Supporting Information

Modular DNA-based Hybrid Catalysts as a Toolbox for Enantioselective Hydration of α,β-unsaturated Ketones

Ji Hye Yum,1 Soyoung Park,*,1 Ryota Hiraga,1 Izumi Okamura,1 Shunta Notsu,1 and Hiroshi Sugiyama*,1,2

1Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
2Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Yoshida-ushinomiyacho, Sakyo-ku, Kyoto 606-8501, Japan

*Corresponding author: Dr. Soyoung Park, Prof. Dr. Hiroshi Sugiyama

Tel.: (+)81-75-753-4002; Fax: (+)81-75-753-3670

E-mail: oleesy@kuchem.kyoto-u.ac.jp, hs@kuchem.kyoto-u.ac.jp (H.S.)
Table of contents

1. Materials
2. Methods and Equipment
3. **Scheme S1**: Synthetic Route of the Incorporated Organic Compounds
4. **Figure S1-S4**: NMR Spectra of Newly Synthesized Compounds
5. **Table S1**: Analytical HPLC Profile of Artificial ODNs
6. **Table S2**: MALDI-TOF-Mass Data of Artificial ODNs
7. Enantioselective Hydration of α,β-unsaturated Ketones
 - **Figure S5**: Fitting Curve for the Calculation the Conversion of 2a-2e
 - **Figure S6-S11**: Chiral HPLC analysis of 2a-2e
 - **Scheme S2**: Catalytic Results of Various α,β-unsaturated Ketones
 - **Table S3**: Enantioselective hydration reaction of 2a α,β-unsaturated Ketone produced by DNA-based hybrid catalyst
8. **Figure S12**: CD Spectra of single-strand DNA oligomer
9. **Figure S13**: Spectroscopic study of various concentration of ODN14/ODN13
10. **Figure S14**: Spectroscopic study of ODN14/ODN13 oligomer with various salt conditions.
11. **Figure S15**: Spectroscopic study of ODN16/ODN13 oligomer with various salt conditions.
12. **Figure S16**: Spectroscopic study of ODN1/ODN2 and ODN14/ODN13 oligomer.
13. **Figure S17**: Spectroscopic study of ODN3/ODN4 and ODN14/ODN13 oligomer.
14. **Figure S18**: Molecular Modeling Studies
Materials

\(N, N\)-Dimethylformamide dimethyl acetal, potassium phthalimide, 4,4'-dimethoxytrityl chloride, triethylamine, \(N, N\)-dimethyl-4-aminopyridine, 3-chloro-1-propanol, 3-amino-1-propanol were received from Wako Chemicals and used without further purification. 2-cyanoethyl \(N, N\)-diisopropylchloro phosphoramidite, D-threoninol (97%), hydrazine monohydrate, 2,2'-bipyridine-5,5'-dicarboxylic acid, 4-amino-1-butanol were purchased from Sigma-Aldrich Chemicals Co. and used as received. \(N, N\)-Diisopropylethylamine was purchased from Nacalai and used as received. 6-Amino-1-hexanol, 6-chloro-1-hexanol were obtained from TCI. Glen-Pak™ DNA and RNA cartridges columns are purchased at Glen research and used. All other chemicals and solvents were purchased from Sigma-Aldrich Chemicals Co., Wako Pure Chemical Ind. Ltd., TCI, or Kanto Chemical Co. Inc. and used without further purification and synthetic oligonucleotides were obtained from Sigma Genosys. Water was deionized (specific resistance of \(\geq 18.0 \text{ MW cm at } 25^\circ\text{C}\)) by a Milli-Q system (Millipore Corp.).

Methods and Equipment

NMR spectra were obtained on a JEOL JNM ECA-600 spectrometer operating at 600 MHz for \(^1\text{H}\) NMR and 150 MHz for \(^{13}\text{C}\) NMR in CDCl\(_3\) unless otherwise noted. Flash column chromatography was performed employing Silica Gel 60 (70–230 mesh, Merck Chemicals). Silica-gel preparative thin-layer chromatography (PTLC) was performed using plates from Silica gel 70 PF\(_{254}\) (Wako Pure Chemical Ind. Ltd.). Enantiomeric excess (\(ee\)) determinations were performed by HPLC analysis (Chiralcel AD-H, OD-H) using UV-detection. DNA concentrations were measured by Nanodrop ND-1000 spectrophotometer. Rotary mixing of reaction suspension was performed by Intelli-Mixer RM-2 (Elmi).
Synthetic routes for intrastrand bipyridine ligands and non-binding steric moieties

Synthesis of bi-linker conjugated bipyridine ligand derivatives ("X, n=3, 6) and triethylene glycol linkers (E) were followed by previous reported papers\cite{1,2}

Scheme S1. Synthesis bi(propyl)-linker conjugated biphenyl derivative (3P). Reagents and conditions: (a) 3.0 equiv of PyBOP, 5.0 equiv of iPr\textsubscript{2}NEt, DMF, rt, 4 h, 76% yield; (b) 1.5 equiv of 2-cyanoethyl N,N-diisopropylchlorophosphoramidite, 3.0 equiv of iPr\textsubscript{2}NEt, DCM, rt, 1 h. This product was used in the subsequent step without further purification.

