Correlations between secondary structure- and protein-protein interface-mimicry: The Interface Mimicry Hypothesis

Jaru Taechalertpaisarn, a Rui-Liang Lyu, a Maritess Arancillo, a Chen-Ming Lin, a Lisa M. Perez, b Thomas R. Ioerger, c and Kevin Burgess a*

a Department of Chemistry and b Laboratory For Molecular Simulation, Texas A & M University, Box 30012, College Station, TX 77842-3012, USA. c Department of Computer Science, Texas A & M University, College Station, TX 77843-3112.

E-mail: burgess@tamu.edu
Contents

A. EKO Procedures...3
B. EKOS, EKO, and DSSP/STRIDE data for chemotype 2...4
C. EKOS, EKO, and DSSP/STRIDE data for chemotype 3...6
D. EKOS, EKO, and DSSP/STRIDE data for chemotype 4...8
E. Reference..10
A. EKO Procedures

The QMD was performed according to the procedure described before. After energy minimization in the QMD process, all conformers within 3.0 kcal/mol of the lowest energy conformer were clustered into families with similar RMSDs (< 0.5 Å) based on Cα – Cβ coordinates. The conformer having lowest energy in each family was selected as a representative. These representatives were systematically aligned on the Cα – Cβ coordinates of interface residues on > 240,000 protein-protein complexes recorded in the PDB, and the results were sorted based on RMSDs of Cα – Cβ coordinates.
B. EKOS, EKO, and DSSP/STRIDE data for chemotype 2
Figure S1. (a) RMSD (Å) of the overlays of mimics 2 on each of the ideal secondary structures, organized by stereochemistry. Statistical distribution of secondary structures at PPI interfaces derived by DSSP and STRIDE calculations; (b) the best 115 overlays of DDD-2; and, (c) 287 overlays of LDD-2.
c. EKOS, EKO, and DSSP/STRIDE data for chemotype 3

![Diagram showing helical and extended structures with corresponding RMSD values for different configurations: LLL, LLD, LDL, DLL, LDD, DLD, DDL, and DDD.](image)
Figure S2. (a) RMSD (Å) of the overlays of mimics 3 on each of the ideal secondary structures, organized by stereochemistry. Statistical distribution of secondary structures at PPI interfaces derived by DSSP and STRIDE calculations; (b) the best 288 overlays of DDD-3.
D. EKOS, EKO, and DSSP/STRIDE data for chemotype 4
Figure S2. (a) RMSD (Å) of the overlays of mimics 4 on each of the ideal secondary structures, organized by stereochemistry. Statistical distribution of secondary structures at PPI interfaces derived by DSSP and STRIDE calculations; (b) the best 369 overlays of LDL-4; (c) the best 308 overlays of LLL-4.
E. Reference