Supporting Information

Activating Hematite Nanorod Photoanode via Fluorine-Doping and Further Surface Fluorination for Enhanced Oxygen Evolution Reaction

Chenglong Wang,^a Shenqi Wei,^a Feng Li,^b Xuefeng Long,^a Tong Wang,^a Peng Wang,^a Shuwen Li,^a Jiantai Ma^a and Jun Jin^{*a}

^aState Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, (P. R. China). The Key Laboratory of Catalytic Engineering of Gansu Province and Chemical Engineering, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, (P. R. China). ^bState Key Laboratory of High-efficiency Coal Utilization and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, Ningxia, 750021, P. R. China

AUTHOR INFORMATION

Corresponding Author * E-mail: jinjun@lzu.edu.cn.

Equations related in this work

 At room temperature, the applied bias was converted to the reversible hydrogen electrode (RHE) according to the equation below:

$$E_{\rm RHE} = E_{\rm Ag/AgCl} + E_{\rm Ag/AgCl}^{0} + 0.0591 \ V \times \rm pH \qquad equation 1$$

$$(E_{Ag/AgCl}^{0} = 0.1976 \text{ V vs. RHE at } 25 ^{\circ}\text{C})$$

where E_{RHE} is the potential versus (vs.) RHE, $E_{\text{Ag/AgCl}}$ is the experimental potential measured vs. the Ag/AgCl electrode¹.

2. Mott-Schottky (M-S) plots were generated under dark with a voltage of 20 mV at a frequency of 1 kHz. In the M-S plot, the flat band potential and the carrier densities of the photoelectrode are measured according to following equations²:

$$N_{\rm D} = \frac{2}{e_{\epsilon\epsilon_0}} \frac{d(\frac{1}{C^2})}{dV} = 1$$
 equation
2

Where, C is the space charge capacitance in the semiconductor (obtained from M-S curves), e is the electron charge, ε is the vacuum permittivity (8.85×10^{-12} F m⁻¹), ε_0 is the relative dielectric constant of hematite ($\varepsilon_0 = 80$), N_D is the charge donor density (cm⁻³), V is the electrode applied potential, V_{fb} is the flat band potential, κ is the Boltzmann's constant (1.38×10^{-23} J K⁻¹) and T is the absolute temperature (K).

It is worth noting that the capacitance (C) is based on a flat structure, and therefore it is not suitable for our non-flat structure of the one-dimensional geometry nanorod arrays. In general, the comparison results of the flat structure and non-flat structure show that an underestimate of the donor density by 20% is achieved for the latter mode when it is considered as the former one. In this work, all the Fe_2O_3 -based nanoarrays photoanodes are non-flat structure, thus the N_D values for them are 20% larger than the experimental results calculated by equation³.

3. Bulk charge separation and surface charge separation efficiency of the as-obtained photoanodes can be calculated using the following equations.

 $\eta_{\text{bulk}} = J_{Na2SO3}/J_{abs}$

equation 3

in which Jabs is the theoretical photocurrent density assuming that all absorbed photons can be converted into current (APCE = 100%), and J_{H20} and J_{Na2S03} are the photocurrent densities obtained in 1 M KOH aqueous solution without and with 1 M Na₂SO₃, respectively.

By integrating the overlapped areas between the UV-vis absorption spectrum and the AM 1.5G solar spectrum, assuming APCE=100%, the J_{abs} of α -Fe₂O₃ was calculated to be 9.98 mA cm⁻².^{4, 5} This value is suitable for α -Fe₂O₃, F-Fe₂O₃ and FeF_x/F-Fe₂O₃ due to the fact that the ability of light absorption was approximately the same for all the samples.

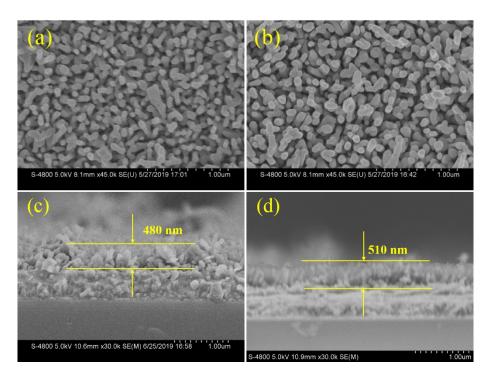


Fig. S1 The top-view and Cross-section SEM images of α -Fe₂O₃ (a, c) and F-Fe₂O₃ (b, d) photoanodes.