1,1'-biphenyl-4,4'-dicarboxamide 4-((3-[4,4'-dimethoxytrityl]-oxy)-propyl)-amide)-4'-[3-hydroxy-propyl]amide]

1H NMR (CDCl\textsubscript{3}): \(\delta\) 7.86 (d, \(J_{HH} = 8.3\) Hz, 2H), 7.63 (d, \(J_{HH} = 7.1\) Hz, 4H), 7.49 (d, \(J_{HH} = 8.3\) Hz, 2H), 7.42 (d, \(J_{HH} = 7.7\) Hz, 2H), 7.31 (d, \(J_{HH} = 8.9\) Hz, 4H), 7.29-7.26 (m, 5H), 7.22 (t, \(J_{HH} = 7.4\) Hz, 1H), 6.94 (d, \(J_{HH} = 4.8\) Hz, 1H), 6.81 (d, \(J_{HH} = 8.9\) Hz, 4H), 3.77-3.75 (m, 8H), 3.69 (q, \(J_{HH} = 5.9\) Hz, 2H), 3.59 (q, \(J_{HH} = 5.5\) Hz, 2H), 3.35 (t, \(J_{HH} = 5.1\) Hz, 2H), 1.92 (q, \(J_{HH} = 5.6\) Hz, 2H), 1.84 (q, \(J_{HH} = 5.6\) Hz, 2H). 13C NMR (CDCl\textsubscript{3}): \(\delta\) 167.9, 167.0, 158.5, 144.5, 142.9, 142.5, 135.9, 133.8, 133.5, 128.1, 127.9, 127.6, 127.1, 127.0, 126.9, 113.2, 86.7, 62.9, 60.0, 55.1, 39.3, 37.4, 31.39, 28.8 HRMS (ESI-TOF) calculated for C\textsubscript{41}H\textsubscript{42}N\textsubscript{2}O\textsubscript{6} [M+Na]+ 681.2900, found 681.2935.
1,1'-biphenyl-4,4'-dicarboxamide 4-(((3-[4,4’-dimethoxytrityl]-oxy)-propyl)-amide)-
4'-(((3’-[2-cyanoethyl]-diisopropyl]-propyl)-amide phosphoramidite

1H NMR (CDCl$_3$): δ 7.89 (dd, J_{HH} = 8.3 Hz, 1.8 Hz, 2H), 7.66 (m, 4H), 7.52 (dd, J_{HH} = 8.9 Hz, 2.4 Hz, 4H), 7.29-7.28 (m, 2H), 7.22 (t, J_{HH} = 7.1 Hz, 1H), 6.92 (s, J_{HH} = 4.8 Hz, 2H), 6.81 (dd, J_{HH} = 8.9 Hz, 2.4 Hz, 4H), 3.89-3.85 (m, 2H), 3.84-3.78 (m, 2H), 3.75 (s, 6H), 3.65-3.61 (m, 2H), 3.59 (q, J_{HH} = 3.2 Hz, 2H), 3.36-3.48 (m, 2H), 2.77-2.73 (m, 2H), 2.62 (td, J_{HH} = 6.5 Hz, 2.4 Hz, 2H), 1.99-1.92 (m, 2H), 1.18 (t, J_{HH} = 7.4 Hz, 12H).

13C NMR (CDCl$_3$): δ 166.9, 166.7, 158.5, 144.5, 142.5, 135.9, 133.9, 133.8, 129.9, 128.1, 127.9, 127.5, 127.1, 127.0, 126.8, 117.7, 113.1, 86.6, 62.7, 58.3, 58.1, 55.1, 45.3, 43.1, 38.1, 30.3, 28.9, 24.6, 20.0.

31P NMR (CDCl$_3$): δ 148.84.

ESI-TOF Mass calculated for C$_{50}$H$_{59}$O$_7$N$_4$NaP [M+Na]$^+$ 881.40, found 859.39

Synthesis of bi(propyl)-linker conjugated naphthalene derivative (3N) was followed by the synthetic procedure for a bi(propyl)-linker conjugated biphenyl derivative (3P). 50% yield.

1H NMR (CDCl$_3$): δ 8.26 (s, 1H), 8.09 (s, 1H), 7.79 (dd, J_{HH} = 8.9 Hz, 1.2 Hz, 1H), 7.77 (d, J_{HH} = 8.9 Hz, 1H), 7.69-7.67 (m, 2H), 7.43 (d, J_{HH} = 7.1 Hz, 2H), 7.32 (d, J_{HH} = 8.9 Hz, 5H), 7.26-2.23 (m, 4H), 7.2 (t, J_{HH} = 7.1 Hz, 1H), 7.02 (t, J_{HH} = 3.0 Hz, 1H), 6.98 (t, J_{HH} = 5.6 Hz, 1H), 6.77 (d, J_{HH} = 8.3 Hz, 4H), 3.79 (t, J_{HH} = 5.6, 2H), 3.72-3.69 (m, 8H), 3.63 (q, J_{HH} = 5.7 Hz, 2H), 3.35 (t, J_{HH} = 5.3 Hz, 2H), 1.95 (q, J_{HH} = 5.8 Hz, 2H), 1.86 (q, J_{HH} = 5.8 Hz, 2H).

