Electronic Supporting Information

Self-templated Synthesis of Amide Catenanes and Formation of a Catenane Coordination Polymer

James E. M. Lewis*

Department of Chemistry, Imperial College London, Molecular Sciences Research Hub,
80 Wood Lane, London W12 0BZ, UK
*james.lewis@imperial.ac.uk
Table of Contents

General Experimental .. 3

Synthesis and Characterisation of Macrocycle Precursors .. 4

2c ... 4

52 ... 7

2d ... 10

General Procedure .. 13

Macrocycle 3a and [2]Catenane 4a .. 13

Macrocycle 3b and [2]Catenane 4b .. 21

Macrocycle 3c and [2]Catenane 4c .. 28

Macrocycle 3d ... 35

Macrocycle 3e ... 38

Macrocycle 3f ... 41

Macrocycle 3g and [2]Catenane 4g .. 44

Crude Reaction 1H NMR Spectra ... 50

0.05 mmol Catenane Reactions .. 50

Additional Crude Reaction NMR Spectra ... 51

1H NMR N-phenyl-phenyl-benzamide Binding Studies .. 53

X-ray Data .. 55

X-ray Data for [2]catenane 4a ... 55

X-ray Data for [2]catenane 4g ... 55

X-ray Data for ([Ag(4g)](OTf)) .. 56

References .. 58
General Experimental

Synthesis: Unless otherwise stated, all reagents, including anhydrous solvents, were purchased from commercial sources and used without further purification. Triethylamine and CDCl$_3$ were stored over 4 Å molecular sieves prior to use. All reactions were carried out under an atmosphere of N$_2$ using anhydrous solvents unless otherwise stated. Petrol refers to the fraction of petroleum ether boiling in the range 40-60 °C. Analytical TLC was performed on pre-coated silica gel plates (0.25 mm thick, 60F254, Merck, Germany) and observed under UV light or visualised with an aqueous KMnO$_4$ stain.

Analysis: NMR spectra were recorded on Bruker AV400 or AV500 instrument, at a constant temperature of 300 K. Chemical shifts are reported in parts per million from low to high field and referenced to residual solvent. Standard abbreviations indicating multiplicity were used as follows: m = multiplet, quint = quintet, q = quartet, t = triplet, d = doublet, s = singlet, app. = apparent, br. = broad. Signal assignment was carried out using 2D NMR methods (HSQC, HMBC, COSY, NOESY) where necessary. In the case of some signals absolute assignment was not possible. Here indicative either/or assignments (e.g. H$_A$/H$_B$ for H$_A$ or H$_B$) are provided. All melting points were determined using a hot stage apparatus and are uncorrected. Mass spectrometry was carried out by the Imperial College London, Department of Chemistry Mass Spectroscopy Service using Waters LCT Premier for HR-ESI-MS and Thermo Scientific Q-Exactive for tandem MS.

The following compounds were synthesised according to literature procedures: 2a, 2b and S1.

N.B. 2a-2d were all dried on high vacuum prior to use.
A solution of S1 (0.881 g, 2.0 mmol, 1 eq.) in THF (dry, 10 mL) was added to a suspension of LiAlH₄ (0.493 g, 16 mmol, 8 eq.) in THF (dry, 10 mL) under N₂ before stirring at reflux for 17 h. H₂O (10 mL) was added carefully to the cooled reaction before filtering through celite, washing through with THF. The solvent was removed in vacuo and the resultant residue taken up in CH₂Cl₂ (50 mL) and washed with brine (25 mL). The aqueous phase was extracted with CH₂Cl₂ (10 mL), the combined organic phases dried (MgSO₄) and the solvent removed in vacuo to give 2c (0.569 g, 63%) as a cream solid. M.p. 56-58 °C. ¹H NMR (400 MHz, CDCl₃) δ: 7.20 (d, J = 8.7 Hz, 4H, H₆), 6.87 (d, J = 8.7 Hz, 4H, H₅), 4.12-4.09 (m, 4H, H₄), 3.85-3.82 (m, 4H, H₃), 3.79 (s, 4H, H₂), 3.73-3.70 (m, 4H, H₁/H₀), 3.68-3.65 (m, 4H, H₁/H₀), 3.65 (s, 4H, H₁/H₀). ¹³C NMR (101 MHz, CDCl₃) δ: 157.9, 135.8, 128.4 (C₆), 114.9 (C₅), 71.0 (C₄/C₇/C₈), 70.8 (×2; 2 of C₄/C₇/C₈), 69.9 (C₃), 67.7 (C₂), 46.0 (C₁), 30.5. HR-ESI-MS m/z = 449.2660 [M+H]+ calc. 449.2652.

Figure S1 ¹H NMR (CDCl₃, 400 MHz) of 2c.
Figure S2 13C NMR (CDCl$_3$, 101 MHz) of 2c.

Figure S3 COSY NMR (CDCl$_3$) of 2c.
Figure S4 HSQC NMR (CDCl₃) of 2c.

