Electronic Supplementary Information

Dexamethasone loaded bilayered 3D tubular scaffold reduces restenosis at the anastomotic site of tracheal replacement: *in vitro* and *in vivo* assessments

Sang Jin Lee,a,b,1,2 Ji Suk Choi,c,1 Min Rye Eom,c Ha Hyeon Jo,a Il Keun Kwon,b Seong Keun Kwon,c,d,∗ Su A Parka,∗∗,†

*a Department of Nature-Inspired Nanoconvergence Systems, Korea Institute of Machinery and Materials, 156 Gajeongbuk-ro, Yuseong-gu, Daejeon 34103, Republic of Korea

*b Department of Dental Materials, School of Dentistry, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea

*c Department of Otorhinolaryngology-Head and Neck Surgery, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea

*d Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University College of Medicine, Seoul, Republic of Korea

1 These authors considered co-first authors and made equal contributions to the study.

2 Current address: Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois 60612, United States

† These corresponding authors equally contributed this work.
* Correspondence to Seong Keun Kwon, MD, Ph.D.
Department of Otorhinolaryngology-Head and Neck Surgery, Biomedical Research Institute,
Seoul National University Hospital, Seoul, Republic of Korea
Tel.: +82-2-2072-2286
E-mail address: otolarynx@snuh.org

** Correspondence to Su A. Park, Ph. D.
Department of Nature-Inspired Nanoconvergence Systems, Korea Institute of Machinery and
Materials, 156 Gajeongbuk-ro, Yuseong-gu, Daejeon, 34103, Republic of Korea
Tel.: 82-42-868-7969
E-mail address: psa@kimm.re.kr
Fig. S1. Tracheal implantation using a nanofiber-3D printed composite scaffold. (a) The native trachea, (b) after removing trachea circumferentially, (c) a nanofiber-3D printing composite scaffold between the upper and lower stumps of trachea, and (d) the scaffold-implanted trachea with suture.