13C NMR (CDCl$_3$): δ 168.1, 167.1, 158.5, 144.6, 135.9, 133.9, 133.7, 133.5, 132.9, 129.97, 129.6, 129.3, 128.1, 127.9, 127.1, 126.99, 126.91, 124.6, 124.1, 113.2, 86.7, 62.8, 60.1, 55.2, 39.3, 37.5, 32.1, 28.9 HRMS (ESI-TOF) calculated for C$_{39}$H$_{40}$N$_2$NaO$_6$ [M+Na]$^+$ 655.2779, found 655.2755.
 Supporting Information

Naphthalene-2,6-dicarboxamide 4-((3-[4,4’-dimethoxytrityl]-oxy)-propyl)-amide)-4’-((3’-[2-cyanoethyl]-diisopropyl]-propyl)-amide phosphoramidite

1H NMR (CDCl$_3$): δ 8.31 (s, 1H), 8.13 (s, 1H), 7.86 (dd, $J_{HH} = 8.6$ Hz, 1.5 Hz, 1H), 7.83 (d, $J_{HH} = 8.3$ Hz, 1H), 7.75 (d, $J_{HH} = 8.9$ Hz, 2H), 7.72 (dd, $J_{HH} = 8.6$ Hz, 1.5 Hz, 1H), 7.44 (d, $J_{HH} = 1.2$ Hz, 2H), 7.32 (dt, $J_{HH} = 7.6$ Hz, 4.9 Hz, 1.3 Hz, 4H), 7.25 (t, $J_{HH} = 7.4$ Hz, 2H), 7.19 (t, $J_{HH} = 7.1$ Hz, 1H), 6.99 (t, $J_{HH} = 5.3$ Hz, 1H), 6.97 (t, $J_{HH} = 5.1$ Hz, 1H), 6.78 (q, $J_{HH} = 4.95$ Hz, 4H), 3.92-3.85 (m, 2H), 3.81-3.77 (m, 2H), 3.72 (s, 6H), 3.69-3.57 (m, 4H), 3.34 (t, $J_{HH} = 5.3$ Hz, 2H), 2.77-2.63 (m, 2H), 2.57 (t, $J_{HH} = 6.2$ Hz, 2H), 2.01-1.99 (m, 2H), 1.97-1.93 (m, 2H), 1.16 (t, $J_{HH} = 7.1$ Hz, 12H). 13C NMR (CDCl$_3$): δ 167.1, 167.0, 158.5, 144.7, 135.9, 133.8, 133.5, 133.47, 129.9, 129.4, 129.2, 128.1, 127.9, 127.7, 126.96, 126.86, 124.6, 124.3, 117.7, 113.2, 86.6, 62.6, 60.99, 58.3, 55.1, 47.6, 43.1, 39.2, 38.3, 30.4, 28.9, 24.6, 20.4. 31P NMR (CDCl$_3$): δ 147.86. ESI-TOF Mass calculated for C$_{48}$H$_{57}$O$_7$N$_4$NaP [M+Na] $^{+}$855.39, found 855.38.

2,2'-bipyridine-5-carboxamide N-((2S,3S)-1-({4,4’-dimethoxytrityl-oxy})-3-hydroxybutan-2-ol)

DMTr-protected D-threoninol backbone was synthesized based on the previous report by Asanuma and co-workers. To a 2,2'-bipyridine-5-carboxylic acid (130 mg, 0.65 mmol) in DMF (dehydrated, 4 mL), (2S,3S)-3-amino-4-{4,4'-dimethoxytrityl-oxy}-3-hydroxybutan-2-ol 397 mg, 0.98 mmol) in DMF (dehydrated, 7 mL) and DIEA (559 µL, 3.3 mmol) was added PyBOP (774 mg, 1.4 mmol) and the resulting mixture was stirred for 3 days at the room temperature. The mixture was evaporated and purified by column chromatography with CH$_2$Cl$_2$:MeOH = 100:1 to CH$_2$Cl$_2$:MeOH = 10:1 to afford a brown oil. (240 mg, 46% yield)
1H NMR (CDCl$_3$): δ 9.09 (d, $J_{HH} = 2.2$ Hz, 1H), 8.72 (d, $J_{HH} = 4.8$ Hz, 1H), 8.53 (d, $J_{HH} = 8.1$ Hz, 1H), 8.48 (d, $J_{HH} = 7.8$ Hz, 1H), 8.21 (dd, $J_{HH} = 8.3$, 2.2 Hz, 1H), 7.86 (td, $J_{HH} = 7.6$, 1.7 Hz, 1H), 7.39 (dd, $J_{HH} = 8.5$, 1.0 Hz, 2H), 7.36 (m, 1H), 7.28 (m, 5H), 7.20 (t, $J_{HH} = 7.3$ Hz, 1H), 6.85 (d, $J_{HH} = 8.9$ Hz, 1H), 6.81 (t, $J_{HH} = 8.7$, 4H), 4.25 (qd, $J_{HH} = 6.3$, 1.8 Hz, 1H), 4.15 (m, 1H), 3.764 (s, 3H), 3.756 (s, 3H), 3.60 (dd, $J_{HH} = 9.7$, 4.2 Hz, 1H), 3.43 (dd, $J_{HH} = 9.9$, 3.4 Hz, 1H), 3.10 (s, 1H), 1.23 (d, $J_{HH} = 6.5$ Hz, 3H).