Figure S5 HMBC NMR (CDCl₃) of 2c.
1,8-Dibromooctane (1.36 g, 5.0 mmol, 1 eq.), 4-hydroxybenzonitrile (1.49 g, 12.5 mmol, 2.5 eq.) and K$_2$CO$_3$ (5.53 g, 40 mmol, 8 eq.) were stirred at 80 °C in MeCN (50 mL) for 17 h. The cooled reaction mixture was filtered through celite, washing through with CH$_2$Cl$_2$. After removal of the solvent in vacuo the crude product was purified by column chromatography on silica, eluting with 1:1 petrol/CH$_2$Cl$_2$ followed by neat CH$_2$Cl$_2$ to give S2 as a white solid (1.42 g, 82%). M.p. 116-118 °C. 1H NMR (400 MHz, CDCl$_3$) δ: 7.57 (d, J = 8.9 Hz, 4H, H$_A$/H$_B$), 6.93 (d, J = 8.8 Hz, 4H, H$_A$/H$_B$), 4.00 (t, J = 6.5 Hz, 4H, H$_C$), 1.84-1.77 (m, 4H, H$_D$), 1.51-1.38 (m, 8H, H$_E$/H$_F$). 13C NMR (101 MHz, CDCl$_3$) δ: 162.6, 134.1 (C$_A$/C$_B$), 119.4, 115.3 (C$_A$/C$_B$), 103.9, 68.5 (C$_C$), 29.4 (C$_D$/C$_E$), 29.1 (C$_D$), 26.0 (C$_E$/C$_F$). HR-ESI-MS m/z = 371.1718 [M+Na]$^+$ calc. 371.1735.

Figure S6 1H NMR (CDCl$_3$, 400 MHz) of S2.
Figure S7 1H NMR (CDCl$_3$, 101 MHz) of S2.

Figure S8 COSY NMR (CDCl$_3$) of S2.
Figure S9 HSQC NMR (CDCl₃) of S2.

Figure S10 HMBC NMR (CDCl₃) of S2.
To a stirring suspension of LiAlH₄ (0.759 g, 20 mmol, 8 eq.) in THF (dry, 30 mL) under N₂ was added S₂ (0.871 g, 2.5 mmol, 1 eq.) as a solid. The reaction was stirred at reflux for 4 h. H₂O (10 mL) was added carefully to the cooled reaction before filtering through celite, washing through with THF. The solvent was removed in vacuo and the resultant residue taken up in CH₂Cl₂ (50 mL) and washed with brine (25 mL). The organic phase was dried (MgSO₄) and the solvent removed in vacuo to give 2d as an off-white solid (0.422 g, 47%). M.p. 92-94 °C. ¹H NMR (500 MHz, CDCl₃) δ: 7.21 (d, J = 8.8 Hz, 4H, H₈), 6.86 (d, J = 8.6 Hz, 4H, H₇), 3.94 (t, J = 6.6 Hz, 4H, H₆), 3.80 (s, 4H, H₅), 1.80-1.75 (m, 4H, H₄), 1.47 (br. m, 4H, H₃). ¹³C NMR (126 MHz, CDCl₃) δ: 158.2, 135.6, 128.4 (C₈), 114.7 (C₇), 68.1 (C₆), 46.1 (C₅), 46.1 (C₄), 29.5 (C₃/C₉), 29.4 (C₃/C₉), 26.1 (C₃). HR-ESI-MS m/z = 357.2552 [M+H]+ calc. 357.2542.

Figure S11 ¹H NMR (CDCl₃, 500 MHz) of 2d.

Figure S12 ¹³C NMR (CDCl₃, 126 MHz) of 2d.
Figure S13 COSY NMR (CDCl₃) of 2d.

Figure S14 HSQC NMR (CDCl₃) of 2d.
Figure S15 HMBC NMR (CDCl$_3$) of 2d.
Synthesis and Characterisation of Macrocycles and [2]Catenanes

General Procedure

1/5/6 (0.102 g, 0.50 mmol, 1 eq.) in CHCl₃ (dry, 40 mL) and 2 (0.50 mmol, 1 eq.) in CHCl₃ (dry, 40 mL) were added simultaneously via syringe pump to NEt₃ (0.35 mL, 2.5 mmol, 5 eq.) in CHCl₃ (dry, 40 mL) over 2 h at rt under N₂ before stirring for an additional 16 h. The reaction mixture was washed with 1 M HCl (aq) (50 mL), 1 M KOH (aq) (50 mL) and brine (50 mL), dried (MgSO₄) and the solvent removed in vacuo. The products were purified by column chromatography on silica eluting with CH₂Cl₂ with a step gradient in 10% increments of acetone up to 50% acetone/CH₂Cl₂.

Macrocycle 3a and [2]Catenane 4a

Using the general procedure with 1 and 2a (0.180 g, 0.5 mmol) gave 3a (0.104 g, 42%) as a white solid and 4a (0.053 g, 22%) as a white solid.

Macrocycle 3a

![Macrocycle 3a structure]

M.p. 202-204 °C. ¹H NMR (500 MHz, CDCl₃) δ: 8.06 (dd, J = 7.8, 1.7 Hz, 2H, H₆), 7.60 (br. t, J = 1.7 Hz, 1H, H₃), 7.54 (t, J = 7.8 Hz, 1H, H₄), 7.24 (d, J = 8.6 Hz, 4H, H₅), 6.87 (d, J = 8.6 Hz, 4H, H₆), 6.23 (br. m, 2H, H₇), 4.50 (d, J = 5.1, 4H, H₈), 4.13-4.11 (m, 4H, H₉), 3.86-3.84 (m, 4H, H₁₀), 3.71 (s, 4H, H₁₁). ¹³C NMR (126 MHz, CDCl₃) δ: 166.6, 158.8, 134.8, 131.4 (C₄), 130.1 (C₅), 129.8, 129.8 (C₆), 122.9 (C₇), 115.1 (C₈), 70.9 (C₉), 69.8 (C₁₀), 67.6 (C₁₁), 44.4 (C₁₂). HR-ESI-MS m/z = 491.2190 [M+H]+ calc. 491.2182.
Figure S16 1H NMR (CDCl$_3$, 500 MHz) of 3a.