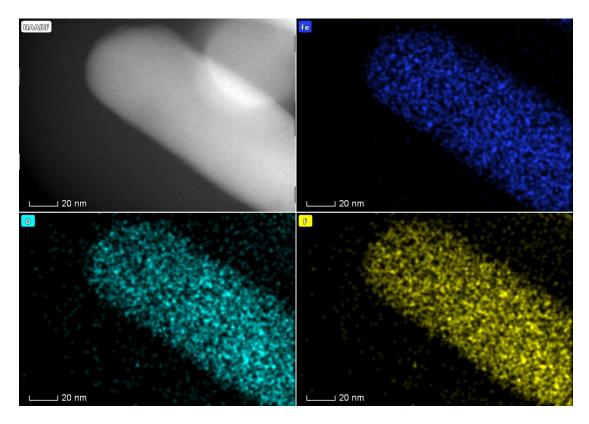
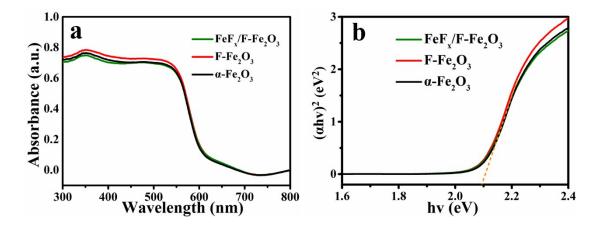



Fig. S2 TEM-EDX element mapping for the F-Fe₂O₃ nanorod.

Fig. S3 UV–visible diffuse reflection spectra (a) and the calculated band gaps (b) of each electrode.

Fig. S4 LSV plots of F-Fe₂O₃ with various F doping amount (a), photocurrent response of FeF_x/F -Fe₂O₃ with different F-treatment time periods (b).



Fig. S5 Calculated onset potentials of all composite photoanodes.

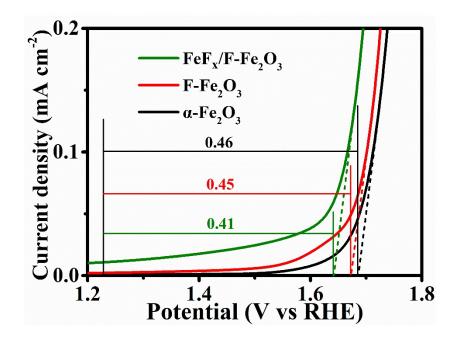


Fig. S6 Calculated kinetic overpotential of all composite photoanodes.

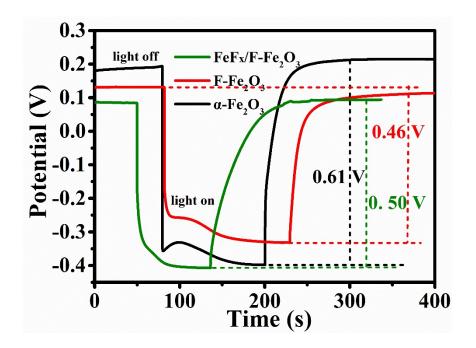


Fig. S7 Open-circuit potential (OCP) decay curves of each anode and the calculated open-circuit photovoltage (V_{ph}) values.

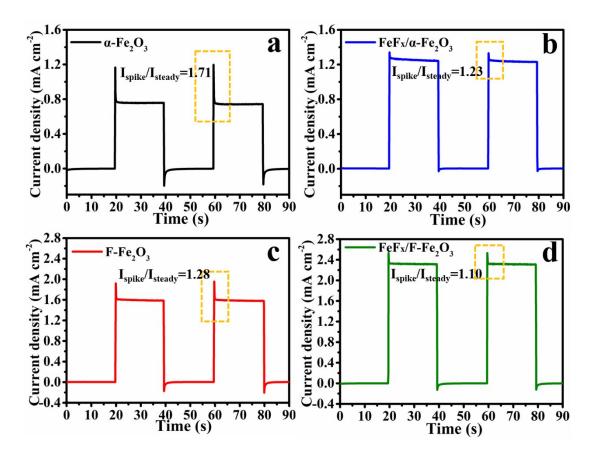


Fig. S8 The transient photocurrent response of all composite electrodes under chopped illumination at the potential of 1.23 V_{RHE} .

