ELECTRONIC SUPPORTING INFORMATION

Reaction condition controlled nickel-catalyzed C-C cross coupling of alcohols

Meng-Juan Zhang,a Hong-Xi Li,*,a,b David J. Young,c Hai-Yan Li,a and Jian-Ping Lang*,a,b

a College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu, People’s Republic of China

b State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, People’s Republic of China

c College of Engineering, Information Technology and Environment, Charles Darwin University, Northern Territory 0909, Australia
Table of Contents

General Information ... S3
Synthesis of 1a ... S3
Procedure for Synthesis of α-Alkylated Ketones ... S3
Procedure for Synthesis of α,β-Unsaturated Ketones ... S3
Procedure for Synthesis of β-Alkylated Secondary Alcohols ... S4
Procedure for Synthesis of Quinoline Derivatives ... S4
Single Crystal X-ray crystallography .. S4
1H and 13C NMR Data of Products ... S5
References ... S26
Fig. S1 The observed (red) and simulated (black) PXRD patterns for 1a S27
The 1H and 13C NMR Spectra of Products (Fig. S2-S88) ... S28
General Information

All catalytic experiments were carried out under an atmosphere of purified nitrogen. Complex [Zn(dmpymt)2]n was prepared according to a literature method. All reagents obtained from commercial sources were used directly without further purification. All solvents were obtained from commercial sources and were purified according to standard procedures. Column chromatography was performed on silica gel. 1H NMR spectra were recorded at 400 MHz or 600 MHz and 13C NMR spectra were measured at 150 MHz or 100 MHz using a Varian UNITY plus-400 spectrometer with CDCl3 as solvent. Elemental analyses for C, H, and N were performed on a Carlo-Erbo CHNO-S microanalyzer. High resolution mass spectra (HRMS) were obtained with a GCT Premier (Micromass UK limited) chemical ionization time-of-flight mass spectrometer (CI-TOF). IR spectra (KBr disc) were recorded on a Nicolet MagNa-IR550 FT-IR spectrometer (4000-400 cm⁻¹). Product yields were measured on an Agilent 1260 HPLC.

Synthesis of [Ni(dmpymt)2]6 (1a)

To a solution of [Zn(dmpymt)2]n (0.68 g, 2 mmol) in CH2Cl2/MeOH (20 mL, 2/1) was added a MeOH solution (10 mL) of Ni(NO3)2·6H2O (0.58 g, 2 mmol). The mixture was stirred overnight and the resulting dark green solution was reduced to dryness under vacuum. The residue was washed with water, MeOH, diethyl ether, and dried in air. The crude product was dissolved in CH2Cl2 and MeOH and filtered. Diethyl ether was slowly diffused into the filtrate to form dark green crystals of 1a, which were collected by filtration, washed with Et2O, and dried in vacuo. Yield: 687.0 mg (75%, based on Ni). Anal. Caled for C72H84Ni6N24S12: C 42.76, H 4.19, N 16.62. Found: C 42.72, H 4.22, N 16.54 %.

Procedure for Synthesis of α-Alkylated Ketones

1a (5 mol % Ni), KOH (0.5 mmol), primary alcohol (1.5 mmol) and secondary alcohol (1.0 mmol) were mixed with toluene (3.0 mL) in a 50 mL Schlenk tube under N2. The tube was placed in a 100 °C oil bath and stirred for 24 h under a slow, steady stream of N2. The mixture was cooled to room temperature and water (10 mL) added. The aqueous solution was extracted with CH2Cl2 (3 × 10 mL) and the combined extracts dried over anhydrous Na2SO4. The solvent was removed and the crude product purified on a short flash chromatography column.

Procedure for Synthesis of α,β-Unsaturated Ketones

1a (5 mol % Ni), KOH (1.0 mmol), primary alcohol (1.5 mmol) and secondary alcohol (1.0 mmol) were mixed with toluene (2.5 mL)/i-BuOH (0.5 mL) in a 50 mL Schlenk tube under N2. The tube was placed in a 70 °C oil bath and stirred for 36 h under aslow, steady stream of N2. The mixture
was cooled to room temperature and water (10 mL) was added. The aqueous solution was extracted with CH$_2$Cl$_2$ (3 × 10 mL) and the combined extracts dried over anhydrous Na$_2$SO$_4$. The solvent was removed and the crude product purified on a short flash chromatography column.