Figure S17 13C NMR (CDCl$_3$, 126 MHz) of 3a.
Figure S18 COSY NMR (CDCl$_3$) of 3a.

Figure S19 HSQC NMR (CDCl$_3$) of 3a.
[2] Catenane 4a

M.p. 206-208 °C. 1H NMR (500 MHz, CDCl3) δ: 8.14 (dd, J = 7.8, 1.6 Hz, 4H, H_a), 8.04 (br. s, 2H, H_c), 7.53 (t, J = 7.8 Hz, 2H, H_a), 7.05 (d, J = 8.6 Hz, 8H, H_e), 7.01 (br. m, 4H, H_m), 6.51 (d, J = 8.3 Hz, 8H, H_f), 4.31 (d, J = 4.3 Hz, 8H, H_d), 3.79 (br. m, 8H, H_g), 3.44 (br. m, 8H, H_h), 3.28 (s, 8H, H_i). 13C NMR (126 MHz, CDCl3) δ: 166.0, 157.9, 133.5, 132.2 (C_b), 130.5 (C_d), 129.3, 129.0 (C_a), 123.3 (C_c), 114.3 (C_l), 70.7 (C), 69.5 (C_m), 67.4 (C_o), 44.8 (C). HR-ESI-MS m/z = 981.4290 [M+H]^+ calc. 981.4286.

Figure S20 HMBC NMR (CDCl3) of 3a.
Figure S21 1H NMR (CDCl$_3$, 500 MHz) of 4a.

Figure S22 13C NMR (CDCl$_3$, 126 MHz) of 4a.

Figure S23 COSY NMR (CDCl$_3$) of 4a.
Figure S24 HSQC NMR (CDCl$_3$) of 4a.

Figure S25 HMBC NMR (CDCl$_3$) of 4a.
Figure S26 NOESY NMR (CDCl₃) of 4a.

Figure S27 Partial NOESY NMR (CDCl₃) of 4a. Cross peaks indicative of catenane structure are highlighted.
Figure S28 Partial HR-ESI-MS of 4a (top) and calculated isotopic pattern for [4a+H]⁺ (bottom).

Figure S29 HR-ESI-MSMS of m/z = 981 peak (top) and calculated isotopic pattern for [3a+H]⁺ (bottom).
Macrocycle 3b and [2]Catenane 4b

Using the general procedure with 1 and 2b (0.202 g, 0.5 mmol) gave 3b (0.082 g, 31%) as a white solid and 4b (0.137 g, 51%) as a white foam.

Macrocycle 3b

M.p. 209-211 °C. 1H NMR (400 MHz, CDCl$_3$) δ: 7.98 (br. s, 1H, H$_C$), 7.95 (dd, $J = 7.8$, 1.5 Hz, 2H, H$_B$), 7.42 (t, $J = 7.7$ Hz, 1H, H$_A$), 7.14 (d, $J = 8.6$ Hz, 4H, H$_E$), 6.89 (t, $J = 5.3$ Hz, 2H, H$_W$), 6.69 (d, $J = 8.6$ Hz, 4H, H$_F$), 4.47 (d, $J = 5.3$ Hz, 4H, H$_D$), 3.97-3.95 (m, 4H, H$_G$), 3.80-3.78 (m, 4H, H$_H$), 3.70 (s, 8H, H$_I$, H$_J$). 13C NMR (400 MHz, CDCl$_3$) δ: 166.6, 158.2, 134.1, 131.3 (C$_B$), 130.2, 129.6 (C$_E$), 129.3 (C$_D$), 123.8 (C$_C$), 114.8 (C$_F$), 71.0 (C$_I$/C$_J$), 70.9 (C$_I$/C$_J$), 69.7 (C$_I$), 67.5 (C$_J$), 44.1 (C$_D$). HR-ESI-MS $m/z = 535.2441$ [M+H]$^+$ calc. 535.2444.

Figure S30 1H NMR (CDCl$_3$, 400 MHz) of 3b.
Figure S31 13C NMR (CDCl$_3$, 101 MHz) of 3b.

Figure S32 COSY NMR (CDCl$_3$) of 3b.
Figure S33 HSQC NMR (CDCl₃) of 3b.

