.kr
Prof. M. Kim
Beamline Research Division, Pohang Accelerator Laboratory (PAL), Pohang 790-784, Korea.

List of Contents

Figure S1. SEM image of NiWO₄ (a) and corresponding EDX mappings of Ni (b), W (c) and O (d).

Figure S2. (a) UV-Vis absorption spectra of indophenol assays with NH_4^+ after incubated for 2 h at room temperature. (b) Calibration curve used for estimation of NH_4CI .

Figure S3. (a) UV-Vis absorption spectra of various N_2H_4 concentrations after incubated for 10 min at room temperature. (b) Calibration curve used for calculation of N_2H_4 concentrations.

Figure S4. UV-Vis absorption spectra of the 0.1 M HCl electrolyte (after charging at -0.3 V vs. RHE for

1 h) after incubated for 10 min at room temperature.

Figure S5. (a) UV-Vis absorption spectra of the electrolytes coloured with indophenol indicator after charging at -0.3 V for 1 h in different conditions. (b) UV-Vis absorption spectra of the 0.1 M HCl

electrolyte stained with NH₃ color agent before and after 1 h electrolysis at -0.3 V vs. RHE in N₂ atmosphere. (c) UV-Vis absorption spectra of the 0.1 M HCl electrolyte stained with NH₃ color agent before and after 1 h electrolysis at -0.3 V vs. RHE in Ar atmosphere. (d) UV-Vis absorption spectra of the 0.1 M HCl electrolyte stained with NH₃ color agent before and after 1 h electrolysis at -0.3 V vs. RHE in Ar atmosphere. (d) UV-Vis absorption spectra of the 0.1 M HCl electrolyte stained with NH₃ color agent before and after 1 h electrolysis at -0.3 V vs. RHE in N₂ atmosphere on the NiWO₄/CC electrode at open-circuit potential under ambient conditions. **Figure S6**. (a) UV-Vis absorption spectra of various NH₃ concentrations after incubated for 1 h at room temperature. (b) Calibration curve used for estimation of NH₃.

Figure S7. NH₃ yields and FE of different test numbers at -0.3 V after 1 h of electrolysis.

Figure S8. (a) XRD pattern of NiWO₄ after long-term stability measurement in 0.1 M HCl. Highresolution XPS spectra of Ni 2p (b), W 4f (c) and O 1s (d) after durability test.

Figure S9. SEM image of NiWO₄ after stability measurement in 0.1 M HCl (a) and corresponding EDS mappings of Ni (b), W (c) and O (d).

Figure S10 TEM image of NiWO₄ after stability measurement in 0.1 M HCl (a), (b), (c) and corresponding EDS mappings of Ni, W and O.

Figure S11 CV of NiWO₄ at N₂ or Ar in 0.1 M HCl (a) and 0.1 M Na₂SO₄ (b).

Figure S12 UV-Vis adsorption spectra of the electrolytes after 1 h electrolysis in Ar saturated solution at various potentials in 0.1 M HCl (a) and 0.1 M Na_2SO_4 (b).

Figure S13 UV-Vis adsorption spectra of the electrolytes after 1 h electrolysis in N_2 saturated solution without NiWO₄ at various potentials in 0.1 M HCl (a) and 0.1 M Na₂SO₄ (b)

Figure S14 UV-Vis adsorption spectra of the 0.1 M HCl electrolytes after 1 h electrolysis in N_2 saturated solution at various potentials.

Table S1. Comparison of the NH₃ electrosynthesis activity for NiWO₄ under ambient conditions with other catalysts.

Figure S1. SEM image of NiWO₄ (a) and corresponding EDX mappings of Ni (b), W (c) and O (d).

Figure S2. (a) UV-Vis absorption spectra of indophenol assays with NH_4^+ after incubated for 2 h at room temperature. (b) Calibration curve used for estimation of NH_4Cl .

Figure S3. (a) UV-Vis absorption spectra of various N_2H_4 concentrations after incubated for 10 min at room temperature. (b) Calibration curve used for calculation of N_2H_4 concentrations.

Figure S4. UV-Vis absorption spectra of the 0.1 M HCl electrolyte (after charging at -0.3 V vs. RHE for 1 h) after incubated for 10 min at room temperature.

Figure S5. (a) UV-Vis absorption spectra of the electrolytes coloured with indophenol indicator after charging at -0.3 V for 1 h in different conditions. (b) UV-Vis absorption spectra of the 0.1 M HCl electrolyte stained with NH₃ color agent before and after 1 h electrolysis at -0.3 V vs. RHE in N₂ atmosphere. (c) UV-Vis absorption spectra of the 0.1 M HCl electrolyte stained with NH₃ color agent before and after 1 h electrolysis at -0.3 V vs. RHE in Ar atmosphere. (d) UV-Vis absorption spectra of the 0.1 M HCl electrolyte stained with NH₃ color agent before and after 1 h electrolysis at -0.3 V vs. RHE in Ar atmosphere. (d) UV-Vis absorption spectra of the 0.1 M HCl electrolyte stained with NH₃ color agent before and after 1 h electrolysis at -0.3 V vs. RHE in Ar atmosphere. (d) UV-Vis absorption spectra of the 0.1 M HCl electrolyte stained with NH₃ color agent before and after 1 h electrolysis at -0.3 V vs. RHE in Ar atmosphere. (d) UV-Vis absorption spectra of the 0.1 M HCl electrolyte stained with NH₃ color agent before and after 1 h electrolysis at -0.3 V vs. RHE in N₂ atmosphere on the NiWO₄/CC electrode at opencircuit potential under ambient conditions.