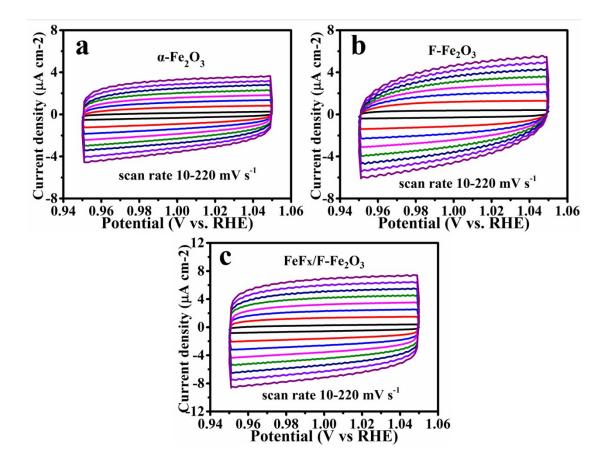
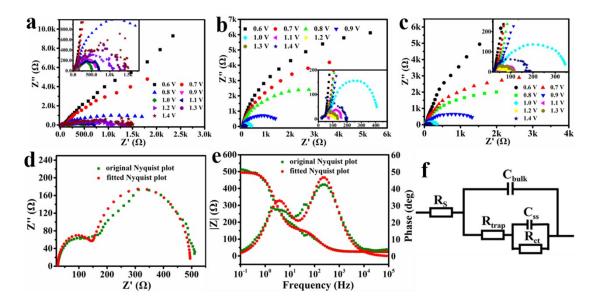



Fig. S9 Voltammograms of the (A) α -Fe₂O₃, (B) F-Fe₂O₃, and (C) FeF_x/F-Fe₂O₃ photoanodes at various scan rates (10-220 mV s⁻¹).

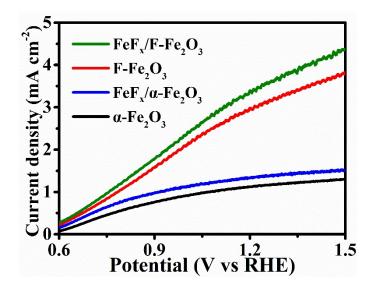


Fig. S10 The original Nyquist plots of α -Fe₂O₃ (a), F-Fe₂O₃ (b) and FeF_x/F-Fe₂O₃ (c) photoanodes obtained at different voltages, the fitted Nyquist plot (d) and bode plot (e) of α -Fe₂O₃ at 1.0 V vs. RHE, (f) the equivalent circuit mode used to fit Nyquist plot.

index	symbol	start	end	Error (%)
1	R _s	25.71	25.71	1.452
2	C_{bulk}	1.223E-5	1.223E-5	2.892
3	R _{trap}	139.1	139.2	2.567
4	C _{ss}	0.02305	0.0002304	5.033
5	R _{ct}	330.7	330.7	2.892

Table S1. The fitting results.

Taking the original Nyquist plot of α -Fe₂O₃ measured at 1.0 V vs. RHE as an example (Fig. S10d), it consists of two semicircles and exhibits two peaks in the corresponding bode plot. Therefore, an equivalent circuit model consisting of two time constants is employed to fit the original Nyquist plot, which is widely used in the related literatures⁶, ⁷. In the equivalent circuit mode, C_{bulk} represents the space charge capacitance of the bulk anode, C_{ss} represents the capacitance of surface state, R_s represents the resistance from the electric contact between the electrolyte and electrode, R_{trap} represents the resistance for charge transfer from surface state to electrolyte, respectively⁸. As is shown in Tab. S1, the fitting error is small and within a reasonable range. The two peaks of α -Fe₂O₃ in the phase bode plot (Fig. S10e) corresponds to two semicircles in Nyquist plots in Fig. 10d.

Fig. S11 LSV plots of each photoanode collected at 5 mV s⁻¹ in the solution containing 0.5 M Na₂SO₃ and 1 M KOH under one sun illumination (100 mW cm⁻²).