Figure S34 HMBC NMR (CDCl₃) of 3b.
[2] Catenane 4b

1H NMR (400 MHz, CDCl$_3$) δ: 8.34 (br. s, 2H, H$_C$), 8.26 (dd, $J = 7.8$, 1.4 Hz, 4H, H$_B$), 7.61 (t, $J = 7.8$ Hz, 2H, H$_A$), 7.33 (br. t, $J = 4.6$ Hz, 4H, H$_{NH}$), 6.84 (d, $J = 8.5$ Hz, 8H, H$_E$), 6.19 (d, $J = 8.6$ Hz, 8H, H$_F$), 4.39 (d, $J = 4.8$ Hz, 8H, H$_D$), 3.74-3.70 (m, 16H, 2 of H$_G$/H$_H$/H$_I$/H$_J$), 3.53-3.45 (m, 16H, 2 of H$_G$/H$_H$/H$_I$/H$_J$). 13C NMR (101 MHz, CDCl$_3$) δ: 165.9, 157.3, 134.0, 132.1 (C$_B$), 129.6 (C$_D$), 129.4 (C$_D$), 123.0 (C$_D$), 113.8 (C$_S$), 70.7 (C$_G$/C$_H$/C$_I$/C$_J$), 70.5 (C$_G$/C$_H$/C$_I$/C$_J$), 69.7 (C$_G$/C$_H$/C$_I$/C$_J$), 67.1 (C$_G$/C$_H$/C$_I$/C$_J$), 44.1 (C$_D$). HR-ESI-MS $m/z = 1069.4807$ [M+H]$^+$ calc. 1069.4810.

Figure S35 1H NMR (CDCl$_3$, 400 MHz) of 4b.
Figure S36 13C NMR (CDCl$_3$, 101 MHz) of 4b.

Figure S37 COSY NMR (CDCl$_3$) of 4b.
Figure S38 HSQC NMR (CDCl₃) of 4b.

Figure S39 HMBC NMR (CDCl₃) of 4b.
Figure S40 Partial HR-ESI-MS of 4b (top) and calculated isotopic pattern for [4b+H]^+ (bottom).

Figure S41 HR-ESI-MSMS of m/z = 1069 peak (top) and calculated isotopic pattern for [3b+H]^+ (bottom).
Macrocycle 3c and [2]Catenane 4c

Using the general procedure with 1 and 2c (0.224 g, 0.5 mmol) gave 3c (0.121 g, 42%) as a white solid and 4c (0.026 g, 9%) as a colourless glass.

![Diagram of Macrocycle 3c]

Macrocycle 3c

M.p. 183-185 °C. 1H NMR (500 MHz, CDCl$_3$) δ: 8.07 (t, $J = 1.8$ Hz, 1H, H$_C$), 7.94 (dd, $J = 7.8$, 1.7 Hz, 2H, H$_A$), 7.43 (t, $J = 7.8$ Hz, 1H, H$_D$), 7.14 (d, $J = 8.6$ Hz, 4H, H$_E$), 7.00 (t, $J = 5.5$ Hz, 2H, H$_{NH}$), 6.70 (d, $J = 8.7$ Hz, 4H, H$_F$), 4.66 (d, $J = 5.5$ Hz, 4H, H$_D$), 3.95-3.93 (m, 4H, H$_H$), 3.69-3.67 (m, 12H, H$_I$). 13C NMR (126 MHz, CDCl$_3$) δ: 166.6, 158.2, 134.2, 131.0 (C$_A$), 130.3, 129.4 (C$_E$), 129.2 (C$_A$), 124.2 (C$_D$), 114.9 (C$_C$), 71.1 (C$_G$/C$_I$/C$_K$), 71.0 (C$_G$/C$_I$/C$_K$), 70.9 (C$_G$/C$_I$/C$_K$), 69.7 (C$_I$), 67.5 (C$_G$), 43.9 (C$_D$). HR-ESI-MS m/z = 579.2700 [M+H]$^+$ calc. 579.2706.

![NMR Spectrogram of 3c]

Figure S42 1H NMR (CDCl$_3$, 500 MHz) of 3c.
Figure S43 13C NMR (CDCl$_3$, 126 MHz) of 3c.

Figure S44 COSY NMR (CDCl$_3$) of 3c.
Figure S45 HSQC NMR (CDCl₃) of 3c.

Figure S46 HMBC NMR (CDCl₃) of 3c.
[2]Catenane 4c

1H NMR (400 MHz, CDCl$_3$) δ: 8.28 (s, 2H, H$_C$), 8.15 (dd, $J = 7.8$, 1.5 Hz, 4H, H$_D$), 7.61 (br. m, 4H, H$_{NH}$), 7.55 (t, $J = 7.8$ Hz, 2H, H$_A$), 6.96 (d, $J = 8.6$ Hz, 8H, H$_E$), 6.49 (d, $J = 8.6$ Hz, 8H, H$_F$), 4.34 (d, $J = 5.1$ Hz, 8H, H$_D$), 3.85-3.83 (m, 8H, H$_G$), 3.66-3.64 (m, 8H, H$_H$), 3.53-3.51 (m, 8H, H$_I$), 3.45-3.43 (m, 16H, H$_J$/H$_K$).

13C NMR (101 MHz, CDCl$_3$) δ: 166.3, 157.8, 134.0, 131.8 (C$_B$), 130.3, 129.6 (C$_D$), 129.1 (C$_A$), 123.9 (C$_C$), 114.5 (C$_J$), 70.9 (C$_I$/C$_J$/C$_K$), 70.6 (C$_I$/C$_J$/C$_K$), 70.5 (C$_I$/C$_J$/C$_K$), 69.7 (C$_I$), 67.4 (C$_D$), 43.8 (C$_D$). HR-ESI-MS m/z = 1157.5369 [M+H]$^+$ calc. 1157.5335.