Figure S6. (a) UV-Vis absorption spectra of various NH_3 concentrations after incubated for 1h at room temperature. (b) Calibration curve used for estimation of NH_3 .

Figure S7. NH₃ yields and FE of different test numbers at -0.3 V in 0.1 M HCl after 1 h of electrolysis.

Figure S8. (a) XRD pattern of NiWO₄ after long-term stability measurement in 0.1 M HCl. High-resolution XPS spectra of Ni 2p (b), W 4f (c) and O 1s (d) after durability test.

Figure S9. SEM image of NiWO₄ after stability measurement in 0.1 M HCl (a) and corresponding EDS mappings of Ni (b), W (c) and O (d).

Figure S10 TEM image of NiWO₄ after stability measurement in 0.1 M HCl (a), (b), (c)and corresponding EDS mappings of Ni, Wand O.

Figure S11 CV of NiWO₄ at N_2 or Ar in 0.1 M HCl (a) and 0.1 M Na₂SO₄ (b).

Figure S12 UV-Vis adsorption spectra of the electrolytes after 1 h electrolysis in Ar saturated solution at various potentials in 0.1 M HCl (a) and 0.1 M Na₂SO₄ (b) Figure S13 UV-Vis adsorption spectra of the electrolytes after 1 h electrolysis in N₂ saturated solution without NiWO₄ at various potentials in 0.1 M HCl (a) and 0.1 M Na₂SO₄ (b).

Figure S14 UV-Vis adsorption spectra of the 0.1 M HCl electrolytes after 1 h electrolysis in N_2 saturated solution at various potentials.

Catalyst	Electrolyte	NH_3 Yield Rate	FE (%)	NH₄⁺-N Testing Method	Ref
NiWO ₄	0.1M HCl 0.1M Na ₂ SO ₄	48.86 μg h ⁻¹ mg ⁻¹ 28.4 μg h ⁻¹ mg ⁻¹	19.32 10.18	Indophenol method	This Work
Sn/SnS₂	0.1M PBS	23.8 μg h ⁻¹ mg ⁻¹	6.5	Indophenol method	[1]
W ₂ N ₃	0.1M HCl	11.66 μg h ⁻¹ mg ⁻¹	11.67	Indophenol method	[2]
Ru _{sAs} /N-C	0.05M H ₂ SO ₄	120.9 μg h ⁻¹ mg ⁻¹	29.6	Indophenol method	[3]
pAu/NF	0.1M Na ₂ SO ₄	9.42 μg h ⁻¹ cm ⁻²	13.36	Indophenol method	[4]
BiNCs	0.5M K ₂ SO ₄	200 mmol g ⁻¹ h ⁻¹	66	Nessler's reagent	[5]
Bi NS	0.1M Na ₂ SO ₄	13.23 µg h ⁻¹ mg ⁻¹	10.46	Indophenol method	[6]
FeS@MoS₂/CFC	0.1M Na ₂ SO ₄	8.45 μg h ⁻¹ cm ⁻²	2.96	Indophenol method	[7]
N@MoS ₂	0.1M Na ₂ SO ₄	69.82 µg h ⁻¹ mg ⁻¹	9.14	Indophenol method	[8]
Fe@Fe ₃ O ₄	0.2M NaHCO ₃	7.956 μg h ⁻¹ cm ⁻²	6.25	Nessler's reagent	[9]
Mn ₃ O ₄	0.1M Na ₂ SO ₄	11.6 μg h ⁻¹ mg ⁻¹	3	Indophenol method	[10]
AuNPs	0.1M Li ₂ SO ₄	9.22 μg h ⁻¹ cm ⁻²	73.32	Indophenol method	[11]
Fe _{sA} -N-C	0.1M KOH	7.48 μg h ⁻¹ mg ⁻¹	56.55	Indophenol method	[12]
O-MoC@NC	0.5M Li ₂ SO ₄	22.5 μg h ⁻¹ mg ⁻¹	25.1	Indophenol method	[13]
p-Fe ₂ O ₃ /CC	0.1M Na ₂ SO ₄	13.56 µg h ⁻¹ mg ⁻¹	7.69	Indophenol method	[14]
Ag ₃ Cu BPNs	0.1M Na ₂ SO ₄	24.59 μg h ⁻¹ mg ⁻¹	13.28	Indophenol method	[15]
PC/Sb/SbPO ₄	0.1M HCl	25 μg h ⁻¹ mg ⁻¹	31	Indophenol method	[16]
Mo ₂ C/C	0.5 m Li ₂ SO ₄	11.3 μg h ⁻¹ mg ⁻¹	7.8	Nessler's reagent	[17]
Fe-TiO ₂	0.5M LiClO ₄	25.47 μg h ⁻¹ mg ⁻¹	25.6	Indophenol method	[18]

Table S1. Comparison of the NH_3 electrosynthesis activity for $NiWO_4$ under ambient conditions with other catalysts.

