A chemo- and regioselective C6-functionalization of 2,3-disubstituted indoles: highly efficient synthesis of diarylindol-6-ylmethanes

Qiong Wu,* Gui-Lin Li, Shuang Yang, Xiao-Qin Shi, Tian-Zi Huang, Xi-Hua Du* and Yan Chen*

School of Chemistry and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, China. E-mail: hwuqiong@xzit.edu.cn.

Contents:

1. NMR spectra of products 3 (S2-S23)

2. HPLC spectra of product 3aa (S24)

3. X-ray single crystal data for compound 3ae (S25-S26)
1. NMR spectra of products 3

1H NMR of compound 3aa

13C NMR of compound 3aa
1H NMR of compound 3ba

13C NMR of compound 3ba
1H NMR of compound 3ca

\begin{figure}
\centering
\includegraphics[width=\textwidth]{hnmr}
\caption{1H NMR spectrum of compound 3ca.}
\end{figure}

13C NMR of compound 3ca

\begin{figure}
\centering
\includegraphics[width=\textwidth]{cnmr}
\caption{13C NMR spectrum of compound 3ca.}
\end{figure}
1H NMR of compound 3da

13C NMR of compound 3da
1H NMR of compound 3ea

13C NMR of compound 3ea
1H NMR of compound 3ga

13C NMR of compound 3ga
1H NMR of compound 3ha

13C NMR of compound 3ha
^{1}H NMR of compound 3ia

^{13}C NMR of compound 3ia
1H NMR of compound 3ja

13C NMR of compound 3ja
1H NMR of compound 3la

13C NMR of compound 3la
1H NMR of compound 3na

1C NMR of compound 3na
\[^1\text{H NMR of compound 3oa} \]

\[^{13}\text{C NMR of compound 3oa} \]
1H NMR of compound 3ab

13C NMR of compound 3ab
\(^1\)H NMR of compound 3ac

\(^{13}\)C NMR of compound 3ac
1H NMR of compound 3ad

13C NMR of compound 3ad
1H NMR of compound 3ae

13C NMR of compound 3ae
$^{1}{H}$ NMR of compound 3af

$^{13}{C}$ NMR of compound 3af
1H NMR of compound 3ag

13C NMR of compound 3ag
1H NMR of compound 3ah

13C NMR of compound 3ah
2. HPLC spectra of product 3aa

Chromatogram

![HPLC spectra of product 3aa](image)

Integration Results

<table>
<thead>
<tr>
<th>No.</th>
<th>Peak Name</th>
<th>Retention Time (min)</th>
<th>Area (mAU:min)</th>
<th>Height (mAU)</th>
<th>Relative Area (%)</th>
<th>Relative Height (%)</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>8.760</td>
<td>149,840</td>
<td>578,367</td>
<td>50.31</td>
<td>55.10</td>
<td>n.a.</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>8.073</td>
<td>139,129</td>
<td>471,216</td>
<td>49.69</td>
<td>44.90</td>
<td>n.a.</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>279,969</td>
<td>1,040,582</td>
<td>100.00</td>
<td>100.00</td>
<td></td>
</tr>
</tbody>
</table>

Chromatogram

![HPLC spectra of product 3aa](image)

Integration Results

<table>
<thead>
<tr>
<th>No.</th>
<th>Peak Name</th>
<th>Retention Time (min)</th>
<th>Area (mAU:min)</th>
<th>Height (mAU)</th>
<th>Relative Area (%)</th>
<th>Relative Height (%)</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>6.810</td>
<td>60,843</td>
<td>274,985</td>
<td>62.69</td>
<td>67.75</td>
<td>n.a.</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>7.857</td>
<td>36,215</td>
<td>130,887</td>
<td>37.31</td>
<td>32.25</td>
<td>n.a.</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>97,058</td>
<td>405,873</td>
<td>100.00</td>
<td>100.00</td>
<td></td>
</tr>
</tbody>
</table>
3. X-ray single crystal data for compound 3ae

The thermal ellipsoid was drawn at the 30% probability level.

Empirical formula: C_{24}H_{22}ClN_{1}O

Formula weight: 375.87

Temperature: 296 K

Wavelength: 0.71073 Å

Crystal system: Monoclinic

Space group: C 1 2/c 1

Unit cell dimensions:
- \(a = 17.424(3)\) Å
- \(\alpha = 90^\circ\)
- \(b = 12.100(2)\) Å
- \(\beta = 101.189(4)^\circ\)

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume</td>
<td>3935.4(12) Å³</td>
</tr>
<tr>
<td>Z</td>
<td>8</td>
</tr>
<tr>
<td>Density (calculated)</td>
<td>1.269 Mg/m³</td>
</tr>
<tr>
<td>Absorption coefficient</td>
<td>0.207 mm⁻¹</td>
</tr>
<tr>
<td>F(000)</td>
<td>1584</td>
</tr>
<tr>
<td>Crystal size</td>
<td>0.25 x 0.2 x 0.15 mm³</td>
</tr>
<tr>
<td>Theta range for data collection</td>
<td>2.062 to 30.714°</td>
</tr>
<tr>
<td>Index ranges</td>
<td>-16<=h<=25, -17<=k<=17, -27<=l<=26</td>
</tr>
<tr>
<td>Reflections collected</td>
<td>19722</td>
</tr>
<tr>
<td>Independent reflections</td>
<td>6111 [R(int) = 0.0432]</td>
</tr>
<tr>
<td>Completeness to theta = 25.242°</td>
<td>100.0 %</td>
</tr>
<tr>
<td>Absorption correction</td>
<td>Semi-empirical from equivalents</td>
</tr>
<tr>
<td>Max. and min. transmission</td>
<td>0.7461 and 0.6912</td>
</tr>
<tr>
<td>Refinement method</td>
<td>Full-matrix least-squares on F²</td>
</tr>
<tr>
<td>Data / restraints / parameters</td>
<td>6111 / 0 / 257</td>
</tr>
<tr>
<td>Goodness-of-fit on F²</td>
<td>1.000</td>
</tr>
<tr>
<td>Final R indices [I>2sigma(I)]</td>
<td>R₁ = 0.0478, wR² = 0.1126</td>
</tr>
<tr>
<td>R indices (all data)</td>
<td>R₁ = 0.1218, wR² = 0.1450</td>
</tr>
<tr>
<td>Extinction coefficient</td>
<td>n/a</td>
</tr>
<tr>
<td>Largest diff. peak and hole</td>
<td>0.181 and -0.307 e.Å⁻³</td>
</tr>
</tbody>
</table>