Figure 547 1H NMR (CDCl$_3$, 400 MHz) of 4c.
Figure S48 13C NMR (CDCl$_3$, 101 MHz) of 4c.

Figure S49 COSY NMR (CDCl$_3$) of 4c.
Figure S50 HSQC NMR (CDCl₃) of 4c.

Figure S51 HMBC NMR (CDCl₃) of 4c.
Figure S52 Partial HR-ESI-MS of 4c (top) and calculated isotopic pattern for [4c+Na]^+ (bottom).

Figure S53 HR-ESI-MSMS of m/z = 1179 peak (top) and calculated isotopic pattern for [3c+Na]^+ (bottom).
Macrocycle 3d

Using the general procedure with 1 and 2d (0.178 g, 0.5 mmol) gave 3d (0.112 g, 46%) as a white solid. M.p. 214-216 °C. 1H NMR (400 MHz, CDCl$_3$) δ: 8.03 (dd, $J = 7.7, 1.7$ Hz, 2H, H$_B$), 7.65 (t, $J = 1.5$ Hz, 1H, H$_C$), 7.53 (t, $J = 7.8$ Hz, 1H, H$_A$), 7.23 (d, $J = 8.6$ Hz, 4H, H$_E$), 6.84 (d, $J = 8.6$ Hz, 4H, H$_F$), 6.34 (t, $J = 4.9$ Hz, 2H, H$_NH$), 4.48 (d, $J = 5.3$ Hz, 4H, H$_D$), 3.98 (t, $J = 6.1$ Hz, 4H, H$_G$), 1.74 (quint, $J = 6.5$ Hz, 4H, H$_I$), 1.44 (br. m, 4H, H$_J$), 1.31-1.27 (m, 4H, H$_K$). 13C NMR (101 MHz, CDCl$_3$) δ: 166.6, 158.9, 134.9, 131.2 (C$_B$), 130.0 (C$_E$), 129.6 (C$_A$), 123.3 (C$_C$), 115.1 (C$_F$), 67.2 (C$_D$), 44.3 (C$_G$), 28.9 (C$_I$), 28.6 (C$_H$), 25.6 (C$_J$). HR-ESI-MS m/z = 487.2610 [M+H]$^+$ calc. 487.2597.

Figure S54 1H NMR (CDCl$_3$, 400 MHz) of 3d.
Figure S55 13C NMR (CDCl$_3$, 101 MHz) of 3d.

Figure S56 COSY NMR (CDCl$_3$) of 3d.
Figure S57 HSQC NMR (CDCl$_3$) of 3d.

Figure S58 HMBC NMR (CDCl$_3$) of 3d.
Using the general procedure with 5 and 2a (0.180 g, 0.5 mmol) gave 3e (0.060 g, 24%) as a white solid. M.p. 179-181 °C. 1H NMR (400 MHz, d_6-DMSO) δ: 8.54 (br. s, 2H, H$_{NH}$), 7.79 (br. s, 4H, H$_A$), 7.15 (br. d, $J = 7.6$ Hz, 4H, H$_C$), 6.77 (br. d, $J = 7.2$ Hz, 4H, H$_D$), 4.33 (br. d, $J = 4.4$ Hz, 4H, H$_B$), 4.03 (br. app. s, 4H, H$_E$), 3.58 (br. app. s, 4H, H$_G$), 3.45 (br. s, 4H, H$_F$). 13C NMR (101 MHz, d_6-DMSO) δ: 165.5, 157.4, 136.9, 132.6, 129.3 (C$_C$), 127.2 (C$_A$), 114.5 (C$_D$), 69.6 (C$_G$), 68.6 (C$_E$), 66.8 (C$_F$), 42.6 (C$_B$). HR-ESI-MS m/z = 491.2192 [M+H]$^+$ calc. 491.2182.

Figure S59 1H NMR (d_6-DMSO, 400 MHz) of 3e.

Figure S60 13C NMR (d_6-DMSO, 101 MHz) of 3e.
Figure S61 COSY NMR (d_6-DMSO) of 3e.

Figure S62 HSQC NMR (d_6-DMSO) of 3e.
Figure S63 HMBC NMR (d_6-DMSO) of 3e.
Macrocycle 3f

Using the general procedure with 6 and 2a (0.180 g, 0.5 mmol) gave 3f (0.074 g, 30%) as a white solid. Spectra were consistent with those previously reported.\(^4\) \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\): 8.26 (d, \(J = 7.8\) Hz, 2H, H\(_B\)), 8.00 (t, \(J = 7.8\) Hz, 1H, H\(_A\)), 7.87 (br. t, \(J = 5.0\) Hz, 2H, H\(_{\text{NH}}\)), 7.14 (d, \(J = 8.6\) Hz, 4H, H\(_D\)), 6.80 (d, \(J = 8.7\) Hz, 4H, H\(_E\)), 4.56 (d, \(J = 5.3\) Hz, 4H, H\(_C\)), 4.12-4.10 (m, 4H, H\(_F\)), 3.92-3.89 (m, 4H, H\(_G\)), 3.77 (s, 4H, H\(_H\)). \(^13\)C NMR (101 MHz, CDCl\(_3\)) \(\delta\): 163.3, 158.7, 148.8, 139.4 (C\(_A\)), 129.7, 128.8 (C\(_D\)), 125.1 (C\(_B\)), 115.2 (C\(_E\)), 71.2 (C\(_H\)), 69.9 (C\(_G\)), 67.8 (C\(_F\)), 43.3 (C\(_C\)).