13C NMR (CDCl$_3$): δ 165.9, 158.8, 158.7, 155.2, 149.5, 147.9, 144.4, 137.2, 135.9, 135.5, 135.3, 130.04, 130.00, 129.7, 128.1, 128.0, 127.2, 124.5, 121.8, 120.8, 113.5, 87.1, 68.8, 65.5, 55.3, 54.1, 20.3. HRMS (ESI-TOF) calculated for C$_{36}$H$_{35}$N$_3$NaO$_5$ \([M+Na]^+\) 612.2469, found 612.2455. [α]$_D$ value D⁻X was -8.5 (c 1.30, CHCl$_3$)

2,2'-bipyridine-5-carboxamide N'-((2S,3S)-1-({4,4'-dimethoxytrityl-oxy})-3-[(2-cyanoethyl)-diisopropyl]butan-2-yl phosphoramidite

1H NMR (CDCl$_3$): δ 9.04 (dd, $J_{HH} = 21$ Hz, 1.8 Hz, 1H), 8.70 (ddd, $J_{HH} = 4.0$ Hz, 1.5 Hz, 0.89 Hz, 1H), 8.49 (dd, $J_{HH} = 8.6$ Hz, 4.5 Hz, 1H), 8.47 (dd, $J_{HH} = 8.0$ Hz, 3.9 Hz 1H), 8.18 (ddd, $J_{HH} = 20$ Hz, 8.3 Hz, 2.1 Hz, 1H), 7.84 (td, $J_{HH} = 7.9$ Hz, 1.6 Hz, 1H), 7.43 (d, $J_{HH} = 8.3$ Hz, 2H), 7.35 (dd, $J_{HH} = 7.6$ Hz, 4.9 Hz, 1.3 Hz, 1H), 7.31 (dd, $J_{HH} = 8.9$, 1.2 Hz, 7H), 7.29-7.26 (m, 5H), 7.20 (t, $J_{HH} = 7.1$ Hz, 1H), 6.86 (d, $J_{HH} = 8.5$ Hz, 1H), 6.81 (q, $J_{HH} = 4.2$ Hz, 4H), 4.42-4.36 (m, 1H), 4.12 (q, $J_{HH} = 7.1$ Hz, 1H), 3.93-3.81 (m, 2H), 3.78 (d, $J_{HH} = 1.8$ Hz, 6H), 3.66-3.62 (m, 2H), 3.43 (d, $J_{HH} = 6.5$ Hz, 1H), 2.69-2.59 (m, 4H), 1.26 (t, $J_{HH} = 7.1$ Hz, 3H), 1.15 (dd, $J_{HH} = 6.8$ Hz, 2.7 Hz, 12H). 13C NMR (CDCl$_3$): δ 165.3, 158.5 (overlapped), 155.2, 149.3, 147.7, 144.7, 137.1. 136.9, 135.9, 135.7, 130.1, 129.9, 128.2, 127.8, 126.8, 124.2, 121.6, 120.6, 117.7, 113.1, 86.1, 69.0, 62.6, 60.3, 58.2, 55.2, 43.3, 24.6, 20.1, 14.2. 31P NMR (CDCl$_3$): δ 139.65, 139.9, 148.78, 149.14. ESI-TOF Mass calculated for C$_{45}$H$_{33}$O$_6$N$_3$P \([M+H]^+\) 790.37, found 790.37
DMTr-protected L-threoninol backbone was synthesized based on the previous report by Asanuma and co-workers. To a 2,2'-bipyridine-5-carboxylic acid (130 mg, 0.65 mmol) in DMF (dehydrated, 4 mL), (2S,3S)-3-amino-4-{4,4'-dimethoxytrityl-oxo}-3-hydroxybutan-2-ol 397 mg, 0.98 mmol) in DMF (dehydrated, 7 mL) and DIEA (559 µL, 3.3 mmol) was added PyBOP (774 mg, 1.4 mmol) and the resulting mixture was stirred for 2 days at the 80 °C. The mixture was evaporated and purified by column chromatography with CH$_2$Cl$_2$:MeOH = 100:1 to CH$_2$Cl$_2$:MeOH = 10:1 to afford a brown oil. (240 mg, 64% yield)