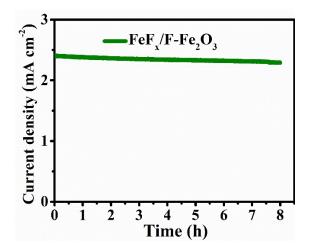


Fig. S12 Stability measurement curve of the $FeF_x/F-Fe_2O_3$ electrode.

Photoanode	Current density at 1.23 V vs. RHE (mA cm ⁻²)	The onset potential (V vs. RHE)	IPCE value	Ref.
FeF _x /F-Fe ₂ O ₃	2.41	0.82	41.5% at 300 nm	This work
α-Fe ₂ O ₃ /Au/TiO ₂	1.05	0.86	26% at 340 nm	Applied Catalysis B: Environmental 260 (2020) 118206
Co-Pi/Ca- Fe ₂ O ₃ /Fe ₂ O ₃ /Pt	2.14	0.72	53.9% at 390 nm	ChemSusChem 2019, 12, 3286 – 3295
Rh-F-Fe ₂ TiO ₅ / Fe ₂ O ₃	2.12	0.63	37% at 370 nm	ACS Catal. 2017, 7, 4062–4069
CoOOH/P:Fe ₂ O ₃	1.11	0.85	no	Chemical Engineering Journal 363 (2019) 23– 32
grad P:Fe ₂ O ₃ /CoPi	2.0	0.8	26% at 360 nm	<i>Chem. Sci.</i> , 2017, 8, 91–100
FeF _x -Fe ₂ O ₃ -Pt	2.4	0.62	41% at 350 nm	J. Mater. Chem. A, 2018,6, 19342-19346
Mg-Fe ₂ O ₃ /P-Fe ₂ O ₃	2.4	0.68	36% at 300 nm	J. Mater. Chem. A, 2018, 6, 13412-13418
Zr-Fe ₂ O ₃ NT	1.50	0.89	25.7% at 370 nm	Angew. Chem. Int. Ed. 2017, 129, 1 – 7
Co- Pi/Co ₃ O ₄ /Ti:Fe ₂ O ₃	2.7	0.64	68% at 400 nm	<i>Adv. Funct. Mater.</i> 2019, 29, 1801902
Fe ₂ TiO ₅ /Fe ₂ O ₃ / Pt	1.0	0.97	37% at 340 nm	<i>Adv. Funct. Mater.</i> 2017, 27, 1703527

Table. S2 Comparison of our photoanode to other α -Fe₂O₃-based photoanode.

Reference

- 1. L. Gao, F. Li, H. Hu, X. Long, N. Xu, Y. Hu, S. Wei, C. Wang, J. Ma and J. Jin, *ChemSusChem*, 2018, **11**, 2502-2509.
- F. Li, J. Li, L. Gao, Y. Hu, X. Long, S. Wei, C. Wang, J. Jin and J. Ma, *Journal of Materials Chemistry A*, 2018, 6, 23478-23485.
- 3. I. Mora-Seró, F. Fabregat-Santiago, B. Denier, J. Bisquert, R. Tena-Zaera, J. Elias and C. Lévy-Clément, *Applied Physics Letters*, 2006, **89**, 203117.
- 4. C. Wang, X. Long, S. Wei, T. Wang, F. Li, L. Gao, Y. Hu, S. Li and J. Jin, ACS Appl Mater Interfaces, 2019, 11, 29799-29806.
- 5. F. Li, J. Li, F. Li, L. Gao, X. Long, Y. Hu, C. Wang, S. Wei, J. Jin and J. Ma, *Journal of Materials Chemistry A*, 2018, **6**, 13412-13418.
- 6. S.-S. Yi, J.-M. Yan and Q. Jiang, *Journal of Materials Chemistry A*, 2018, **6**, 9839-9845.
- 7. P. Zhang, T. Wang and J. Gong, *Chem*, 2018, **4**, 223-245.
- 8. F. Malara, A. Minguzzi, M. Marelli, S. Morandi, R. Psaro, V. Dal Santo and A. Naldoni, *ACS Catalysis*, 2015, **5**, 5292-5300.