Figure S64 \(^1\)H NMR (CDCl\(_3\), 400 MHz) of 3f.
Figure S65 13C NMR (CDCl$_3$, 101 MHz) of 3f.

Figure S66 COSY NMR (CDCl$_3$) of 3f.
Figure S67 HSQC NMR (CDCl₃) of 3f.

Figure S68 HMBC NMR (CDCl₃) of 3f.
Macrocycle 3g and [2]Catenane 4g

7 (0.102 g, 0.50 mmol, 1 eq.) in CH₂Cl₂ (dry, 40 mL) and 2b (0.202 g, 0.50 mmol, 1 eq.) in CH₂Cl₂ (dry, 40 mL) were added simultaneously via syringe pump to NEt₃ (0.35 mL, 2.5 mmol, 5 eq.) in CH₂Cl₂ (dry, 40 mL) over 2 h at rt under N₂ before stirring for an additional 16 h. The reaction mixture was washed with 1 M HCl(aq) (50 mL), 1 M KOH(aq) (50 mL) and brine (50 mL), dried (MgSO₄) and the solvent removed in vacuo. Purification by column chromatography on silica eluting with CH₂Cl₂ with a step gradient in 10% increments of acetone up to 50% acetone/CH₂Cl₂ to elute 3g followed by 1:9 MeOH/CH₂Cl₂ to elute 4g, gave 3g (0.065 g, 24%) as a white solid, and 4g (0.101 g, 38%) as an off-white foam.

Macrocycle 3g

¹H NMR (400 MHz, d₆-DMSO) δ: 9.30 (d, J = 2.1 Hz, 2H, Hₐ), 8.99 (t, J = 5.6 Hz, 2H, Hₙₐ), 8.40 (t, J = 2.1 Hz, 1H, Hₐ), 7.25 (d, J = 8.7 Hz, 4H, Hₐ), 6.89 (d, J = 8.6 Hz, 4H, Hₐ), 4.39 (d, J = 5.5 Hz, 4H, Hₐ), 4.08-4.02 (m, 4H, Hₐ), 3.71-3.66 (m, 4H, Hₐ), 3.56-3.48 (m, 8H, Hₐ). ¹³C NMR (101 MHz, d₆-DMSO) δ: 164.5, 157.6, 150.5 (Cₐ), 133.3 (Cₐ), 130.8, 129.7, 129.4 (Cₐ), 114.3 (Cₐ), 69.9 (Cₐ/Cₐ), 69.9 (Cₐ/Cₐ), 68.8 (Cₐ), 67.2 (Cₐ), 42.5 (Cₐ). HR-ESI-MS m/z = 536.2394 [M+H]⁺ calc. 536.2397.

Figure S69 ¹H NMR (d₆-DMSO, 400 MHz) of 3g.
Figure S70 13C NMR (d_6-DMSO, 101 MHz) of 3g.

Figure S71 COSY NMR (d_6-DMSO) of 3g.
Figure S72 HSQC NMR (d_6-DMSO) of 3g.

Figure S73 HMBC NMR (d_6-DMSO) of 3g.
[2]Catenane 4g

1H NMR (400 MHz, CDCl$_3$) δ: 9.12 (d, $J = 2.0$ Hz, 4H, H$_A$), 8.54 (t, $J = 2.1$ Hz, 2H, H$_B$), 7.59 (t, $J = 5.0$ Hz, 4H, H$_C$), 6.98 (d, $J = 8.6$ Hz, 8H, H$_D$), 6.44 (d, $J = 8.6$ Hz, 8H, H$_E$), 4.32 (d, $J = 4.8$ Hz, 8H, H$_C$), 3.84-3.79 (m, 8H, H$_F$), 3.66-3.61 (m, 8H, H$_G$), 3.49 (s, 16H, H$_I$, H$_H$). 13C NMR (101 MHz, CDCl$_3$) δ: 164.4, 157.7, 152.2 (C$_A$), 131.6 (C$_B$), 130.1 (C$_D$), 129.7, 128.7, 114.1 (C$_E$), 70.7 (C$_I$/C$_C$), 70.6 (C$_I$/C$_C$), 69.7 (C$_B$), 67.3 (C$_D$), 44.1 (C$_A$). HR-ESI-MS $m/z = 1071.4700$ [M+H]$^+$ calc. 1071.4715.

Figure S74 1H NMR (CDCl$_3$, 400 MHz) of 4g.
Figure S75 13C NMR (CDCl$_3$, 101 MHz) of 4g.

Figure S76 COSY NMR (CDCl$_3$) of 4g.
Figure S77 HSQC NMR (CDCl$_3$) of 4g.

Figure S78 HMBC NMR (CDCl$_3$) of 4g.
Crude Reaction 1H NMR Spectra

0.05 mmol Catenane Reactions

1 (10.2 mg, 0.050 mmol, 1 eq.) in CHCl$_3$ (dry, 4 mL) and 2 (0.050 mmol, 1 eq.) in CHCl$_3$ (dry, 4 mL) were added simultaneously via syringe pump to NEt$_3$ (0.04 mL, 0.25 mmol, 5 eq.) in CHCl$_3$ (dry, 4 mL) over 2 h at rt under N$_2$ before stirring for an additional 16 h. To the crude reaction mixture was added a 0.05 M solution of 1,3,5-trimethoxybenzene in CHCl$_3$ (1.0 mL, 0.05 mmol, 1 eq.). The solvent was removed in vacuo and the mixture analysed by 1H NMR.