1H NMR (CDCl$_3$): δ 9.09 (d, $J_{HH} = 1.2$ Hz, 1H), 8.72 (dd, $J_{HH} = 4.8$ Hz, $J_{HH} = 0.59$ Hz, 1H), 8.53 (dd, $J_{HH} = 7.7$ Hz, $J_{HH} = 0.59$ Hz, 1H), 8.48 (dt, $J_{HH} = 8.3$ Hz, $J_{HH} = 1.2$ Hz, 1H), 8.21 (dd, $J_{HH} = 8.3$, $J_{HH} = 2.4$ Hz, 1H), 7.86 (td, $J_{HH} = 7.7$, $J_{HH} = 1.8$ Hz, 1H), 7.4-7.35 (m, 3H), 7.29 (dd, $J_{HH} = 8.9$ Hz, $J_{HH} = 2.4$ Hz, 5H), 7.27-7.26 (m, 1H), 7.20 (t, $J_{HH} = 7.1$ Hz, 1H), 6.86 (d, $J_{HH} = 8.3$ Hz, 1H), 6.81 (t, $J_{HH} = 8.3$, 4H), 4.25 (dd, $J_{HH} = 5.9$, $J_{HH} = 2.4$ Hz, 1H), 4.16 (dd, $J_{HH} = 8.3$ Hz, $J_{HH} = 2.4$ Hz, 1H), 3.76 (d, $J_{HH} = 4.8$ Hz, 6H), 3.60 (dd, $J_{HH} = 9.5$, $J_{HH} = 4.2$ Hz, 1H), 3.43 (dd, $J_{HH} = 10$ Hz, $J_{HH} = 3.6$ Hz, 1H), 2.66 (q, $J_{HH} = 7.1$ Hz, 1H), 1.23 (d, $J_{HH} = 5.95$ Hz, 3H). 13C NMR (CDCl$_3$): δ 165.7, 158.7, 158.6, 155.1, 154.3, 147.8, 144.2, 137.0, 135.5, 135.4, 135.2, 129.9, 129.8, 129.5, 128.1, 127.8, 127.1, 124.1, 124.4, 121.6, 113.4, 87, 68.7, 65.3, 55.2, 53.9, 26.7, 20.1. HRMS (ESI-TOF) calculated for C$_{36}$H$_{36}$N$_3$NaO$_5$ [M+Na+H]$^+$ 613.2547, found 613.2455. $[\alpha]_D$ value L-$^\alpha$X was +7.8 (c 1.10, CHCl$_3$)

2,2'-bipyridine-5-carboxamide N-{(2R,3R)-1-({4,4'-dimethoxytrityl-oxo})-3-hydroxybutan-2-ol}
2,2'-bipyridine-5-carboxamide \(N\)-((2R,3R)-1-\{4,4'-dimethoxytrityl-oxy\})-3-\{\text{-cyanoethyl-diisopropyl\}butan-2-yl phosphoramidite}

\(^1\text{H NMR (CDCl}_3\text{):} \ \delta \ 9.02 \text{ (dd, } J_{HH} = 20.5 \text{ Hz, } J_{HH} = 1.5 \text{ Hz, 1H}), 8.68 \text{ (dd, } J_{HH} = 4.8 \text{ Hz, } J_{HH} = 1.8 \text{ Hz, 1H}), 8.47-8.43 \text{ (m, 2H), 8.19 \text{ (ddd, } J_{HH} = 8.3 \text{ Hz, } J_{HH} = 2.4 \text{ Hz, 1H), 7.82 \text{ (td, } J_{HH} = 7.6 \text{ Hz, } J_{HH} = 1.8 \text{ Hz, 1H), 7.41 \text{ (d, } J_{HH} = 8.3 \text{ Hz, 2H), 7.32 \text{ (q, } J_{HH} = 3.96 \text{ Hz, 1H), 7.29 \text{ (dd, } J_{HH} = 8.3, J_{HH} = 1.8 \text{ Hz, 5H), 7.26-7.23 \text{ (m, 1H), 7.18 \text{ (t, } J_{HH} = 5.9 \text{ Hz, 1H), 6.79-6.77 \text{ (m, 5H), 4.48-4.43 \text{ (m, 1H), 4.40-4.34 \text{ (m, 1H), 4.01 \text{ (q, } J_{HH} = 7.7 \text{ Hz, 2H), 3.75 \text{ (q, } J_{HH} = 1.8 \text{ Hz, 6H), 3.73-3.71 \text{ (m, 2H), 3.29 \text{ (q, } J_{HH} = 6.4 \text{ Hz, 1H), 2.77-2.67 \text{ (m, 4H), 1.24-1.22 \text{ (m, 3H), 1.15 \text{ (t, } J_{HH} = 6.5 \text{ Hz, 12H).}} \text{}} \)^{13}\text{C NMR (CDCl}_3\text{):} \ \delta \ 165.4, 158.6, 158.5, 155.3, 149.4, 147.97, 147.79, 144.8, 137.1, 136.1, 135.9, 135.8, 130.2, 130.1, 128.3, 127.9, 126.9, 124.4, 121.7, 120.7, 117.4, 113.2, 86.3, 62.7, 59.4, 58.5, 55.2, 43.0, 24.6, 20.4, 17.1. \)^{31}\text{P NMR (CDCl}_3\text{):} \ \delta \ 147.47, 139.59. \ ESI-TOF \text{ Mass calculated for } C_{45}H_{53}O_8N_5P [M+H]^+ \text{ 790.3728, found 790.3712.}
Figure S1. 1H NMR, 13C NMR, and 31P NMR spectra of biphenyl derivative (3P)
Figure S2. 1H NMR, 13C NMR spectra of the compound with chemical structures shown.
NMR, and 31P NMR spectra of naphthalene derivative (3N)
Supporting Information