Procedure for Synthesis of β-Alkylated Secondary Alcohols

$\textbf{1a}$ (2 mol % Ni), KOH (0.75 mmol), primary alcohol (0.75 mmol) and secondary alcohol (0.5 mmol) were mixed with toluene (1.0 mL) in a 15 mL Teflon Schlenk tube, which was sealed under N$_2$. The tube was heated at 120 °C with stirring for 24 h. After cooling to room temperature, water (10 mL) was added and the aqueous solution extracted with CH$_2$Cl$_2$ (3 × 10 mL). The combined extracts were dried over anhydrous Na$_2$SO$_4$, solvent removed and the crude product was purified on a short flash chromatography column.

Procedure for Synthesis of Quinoline Derivatives

$\textbf{1a}$ (5 mol % Ni), KOH (0.5 mmol), 2-aminobenzyl alcohol (1.0 mmol) and secondary alcohol (1.2 mmol) were mixed with toluene (3 mL) in a 50 mL Schlenk tube under N$_2$. The tube was placed in a 110 °C oil bath and stirred for 24 h under a slow, steady stream of N$_2$. After cooling to room temperature, water (10 mL) was added and the aqueous solution was extracted with CH$_2$Cl$_2$ (3 × 10 mL). The combined extracts were dried over anhydrous Na$_2$SO$_4$, solvent removed and the crude product purified on a short flash chromatography column.

Single Crystal X-ray Crystallography

Single crystals of $\textbf{1a}$ were obtained directly from the above preparation. X-ray diffraction data collection was performed on an Xcalibur, Atlas, Gemini X-ray diffractometer using graphite monochromated Mo K$_\alpha$ ($\lambda = 0.71073$ Å). The single crystal was mounted on a glass fiber with grease and cooled in a liquid nitrogen stream at 216 K. The crystal structure of [Ni(dmpymt)$_2$]$_6$ was solved by direct methods using the SHELXL-2014/7 and refined by full matrix least-squares on F^2. All of the non-H atoms were refined on F^2 anisotropically by the full-matrix least squares method. All H atoms were introduced at the calculated positions and included in the structure-factor calculations. Crystal structural data for $\textbf{1a} \cdot 9\text{MeOH}$ (CCDC 1884968) is contained in the CIF.
The 1H and 13C NMR data of products

3-diphenylpropan-1-one (4aa)3

![Chemical structure]

White solid (193.3 mg, 92% yield). 1H NMR (400 MHz, CDCl$_3$, ppm) δ 7.94 (d, $J = 7.8$ Hz, 2H), 7.52 (t, $J = 7.3$ Hz, 1H), 7.42 (t, $J = 7.5$ Hz, 2H), 7.27 (dt, $J = 14.7, 7.4$ Hz, 4H), 7.21–7.16 (m, 1H), 3.27 (t, $J = 7.7$ Hz, 2H), 3.05 (t, $J = 7.7$ Hz, 2H). 13C NMR (101 MHz, CDCl$_3$, ppm) δ 199.2, 141.4, 136.9, 133.1, 128.7, 128.6, 128.5, 128.1, 40.5, 30.2. HRMS m/z calcd for C$_{15}$H$_{14}$O [M+H]$^+$ 211.1123, found 211.1123.

3-phenyl-1-(p-tolyl)propan-1-one (4ab)3

![Chemical structure]

White solid (199.5 mg, 89% yield). 1H NMR (400 MHz, CDCl$_3$, ppm) δ 7.85 (d, $J = 8.2$ Hz, 2H), 7.30 (dd, $J = 10.3, 4.2$ Hz, 2H), 7.26–7.22 (m, 4H), 7.22–7.16 (m, 1H), 3.30–3.23 (m, 2H), 3.09–3.02 (m, 2H), 2.40 (s, 3H). 13C NMR (101 MHz, CDCl$_3$, ppm) δ 199.0, 143.9, 141.5, 134.5, 129.4, 128.6, 128.3, 126.2, 40.5, 30.3, 21.7. HRMS m/z calcd for C$_{16}$H$_{16}$O [M+H]$^+$ 225.1279, found 225.1279.

1-(4-methoxyphenyl)-3-phenylpropan-1-one (4ac)3

![Chemical structure]

White solid (223.2 mg, 93% yield). 1H NMR (400 MHz, CDCl$_3$, ppm) δ 7.94 (d, $J = 8.7$ Hz, 2H), 7.36–7.16 (m, 5H), 6.92 (d, $J = 8.7$ Hz, 2H), 3.86 (s, 3H), 3.30–3.20 (m, 2H), 3.05 (t, $J = 7.7$ Hz, 2H). 13C NMR (101 MHz, CDCl$_3$, ppm) δ 197.8, 163.5, 141.5, 130.4, 130.0, 128.5, 126.1, 113.8, 55.5, 40.1, 30.4. HRMS m/z calcd for C$_{16}$H$_{16}$O$_2$ [M+H]$^+$ 241.1229, found 241.1225.

