Supplementary Information

Three-dimensional Cu Nanobelt Cathode for Highly Efficient Electrocatalytic Nitrate Reduction

Xiaodan Wang, Mengqi Zhu, Guoshen Zeng, Xun Liu, Chihhsiang Fang, Chuanhao Li*

School of Environmental Science and Engineering and Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China

E-mail: lichuanh3@mail.sysu.edu.cn

Content:

1. Calculation of energy utilization efficiency .. S2
2. A photograph of the samples ... S3
3. SEM images of the surface of Cu(OH)₂ nanobelts and 3D Cu nanobelts S4
4. XRD patterns and XPS spectra of the 3D Cu nanobelts S5
5. Effect of calcination temperature on NO₃⁻-N removal efficiency and the effect of applied potential on energy utilization efficiency S6
6. Effect of initial pH on nitrate reduction and TN removal S7
7. Effect of Cl⁻ adding time on nitrate removal ... S8
8. The H₂O₂ generated at Cu foam and 3D Cu nanobelts cathodes S9
9. Effect of dissolved oxygen on nitrate removal S10
Calculation of energy utilization efficiency

The energy utilization efficiency was calculated using the following equations:

\[
\eta = \frac{Q \left(\text{NO}_2^- - \text{N} \right)_t + Q \left(\text{N}_2 - \text{N} \right)_t + Q \left(\text{NH}_4^+ - \text{N} \right)_t}{Q_t} \times 100\%
\] (1)

\[
Q_t = \frac{\int I \, dt}{1000}
\] (2)

\[
Q \left(\text{NO}_2^- - \text{N} \right)_t = 2 \times \left[\frac{C \left(\text{NO}_2^- - \text{N} \right) \times V}{M_N} \right] \times F
\] (3)

\[
Q \left(\text{N}_2 - \text{N} \right)_t = 5 \times \left[\frac{C \left(\text{NO}_3^- - \text{N} \right)_t - C \left(\text{NO}_2^- - \text{N} \right) - C \left(\text{NO}_2^- - \text{N} \right)_t - C \left(\text{NH}_4^+ - \text{N} \right)_t}{M_N} \times V \right] \times F
\] (4)

\[
Q \left(\text{NH}_4^+ - \text{N} \right)_t = 8 \times \left[\frac{C \left(\text{NH}_4^+ - \text{N} \right)_t \times V}{M_N} \right] \times F
\] (5)

where \(\eta \) (\%) is the electro energy utilization efficiency, \(Q_t \) (C) is the total electric quantity that provide at time \(t \) (s); \(I \) (mA) is the current; \(Q(\text{NO}_2^- - \text{N})_t \), \(Q(\text{N}_2 - \text{N})_t \), and \(Q(\text{NH}_4^+ - \text{N})_t \) (C) are the electric quantities that cost during \(\text{NO}_3^- - \text{N} \) reduction to \(\text{NO}_2^- - \text{N} \), \(\text{N}_2 - \text{N} \) and \(\text{NH}_4^+ - \text{N} \) at time \(t \); \(V \) is the volume of solution (0.05 L), \(M_N \) is the molar mass of N (14000 mg mol\(^{-1}\)) and \(F \) is the Faraday’s constant (96487 C mol\(^{-1}\)).
Figure S1 Photographs of the Cu foam electrode, Cu(OH)$_2$ nanobelt electrode and 3D Cu nanobelt electrode.
Figure S2 (a) SEM images of the surface of Cu(OH)$_2$ nanobelts. SEM images of the surface of 3D Cu nanobelts obtained at different temperature (b) 300 °C, (c) 400 °C and (d) 500 °C.
Figure S3 (a) XRD patterns of the Cu foam, Cu(OH)$_2$ nanobelt and 3D Cu nanobelt electrodes. (b) XPS spectra of the 3D Cu nanobelts.
Figure S4 (a) Effect of calcination temperature on NO$_3^-$-N removal efficiency. (3D Cu nanobelts cathode, 50 mL solution with 30 mg L$^{-1}$ NO$_3^-$-N, 0.5 h treatment). (b) The effect of applied potential on energy utilization efficiency.
Figure S5 (a) Effect of initial pH on nitrate reduction and (b) TN removal. (30 mg/L NO$_3^-$-N, -1.4 V vs Ag/AgCl, 0.07 M NaCl, 0.05 M Na$_2$SO$_4$).
Figure S6 Effect of Cl⁻ adding time on (a) nitrate removal, (b) nitrite generation, (c) ammonia generation and (d) TN removal.
Figure S7 The H$_2$O$_2$ generated by Cu foam and 3D Cu nanobelts in the absence and presence of nitrate (30 mg/L NO$_3$-N, -1.4 V vs Ag/AgCl, 0.05 M Na$_2$SO$_4$).
Figure S8 Effect of dissolved oxygen on nitrate removal

(a) regular condition, (b) Ar-saturated condition, (c) O₂-saturated condition and (d) the corresponding current-time curve.