<table>
<thead>
<tr>
<th></th>
<th>(1+1) Macrocycle 3</th>
<th>(1+1+1+1) Catenane 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>2a</td>
<td>48%</td>
<td>24-25%</td>
</tr>
<tr>
<td>2b</td>
<td>35-39%</td>
<td>44-47%</td>
</tr>
<tr>
<td>2c</td>
<td>43%</td>
<td>14-19%</td>
</tr>
</tbody>
</table>

$where multiple signals for the species could be reliably identified and integrated, the range of values determined is given.

Figure S79 Partial 1H NMR (CDCl$_3$, 400 MHz) spectrum of the crude 3a/4a reaction mixture. * = 1,3,5-trimethoxybenzene reference signal.

Figure S80 Partial 1H NMR (CDCl$_3$, 400 MHz) spectrum of the crude 3b/4b reaction mixture. * = 1,3,5-trimethoxybenzene reference signal.
Figure S81 Partial 1H NMR (CDCl$_3$, 400 MHz) spectrum of the crude $3c/4c$ reaction mixture. * = 1,3,5-trimethoxybenzene reference signal.

Additional Crude Reaction NMR Spectra

Figure S82 Partial 1H NMR (400 MHz, CDCl$_3$) spectrum of crude $3d$ reaction mixture.

Figure S83 Partial 1H NMR (400 MHz, CDCl$_3$) spectrum of crude $3e$ reaction mixture.

Figure S84 Partial 1H NMR (400 MHz, CDCl$_3$) spectrum of crude $3f$ reaction mixture.
Figure S85 Partial 1H NMR (400 MHz, CDCl$_3$) spectrum of crude 4g reaction mixture.
1H NMR N-benzyl-/phenyl-benzamide Binding Studies

Figure S86 Partial 1H NMR spectra (25 mM CDCl$_3$, 400 MHz) of a) macrocycle 3b, b) 3b and N-benzylbenzamide, and c) N-benzylbenzamide.

Figure S87 Partial 1H NMR spectra (25 mM CDCl$_3$, 400 MHz) of a) macrocycle 3c, b) 3c and N-benzylbenzamide, and c) N-benzylbenzamide.
Figure S88 Partial 1H NMR spectra (25 mM CDCl$_3$, 400 MHz) of a) macrocycle 3f, b) 3f and N-benzylbenzamide, and c) N-benzylbenzamide.

Figure S89 Partial 1H NMR spectra (25 mM CDCl$_3$, 400 MHz) of a) macrocycle 3f, b) 3f and N-phenylbenzamide, and c) N-phenylbenzamide.
X-ray Data

X-ray Data for [2]catenane 4a

Crystals of 4a were grown by vapour diffusion of pentane into a solution of the catenane in 1,2-dichloroethane.

Crystal data for 4a: 2(C_{28}H_{30}N_{2}O_{6})·C_{2}H_{4}Cl_{2}, M = 1080.03, triclinic, P-1 (no. 2), a = 8.9724(3), b = 17.8840(7), c = 18.7581(7) Å, α = 71.649(4), β = 78.938(3), γ = 75.953(3)°, V = 2749.61(19) Å^3, Z = 2, D_c = 1.304 g cm^{-3}, μ(Cu-Kα) = 1.606 mm^{-1}, T = 173 K, colourless blocky needles, Agilent Xcalibur PX Ultra A diffractometer; 10510 independent measured reflections (R_{int} = 0.0276), F^2 refinement, R_1(obs) = 0.0543, wR_2(all) = 0.1644, 7638 independent observed absorption-corrected reflections [|F_o| > 4σ(|F_o|)], completeness to θ_{full}(67.7°) = 98.4%, 714 parameters. CCDC 1868404.

The C10- to C18-based -C_{12}H_{2}OCH_{2}CH_{2}- unit in the structure of 4a was found to be disordered. Two orientations were identified of ca. 85 and 15% occupancy, their geometries were optimised, the thermal parameters of adjacent atoms were restrained to be similar, and only the non-hydrogen atoms of the major occupancy orientation were refined anisotropically (those of the minor occupancy orientation were refined isotropically). The N–H hydrogen atoms on N8, N33, N48 and N73 were all located from ΔF maps and refined freely subject to an N–H distance constraint of 0.90 Å. One outlier reflection for which |I(obs) - I(calc)|/σ(W) was ca. 19 was omitted from the refinements.

Figure S90 Ellipsoid plot of the asymmetric unit of 4a·C_{2}H_{4}Cl_{2}. Ellipsoids are shown at the 50% probability level. Hydrogen atoms have been omitted for clarity.

X-ray Data for [2]catenane 4g

Crystals of 4g were grown by vapour diffusion of H_{2}O into a solution of the catenane in DMF.