Figure S3. ^{1}H NMR, ^{13}C NMR, ^{31}P NMR, and enlarged spectra of the ^{31}P NMR spectra of the bipyridine-conjugated threoninol derivatives (0X) $^{7-8}$
Figure S4. 1H NMR, 13C NMR and 31P NMR spectra of the bipyridine-conjugated threoninol derivatives (14X) (1H NMR (CDCl$_3$): δ 5.3 (s) indicates solvent peak of CH$_2$Cl$_2$)
<table>
<thead>
<tr>
<th>ODN No.</th>
<th>Analytical HPLC profile</th>
</tr>
</thead>
<tbody>
<tr>
<td>ODN8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>11.933</td>
</tr>
<tr>
<td></td>
<td>20 —</td>
</tr>
<tr>
<td>ODN12</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12.047</td>
</tr>
<tr>
<td></td>
<td>20 —</td>
</tr>
<tr>
<td>ODN13</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12.275</td>
</tr>
<tr>
<td></td>
<td>20 —</td>
</tr>
<tr>
<td>ODN15</td>
<td></td>
</tr>
<tr>
<td></td>
<td>15.500</td>
</tr>
<tr>
<td></td>
<td>20 —</td>
</tr>
<tr>
<td>ODN16</td>
<td></td>
</tr>
<tr>
<td></td>
<td>11.125</td>
</tr>
<tr>
<td></td>
<td>30 —</td>
</tr>
<tr>
<td>ODN17</td>
<td></td>
</tr>
<tr>
<td></td>
<td>11.090</td>
</tr>
<tr>
<td></td>
<td>30 —</td>
</tr>
</tbody>
</table>
Table S1. Analytical HPLC profile of newly synthesized oligonucleotides (ODN8, ODN12, ODN13, ODN15, ODN16, ODN17); For HPLC analysis, COSMOSIL 5C18 AR-II (Nacalai Tesque, Inc., Kyoto, 150 × 10 mm id), a linear gradient of 3 to 30% acetonitrile over 30 min at a flow rate of 3.0 mL/min. 50 mM ammonium formate (pH 6.6) was used as a buffer on 254 nm.

Table S2. MALDI-TOF-Mass data of ODNs.
Other DNA oligomers were purchased from Sigma Genosys or JBios.
Enantioselective hydration of α,β-unsaturated ketones

The ee of the product was determined on a Daicel Chiralcel AD-H, OD-H column with a solvent mixture of suitable polarity. Various ratios of Hexane and 2-propanol mixed solution was used with a flow rate of 1.0 mL/min or 0.5 mL/min. The conversion of the chiral products was calculated based on the below formula

\[
\text{conversion (\%)} = \frac{A(v.s.)_{pd}}{A(v.s.)_{sm} + C + A(v.s.)_{pd}} \times 100
\]
Here, $A_{(v.s.)pd}$ is the total peak area of the product of the reaction, $A_{(v.s.)sm}$ is the peak area of the starting material and C is the correction factor determined from a calibration curve.

Figure S5. Calibration curves for the determination of the correction factor of 2a-2f

(a) \[y = 0.8486x + 0.1132 \quad r^2 = 0.9997 \]
(b) \[y = 0.586x + 1.865 \quad r^2 = 0.9999 \]
(c) \[y = 0.472x + 0.278 \quad r^2 = 0.9996 \]
(d) \[y = 0.460x + 0.0027 \quad r^2 = 0.9922 \]
(e) \[y = 0.036x + 0.195 \quad r^2 = 0.9997 \]
(f) \[y = 0.312x + 0.0415 \quad r^2 = 0.9996 \]

Figure S6. HPLC analysis of the $R_1=N$-methylimidazole, $R_2=\text{tert}-\text{butyl}$ substituted α,β-unsaturated ketone product. a) racemic mixture of 2a (Coefficient $C = 2.86$), b) enantioenriched 2a by ODN14/ODN13 (-GgX/C3PG-), c) enantioenriched 2a by ODN16/ODN13 (-GtX/C3PG-) (entry 1 in Scheme 1). Chiral HPLC analysis conditions: CHIRALPAK® AD-H (DAICEL Corporation, 4.6 × 250 mm, 5 µm particle size), Hexane/2-propanol=90/10 mixed
solution at a flow rate of 1.0 mL/min, rt, 275 nm.

Figure S7. HPLC analysis of the R_1=N-methylimidazole, R_2=cyclohexyl substituted α,β-unsaturated ketone product. a) a) racemic mixture of 2b (Coefficient $C= 1.76$), b) enantioenriched 2b by ODN14/ODN13 (-G6XC-/C3PG-), c) enantioenriched 2b by ODN16/ODN13 (-GtXC-/C3PG-) (Scheme 1). (The time interval between two peaks is identical.) Chiral HPLC analysis conditions: CHIRALPAK® AD-H (DAICEL Corporation, 4.6 × 250 mm, 5 µm particle size), Hexane/2-propanol=95/5 mixed solution at a flow rate of 0.5 mL/min, rt, 275 nm.
Figure S8. HPLC analysis of the R$_1$=N-methylimidazole, R$_2$=i-propyl substituted α,β-unsaturated ketone product. a) racemic mixture of 2c (Coefficient $C=2.13$), b) enantioenriched 2c by ODN14/ODN13 (-G6XC-/C3PG-), c) enantioenriched 2c by ODN16/ODN13 (-GtXC-/C3PG-) (Scheme 1). Chiral HPLC column analysis conditions: CHIRALPAK® AD-H (DAICEL Corporation, 4.6 × 250 mm, 5 μm particle size), Hexane/2-propanol=95/5 mixed solution at a flow rate of 0.5 mL/min, rt, 275 nm.