1-(4-fluorophenyl)-3-phenylpropan-1-one (4ad)4

![Chemical structure]

White solid (191.5 mg, 84% yield). 1H NMR (400 MHz, CDCl$_3$, ppm) δ 7.93 (dd, $J = 8.5, 5.6$ Hz, 2H), 7.33–7.12 (m, 5H), 7.06 (t, $J = 8.6$ Hz, 2H), 3.22 (t, $J = 7.6$ Hz, 2H), 3.03 (t, $J = 7.6$ Hz, 2H). 13C NMR (101 MHz, CDCl$_3$, ppm) δ 197.5, 166.9, 164.4, 141.2, 133.3, 130.6, 128.5, 126.2, 115.7, 115.5, 40.3, 30.0. HRMS m/z calcd for C$_{15}$H$_{13}$FO [M+H]$^+$ 229.1029, found 229.1029.
1-(4-chlorophenyl)-3-phenylpropan-1-one (4ae)3

White solid (212.3 mg, 87% yield). 1H NMR (600 MHz, CDCl$_3$, ppm) δ 7.88 (d, $J = 8.2$ Hz, 2H), 7.41 (d, $J = 8.1$ Hz, 2H), 7.29 (t, $J = 7.5$ Hz, 2H), 7.22 (dt, $J = 14.5$, 5.5 Hz, 3H), 3.26 (t, $J = 7.7$ Hz, 2H), 3.05 (t, $J = 7.6$ Hz, 2H). 13C NMR (151 MHz, CDCl$_3$, ppm) δ 198.1, 141.2, 139.6, 135.3, 129.6, 129.0, 128.7, 128.5, 126.4, 40.6, 30.2. HRMS m/z calcld for C$_{15}$H$_{13}$ClO [M+H]$^+$ 245.0733, found 245.0729.

1-(4-bromophenyl)-3-phenylpropan-1-one (4af)3

White solid (235.3 mg, 82% yield). 1H NMR (600 MHz, CDCl$_3$, ppm) δ 7.80 (d, $J = 8.2$ Hz, 2H), 7.57 (d, $J = 8.3$ Hz, 2H), 7.29 (t, $J = 7.4$ Hz, 2H), 7.25–7.16 (m, 3H), 3.25 (t, $J = 7.6$ Hz, 2H), 3.05 (t, $J = 7.6$ Hz, 2H). 13C NMR (151 MHz, CDCl$_3$, ppm) δ 198.2, 141.1, 135.7, 132.0, 129.7, 128.7, 128.5, 128.3, 126.3, 40.5, 30.1. HRMS m/z calcld for C$_{15}$H$_{13}$BrO [M+H]$^+$ 288.0150, found 288.0148.

3-phenyl-1-(m-tolyl)propan-1-one (4ag)4

White solid (194.9 mg, 87% yield). 1H NMR (400 MHz, CDCl$_3$, ppm) δ 7.76 (s, 2H), 7.41–7.14 (m, 7H), 3.27 (d, $J = 6.5$ Hz, 2H), 3.06 (d, $J = 4.4$ Hz, 2H), 2.39 (s, 3H). 13C NMR (151 MHz, CDCl$_3$, ppm) δ 199.5, 141.5, 138.5, 137.0, 133.9, 128.6, 126.2, 125.3, 40.6, 30.3, 21.5. HRMS m/z calcld for C$_{16}$H$_{16}$O [M+H]$^+$ 225.1279, found 225.1273.

1-(3-bromophenyl)-3-phenylpropan-1-one (4ah)5

White solid (230.4 mg, 80% yield). 1H NMR (400 MHz, CDCl$_3$, ppm) δ 8.08 (s, 1H), 7.87 (d, $J = 7.7$ Hz, 1H), 7.68 (d, $J = 7.7$ Hz, 1H), 7.32 (dd, $J = 18.1$, 7.8 Hz, 3H), 7.26–7.15 (m, 3H), 3.27 (t, $J = 7.6$ Hz, 2H), 3.06 (t, $J = 7.5$ Hz, 2H). 13C NMR (151 MHz, CDCl$_3$, ppm) δ 197.9, 141.1, 138.7, 136.0, 131.3, 130.3, 128.7, 128.5, 127.2, 126.5, 123.1, 40.7, 30.1. HRMS m/z calcld for C$_{15}$H$_{13}$BrO [M+H]$^+$ 289.0228, found 289.0224.