Crystal data for 4g: 2(C_{29}H_{33}N_{3}O_{7})·6.25H_{2}O, M = 1183.76, triclinic, P-1 (no. 2), a = 13.3255(6), b = 13.5278(6), c = 17.7443(8) Å, α = 90.033(3), β = 100.915(4), γ = 105.148(4)°, V = 3027.41(2) Å^3, Z = 2, D_c = 1.299 g cm^{-3}, μ(Mo-Kα) = 0.099 mm^{-1}, T = 173 K, colourless block, Agilent Xcalibur 3 E diffractometer; 11912 independent measured reflections (R_{int} = 0.0207), F^2 refinement, R_1(obs) = 0.0468, wR_2(all) = 0.1109, 8665 independent observed absorption-corrected reflections [|F_o| > 4σ(|F_o|)], completeness to θ_{full}(25.2°) = 98.6%, 835 parameters. CCDC 1889522.
The O62–C63 portion of one of the polyether chains in the structure of 4g was found to be disordered. Two orientations were identified of ca. 84 and 16% occupancy, their geometries were optimised, the thermal parameters of adjacent atoms were restrained to be similar, and only the non-hydrogen atoms of the major occupancy orientation were refined anisotropically (those of the minor occupancy orientation were refined isotropically). The O86-based water molecule was assigned a fixed occupancy of 25% based on its thermal parameter (and for simplicity). The four N–H hydrogen atoms on N8, N36, N48 and N76, and the twelve O–H hydrogen atoms on the O80–, O81–, O82–, O83–, O84–, and O85-based water molecules, were all located from ΔF maps and refined freely subject to X–H distance constraints of 0.90 Å. Unsurprisingly, the hydrogen atoms for the 25% occupancy O86-based water molecule could not be located. As a result, the atom list for the asymmetric unit is low by 0.5H (and that for the unit cell low by 1H) compared to what is actually presumed to be present. Three low angle reflections (resolution ca. 8 Å) for which the observed intensity was much less than the calculated intensity (likely indicating partial obscuration by the beam stop) were omitted from the refinements.

Figure S91 Ellipsoid plot of the asymmetric unit of 4g·6.25H2O. Ellipsoids are shown at the 50% probability level. Hydrogen atoms have been omitted for clarity.

X-ray Data for \{[Ag(4g)](OTf)\}

Crystals of \{[Ag(4g)](OTf)\} were grown by vapour diffusion of Et2O into a solution of 1:1 4g/AgOTf in DMF.

Crystal data for \{[Ag(4g)](OTf)\}: [C58H66AgN6O14](CF3O3S)·4(C4H10O), M = 1624.58, monoclinic, I2/a (no. 15), a = 28.3764(9), b = 22.9821(8), c = 26.0316(10) Å, β = 110.512(4)°, V = 15900.2(11) Å3, Z = 8, Dc = 1.357 g cm−3, μ(Mo-Kα) = 0.361 mm−1, T = 173 K, colourless tabular needles, Agilent Xcalibur 3 E diffractometer; 15974 independent measured reflections (Rint = 0.0244), F2 refinement, S=6 R1(obs) = 0.0751, wR2(all) = 0.2435, 11086 independent observed absorption-corrected reflections \(|F_o| > 4\sigma(|F_o|)\), completeness to θfull(25.2°) = 98.7%, 888 parameters. CCDC 1889521.

The (CH2CH2O)–C6H4 unit (labelled C60 to C74) of the N41-based macrocycle in the structure of \{[Ag(4g)](OTf)\} was found to be disordered. Two orientations were identified of ca. 69 and 31% occupancy, their geometries were optimised, the thermal parameters of adjacent atoms were
restrained to be similar, and only the non-hydrogen atoms of the major occupancy orientation were refined anisotropically (those of the minor occupancy orientation were refined isotropically). The S80-based triflate anion was also found to be disordered, and three orientations were identified of ca. 61, 20 and 19% occupancy. The geometries of all three orientations were optimised, the thermal parameters of adjacent atoms were restrained to be similar, and the atoms of the major occupancy orientation were refined anisotropically (those of the minor occupancy orientations were refined isotropically). The four presumed N–H hydrogen atoms on N8, N36, N48 and N76 could not be reliably located from ΔF maps and so they were added in idealised positions with an N–H distance constraint of 0.90 Å.

The included solvent was found to be highly disordered, and the best approach to handling this diffuse electron density was found to be the SQUEEZE routine of PLATON. This suggested a total of 1374 electrons per unit cell, equivalent to 171.8 electrons per asymmetric unit. Before the use of SQUEEZE the solvent most resembled diethyl ether (C₄H₁₀O, 42 electrons), and 4 diethyl ether molecules corresponds to 168 electrons, so this was used as the solvent present. As a result, the atom list for the asymmetric unit is low by 4(C₄H₁₀O) = C₁₆H₃₂O₄ (and that for the unit cell low by C₁₂₈H₃₂₀O₃₂) compared to what is actually presumed to be present. Five outlier reflections for which |I(obs) – I(calc)|/σ(W) was > 10 were omitted from the refinements, as was one low angle reflection (resolution ca. 8 Å) for which the observed intensity was much less than the calculated intensity (likely indicating partial obscuration by the beam stop).

![Figure S92](image_url) Ellipsoid plot of the asymmetric unit of ([Ag(4g)][OTf])·4Et₂O. Ellipsoids are shown at the 50% probability level. Hydrogen atoms have been omitted for clarity.
References

5. SHELXTL v5.1, Bruker AXS, Madison, WI, 1998.