Figure S9. HPLC analysis of the R$_1$=N-methylimidazole, R$_2$=methyl substituted α,β-unsaturated ketone product. a) racemic mixture of 2d (Coefficient $C=2.37$), b) enantioenriched 2d by ODN14/ODN13 (-G6XC-/C3PG-), c) enantioenriched 2d by ODN16/ODN13 (-GtXC-/C3PG-) (Scheme 1). For chiral HPLC analysis, CHIRALPAK® AS-H (DAICEL Corporation, 4.6 × 250 mm, 5 μm particle size), Hexane/2-propanol=95/5 mixed solution at a flow rate of 1.0 mL/min, rt, 254 nm.
Figure S10. HPLC analysis of the R_1-pyridine, R_2-tert-butyl substituted α,β-unsaturated ketone product. a) racemic mixture of 2e (Coefficient $C = 2.80$), b) enantioenriched 2e by ODN14/ODN13 (-G6X3/C3PG-), c) enantioenriched 2e by ODN16/ODN13 (-GtX3/C3PG-) (Scheme 1). Chiral HPLC analysis conditions, CHIRALPAK® AD-H (DAICEL Corporation, 4.6 × 250 mm, 5 μm particle size), Hexane/2-propanol=90/10 mixed solution at a flow rate of 1.0 mL/min, rt, 275 nm.

Figure S11. HPLC analysis of the R_1=pyridine, R_2=pentane substituted α,β-unsaturated ketone product. a) racemic mixture of 2f (Coefficient $C = 3.03$), b) enantioenriched 2f by ODN14/ODN13 (-G6X3/C3PG-), c) enantioenriched 2f by ODN16/ODN13 (-GtX3/C3PG-) (Scheme 1). For chiral HPLC analysis, CHIRALPAK® OD-H (DAICEL Corporation, 4.6 × 250 mm, 5 μm particle size), Hexane/2-propanol=99/1 mixed solution at a flow rate of 0.5 mL/min, rt, 254 nm.
Supporting Information

Table S3. Enatioselective hydration reaction of 1a α,β-unsaturated ketone catalyzed by the DNA-based hybrid catalysts

<table>
<thead>
<tr>
<th>entry<sup>a</sup></th>
<th>DNA sequences</th>
<th>ee [conv.] [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1<sup>b</sup></td>
<td>5'-GCATGG<sup>6</sup>XCACGGT-3' (ODN14)</td>
<td>30[6]</td>
</tr>
<tr>
<td>2<sup>b</sup></td>
<td>5'-GCATGG<sup>15</sup>XCACGGT-3' (ODN16)</td>
<td>17[6]</td>
</tr>
<tr>
<td>3</td>
<td>5'-AAAAAAA<sup>13</sup>XTTTTTG-3' (ODN18)</td>
<td>18[13]</td>
</tr>
<tr>
<td></td>
<td>3'-GTTTTTT<sup>13</sup>AAAAAC-5' (ODN18)</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>5'-GCCGCC<sup>12</sup>GCACGGC-3' (ODN19)</td>
<td>11[18]</td>
</tr>
<tr>
<td></td>
<td>3'-CGCGCG<sup>12</sup>GCACGGC-5' (ODN19)</td>
<td></td>
</tr>
<tr>
<td>5<sup>c</sup></td>
<td>5'-GCATGG<sup>15</sup>GCACGGT-3' (ODN20)</td>
<td>racemate [20]</td>
</tr>
<tr>
<td></td>
<td>3'-CGTACCCCGTCCA-5' (ODN21)</td>
<td></td>
</tr>
</tbody>
</table>

^a Experiments were carried out using 3.3 mM α,β-unsaturated 2-acyl imidazole, 0.13 mM DNA, and 0.1 mM CuSO₄ (or 0.1mM Cu(dmbpy) complex) at 5 °C in 20 mM MES buffer (pH 5.5) for 1 day. The conversion and enantioselectivities were determined by chiral HPLC analysis. ^b Optimized reaction conditions with 4 mol% of single-strand modified DNA and 3 mol% of Cu(II) ion in 20 mM MES buffer (pH 5.5). ^c Reaction conditions with 4 mol% of DNA and 4 mol% of Cu(dmbpy) complexes in 20 mM MES buffer (pH 5.5).

UV Spectroscopy study

1) CD Spectroscopy.

CD spectra of oligonucleotide solutions collected in 0.5-nm steps from 360 to 220 nm were measured using JASCO J-805LST Spectrometer in a 1-cm quartz cuvette. The buffer and concentrations of MES were the same as for Fluorescence measurement. Each spectrum shown is the average of two individual scans.