3-phenyl-1-(o-tolyl)propan-1-one (4ai)4
White solid (181.4 mg, 81% yield). 1H NMR (400 MHz, CDCl$_3$, ppm) δ 7.56 (d, $J = 7.7$ Hz, 1H), 7.32 (t, $J = 7.4$ Hz, 1H), 7.26 (t, $J = 7.4$ Hz, 2H), 7.18 (dd, $J = 16.2$, 7.7 Hz, 5H), 3.19 (t, $J = 7.6$ Hz, 2H), 3.02 (t, $J = 7.6$ Hz, 2H), 2.45 (s, 3H). 13C NMR (101 MHz, CDCl$_3$, ppm) δ 203.3, 141.2, 138.1, 137.9, 132.0, 131.3, 128.6, 128.5, 128.4, 126.2, 125.7, 43.2, 30.4, 21.3. HRMS m/z calcd for C$_{16}$H$_{16}$O [M+H]$^+$ 225.1279, found 225.1275.

1-(2-chlorophenyl)-3-phenylpropan-1-one (4aj)6

White solid (187.8 mg, 77% yield). 1H NMR (400 MHz, CDCl$_3$, ppm) δ 7.95 (d, $J = 7.4$ Hz, 2H), 7.54 (t, $J = 7.0$ Hz, 1H), 7.44 (t, $J = 7.2$ Hz, 2H), 7.29 (d, $J = 7.5$ Hz, 2H), 7.21 (d, $J = 7.7$ Hz, 2H), 3.29 (t, $J = 7.5$ Hz, 2H), 3.07 (t, $J = 6.5$ Hz, 2H). 13C NMR (101 MHz, CDCl$_3$, ppm) δ 199.2, 141.3, 136.9, 133.1, 128.8, 128.4, 128.1, 126.2, 40.5, 30.2. HRMS m/z calcd for C$_{15}$H$_{13}$ClO [M+H]$^+$ 245.0733, found 245.0730.

1-mesityl-3-phenylpropan-1-one (4ak)4

Yellow solid (189.0 mg, 75% yield). 1H NMR (400 MHz, CDCl$_3$, ppm) δ 7.35–7.12 (m, 5H), 6.80 (s, 2H), 3.10–2.95 (m, 4H), 2.25 (s, 3H), 2.11 (s, 6H). 13C NMR (101 MHz, CDCl$_3$, ppm) δ 209.8, 141.0, 139.6, 138.4, 132.6, 128.6, 126.2, 46.4, 29.6, 21.1. HRMS m/z calcd for C$_{18}$H$_{20}$O [M+H]$^+$ 253.1592, found 253.1588.

1-(naphthalen-2-yl)-3-phenylpropan-1-one (4al)3

White solid (239.2 mg, 92% yield). 1H NMR (400 MHz, CDCl$_3$, ppm) δ 8.47 (s, 1H), 8.06 (d, $J = 8.5$ Hz, 1H), 7.99–7.84 (m, 3H), 7.58 (dt, $J = 14.7$, 7.0 Hz, 2H), 7.37–7.29 (m, 4H), 7.28–7.19 (m, 1H), 3.45 (t, $J = 7.7$ Hz, 2H), 3.15 (t, $J = 7.7$ Hz, 2H). 13C NMR (151 MHz, CDCl$_3$, ppm) δ 199.2, 141.5, 135.7, 134.3, 132.6, 129.8, 129.6, 128.6, 127.9, 126.9, 126.3, 40.7, 30.4. HRMS m/z calcd for C$_{19}$H$_{16}$O [M+H]$^+$ 261.1279, found 261.1275.

3-phenyl-1-(thiophen-2-yl)propan-1-one (4am)3

Yellow oil (157.7 mg, 73% yield). 1H NMR (400 MHz, CDCl$_3$, ppm) δ 7.68 (d, $J = 3.3$ Hz, 1H), 7.61 (d, $J = 4.7$ Hz, 1H), 7.36–7.27 (m, 2H), 7.25 (s, 1H), 7.23 (d, $J = 5.8$ Hz, 1H), 7.21–7.14 (m,
3-phenyl-1-(ferrocenyl)propan-1-one (4an)

Red solid (285.3 mg, 90% yield). 1H NMR (400 MHz, CDCl$_3$, ppm) δ 7.31 (s, 4H), 7.22 (d, J = 6.0 Hz, 1H), 4.77 (s, 2H), 4.48 (s, 2H), 4.08 (s, 5H), 3.04 (s, 4H). 13C NMR (151 MHz, CDCl$_3$, ppm) δ 203.2, 141.7, 128.7, 126.3, 72.3, 69.8, 69.4, 41.6, 30.3. HRMS m/z calcd for C$_{19}$H$_{18}$FeO [M+H]$^+$ 318.0707, found 318.0695.

