Revealing the Turkevich mechanism of gold nanoparticles synthesis

Yunhu Gao and Laura Torrente Murciano*

Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, CB3 0AS, UK.

Supporting Information

Figure S1 The time-evolution of UV-vis spectra of the experiment using sodium citrate as a reducing agent at 25 °C. Conditions: [HAuCl₄]: 0.25 mM, [Sodium citrate]: 2.5 mM, pH: 4.9.

* Corresponding author: lt416@cam.ac.uk
Figure S2: Thermal stability of an aqueous solution of DCA (2.5 mM) at 80°C.
Figure S3: The time-evolution of UV-vis spectra of the experiment using different gold precursor and reducing agent. a. HAuCl₄ + Citrate, b. HAuCl₄ + DC²⁻, c. AuCl + citrate, d. AuCl+DC³⁻. Conditions: [HAuCl₄] or [AuCl]: 0.25 mM, [Sodium citrate] or [DCA]: 2.5 mM, pH: 4.8-4.9, 80 °C.
Figure S4: The reproducibility of the reduction of HAuCl$_4$ by DC$^2^-$. Conditions: [HAuCl$_4$]: 0.25 mM, [DC$^2^-$]: 2.5 mM, pH: 4.9, 80 °C.