Eex-COF/NC	0.1M KOH	12.53 μg h ⁻¹ mg ⁻¹	45.43	Indophenol	[19]
				method	
BCC PdCu	0.5M LiCl	35.7 μg h ⁻¹ mg ⁻¹	11.5	Indophenol	[20]
				method	

References

- [1] P. Li, W. Fu, P. Zhuang, Y. Cao, C. Tang, A. B. Watson, P. Dong, J. Shen, M. Ye, Small, 2019, 15, e1902535.
- [2] H. Jin, L. Li, X. Liu, C. Tang, W. Xu, S. Chen, L. Song, Y. Zheng, S. Z. Qiao, Adv. Mater., 2019, **31**, e1902709.
- [3] Z. Geng, Y. Liu, X. Kong, P. Li, K. Li, Z. Liu, J. Du, M. Shu, R. Si, J. Zeng, *Adv. Mater.*, 2018, **40**, 1803498.
- [4] H. Wang, H. Yu, Z. Wang, Y. Li, Y. Xu, X. Li, H. Xue, L. Wang, *Small*, 2019, **15**, e1804769.
- [5] Y.-C. Hao, Y. Guo, L.-W. Chen, M. Shu, X.-Y. Wang, T.-A. Bu, W.-Y. Gao, N. Zhang, X. Su, X. Feng, J.-W. Zhou, B. Wang, C.-W. Hu, A.-X. Yin, R. Si, Y.-W. Zhang, C.-H. Yan, *Nat. Catal.*, 2019, 2, 448-456.
- [6] L. Li, C. Tang, B. Xia, H. Jin, Y. Zheng, S.-Z. Qiao, ACS Catal., 2019, 9, 2902-2908.
- [7] Y. Guo, Z. Yao, B. J. J. Timmer, X. Sheng, L. Fan, Y. Li, F. Zhang, L. Sun, Nano Energy, 2019, 62, 282-288.
- [8] L. Zeng, S. Chen, J. van der Zalm, X. Li, A. Chen, Chem. Commun (Camb), 2019, 55, 7386-7389.
- [9] C. Li, Y. Fu, Z. Wu, J. Xia, X. Wang, Nanoscale, 2019, 11, 12997-13006.
- [10] X. Wu, L. Xia, Y. Wang, W. Lu, Q. Liu, X. Shi, X. Sun, Small, 2018, 14, e1803111.
- [11] L. Tan, N. Yang, X. Huang, L. Peng, C. Tong, M. Deng, X. Tang, L. Li, Q. Liao, Z. Wei, Chem. Commun (Camb), 2019, 55, 14482-14485.
- [12] M. Wang, S. Liu, T. Qian, J. Liu, J. Zhou, H. Ji, J. Xiong, J. Zhong, C. Yan, Nat. Comm., 2019, 10, 341.
- [13] X. Qu, L. Shen, Y. Mao, J. Lin, Y. Li, G. Li, Y. Zhang, Y. Jiang, S. Sun, ACS Appl. Mater. Inter., 2019, 11, 31869-31877.
- [14] Z. Wang, K. Zheng, S. Liu, Z. Dai, Y. Xu, X. Li, H. Wang, L. Wang, ACS Sustainable Chem. Eng., 2019, 7, 11754-11759.
- [15] H. Yu, Z. Wang, D. Yang, X. Qian, Y. Xu, X. Li, H. Wang, L. Wang, J. Mater. Chem. A, 2019, 7, 12526-12531.
- [16] X. Liu, H. Jang, P. Li, J. Wang, Q. Qin, M. G. Kim, G. Li, J. Cho, Angew. Chem. Int. Ed., 2019, 58, 13329-13334.
- [17] H. Cheng, L. X. Ding, G. F. Chen, L. Zhang, J. Xue, H. Wang, Adv. Mater., 2018, 30, e1803694.
- [18] T. Wu, X. Zhu, Z. Xing, S. Mou, C. Li, Y. Qiao, Q. Liu, Y. Luo, X. Shi, Y. Zhang, X. Sun, Angew. Chem. Int. Ed., 201911153.
- [19] S. Liu, M. Wang, T. Qian, H. Ji, J. Liu, C. Yan, Nat. Comm., 2019, 10, 3898.
- [20] X. Huang, Angew. Chem. Int. Ed., 201913122.