2) T_m Measurement (UV-melting)

Melting temperature was determined by measuring changes in absorbance at 260 nm as a function of temperature using a JASCO V-650 UV/VIS spectrophotometer. JASCO PAC-743R equipped with a high performance temperature controller and micro auto eight-cell holder.
Absorbance was recorded in the forward and reverse direction at temperatures from 5 to 95 °C at a rate of 0.5 °C/min. The melting samples were denatured at 95 °C for 3 min and annealed slowly to RT then stored at 5 °C until experiments were initiated. All melting samples were prepared in a total volume of 150 μl containing 3.3 μM of each strand oligonucleotide, 2.5 μM CuSO₄, 20 mM MES buffer (pH 5.5) and 100 mM NaCl.

Figure S12. CD spectra of the single-strand ODN14 (-G₆XC-) in 20 mM MES buffer (pH 5.5) with 100 mM NaCl in the presence and absence of 2.5 μM copper (II) ion
Figure S13. Spectroscopic studies of the various concentration of ODN14/ODN13 (-G^6XC/-C^3PG-) in the absence of salt. a) CD spectra of the various concentration of DNA oligomer (ODN13/ODN14) and 2.5 μM of copper(II) in 20 mM MES buffer (pH 5.5). b) UV melting curve of the various concentration of ODN14/ODN13 (-G^6XC/-C^3PG-) and 2.5 μM of copper(II) in 20 mM MES buffer (pH 5.5)
Figure S14. Spectroscopic studies of 3.3 μM ODN14/ODN13 (-G6XC-/C3PG-) with the various salt conditions. a) CD spectra of 3.3 μM DNA oligomer (ODN13/ODN14) and 2.5 μM of copper(II) in 20 mM MES buffer (pH 5.5) with the various salt conditions. b) UV melting curve of 3.3 μM DNA oligomer (ODN13/ODN14) and 2.5 μM of copper(II) in 20 mM MES buffer (pH 5.5) with the various salt conditions.
Figure S15. Spectroscopic studies of 3.3 μM ODN16/ODN13 (-G^1X^2C^-C^3PG-) with the various salt conditions. a) CD spectra of 3.3 μM DNA oligomer (ODN16/ODN13) and 2.5 μM of copper(II) in 20 mM MES buffer (pH 5.5) with the various salt conditions. b) UV melting curve of 3.3 μM DNA oligomer (ODN16/ODN13) and 2.5 μM of copper(II) in 20 mM MES buffer (pH 5.5) with the various salt conditions.
Figure S16. Spectroscopic studies of ODN1/ODN2 (-A³XT/-TCA-) and ODN14/ODN13 (-G⁶XC/-C³PG-). a) CD spectra of 3.3 μM DNA oligomer ODN1/ODN2 (-A³XT/-TCA-) and ODN14/ODN13 (-G⁶XC/-C³PG-) and 2.5 μM of copper(II) in 20 mM MES buffer (pH 5.5) in the presence of 100 mM NaCl. b) UV melting curve of 3.3 μM DNA oligomer ODN1/ODN2 (-A³XT/-TCA-) and ODN14/ODN13 (-G⁶XC/-C³PG-) and 2.5 μM of copper(II) in 20 mM MES buffer (pH 5.5) in the presence of 100 mM NaCl.
Supporting Information

Figure S17. Spectroscopic studies of ODN3/ODN4 (-G^3XC/-CCG-) and ODN14/ODN13 (-G^6XC/-C^3PG-). a) CD spectra of 3.3 μM DNA oligomer ODN3/ODN4 (-G^3XC/-CCG-) and ODN14/ODN13 (-G^6XC/-C^3PG-) and 2.5 μM of copper(II) in 20 mM MES buffer (pH 5.5) in the presence of 100 mM NaCl. b) UV melting curve of 3.3 μM DNA oligomer ODN3/ODN4 (-G^3XC/-CCG-) and ODN14/ODN13 (-G^6XC/-C^3PG-) and 2.5 μM of copper(II) in 20 mM MES buffer (pH 5.5) in the presence of 100 mM NaCl.
Molecular Modeling Studies

Molecular modeling was carried out using the MOE (Molecular Operating Environment) software package. DNA duplexes containing an intrastrand bipyridine ligand were constructed and minimized with amber force field parameters, a distance-dependent dielectric constant of $\varepsilon = 4r$ (where, r is the distance between two atoms) and convergence criteria having an RMS gradient of less than 0.001 kcal mol$^{-1}$ Å. For energy minimization water molecules were added to produce distance of 10 Å from the solute to droplet sphere boundaries and sodium counter ions were added to neutralize the system.

![Figure S18](image.png)

Figure S18. The energy-minimized model between DNA. a) 5′–d(GCATGGtXACCGGT)–3′/5′–d(ACCGTG3PCCATGC)–3′ (ODN14/ODN13) and the copper (II) complex. b) 5′–d(GCATGGtXACCGGT)–3′/5′–d(ACCGTG3PCCATGC)–3′ (ODN16/ODN13) and copper (II) complex. The yellow structure represents intrastrand bipyridine ligand. The orange color
means bi(propyl)-linker conjugated biphenyl derivative (3P) as a non-binding steric moiety in the complementary strand.

Reference