2-methyl-1,3-diphenylpropan-1-one (4ao)

Colorless oil (197.1 mg, 88% yield). 1H NMR (400 MHz, CDCl$_3$, ppm) δ 7.93 (d, J = 7.6 Hz, 2H), 7.58 (t, J = 7.3 Hz, 1H), 7.47 (t, J = 7.6 Hz, 2H), 7.40 (d, J = 7.4 Hz, 2H), 7.34 (t, J = 7.4 Hz, 2H), 7.25 (t, J = 6.9 Hz, 1H), 5.24 (s, 1H), 3.71 (dd, J = 9.9, 6.8 Hz, 2H), 1.19 (d, J = 7.2 Hz, 3H). 13C NMR (101 MHz, CDCl$_3$, ppm) δ 205.8, 142.0, 135.8, 133.7, 128.9, 128.6, 128.4, 127.4, 126.2, 73.2, 47.2, 11.3. HRMS m/z calcd for C$_{16}$H$_{16}$O [M+H]$^+$ 225.1279, found 225.1273.

2-benzyl-1-phenylbutan-1-one (4ap)

Colorless oil (195.2 mg, 82% yield). 1H NMR (400 MHz, CDCl$_3$, ppm) δ 7.89 (d, J = 7.6 Hz, 2H), 7.55 (t, J = 7.3 Hz, 1H), 7.49–7.36 (m, 4H), 7.30 (t, J = 7.4 Hz, 2H), 7.21 (t, J = 7.1 Hz, 1H), 5.07 (d, J = 4.7 Hz, 1H), 3.75 (dt, J = 8.8, 4.3 Hz, 1H), 3.43–2.81 (m, 1H), 2.11–1.87 (m, 1H), 1.85–1.68 (m, 1H), 0.79 (t, J = 7.5 Hz, 3H). 13C NMR (101 MHz, CDCl$_3$, ppm) δ 205.3, 142.1, 137.5, 133.4, 128.7, 128.3, 127.5, 126.2, 73.9, 54.2, 20.6, 12.2. HRMS m/z calcd for C$_{17}$H$_{18}$O [M+H]$^+$ 239.1436, found 239.1432.

2-benzylcyclohexan-1-one (4aq)

White solid (161.7 mg, 86% yield). 1H NMR (400 MHz, CDCl$_3$, ppm) δ 7.25 (t, J = 7.4 Hz, 2H), 7.16 (dd, J = 13.7, 7.3 Hz, 3H), 3.22 (dd, J = 13.8, 4.6 Hz, 1H), 2.53 (dt, J = 12.2, 4.9 Hz, 1H), 2.40 (dd, J = 13.6, 9.1 Hz, 2H), 2.30 (td, J = 12.9, 5.7 Hz, 1H), 2.09–1.95 (m, 2H), 1.80 (d, J = 13.0 Hz, 1H), 1.73–1.47 (m, 2H), 1.42–1.23 (m, 1H). 13C NMR (101 MHz, CDCl$_3$, ppm) δ 212.4,
140.3, 129.1, 128.3, 125.9, 52.4, 42.1, 35.5, 33.4, 28.0, 25.0. HRMS m/z calcd for C_{13}H_{16}O [M+H]^+ 189.1279, found 189.1275.

4,4-dimethyl-1-phenylpentan-3-one(4ar)^S5
[Structure Image]
Colorless oil (152.0 mg, 80% yield). 1H NMR (400 MHz, CDCl$_3$, ppm) δ 7.31–7.23 (m, 2H), 7.18 (d, $J = 6.5$ Hz, 3H), 2.91–2.83 (m, 2H), 2.83–2.75 (m, 2H), 1.10 (s, 9H). 13C NMR (101 MHz, CDCl$_3$, ppm) δ 215.0, 141.7, 128.5, 126.1, 44.2, 38.6, 30.2, 26.4. HRMS m/z calcd for C$_{13}$H$_{18}$O [M+H]^+ 191.1436, found 191.1432.

1-phenyl-3-(p-tolyl)propan-1-one(4ba)^S3
[Structure Image]
White solid (194.9 mg, 87% yield). 1H NMR (400 MHz, CDCl$_3$, ppm) δ 7.96 (d, $J = 7.6$ Hz, 2H), 7.56 (t, $J = 7.3$ Hz, 1H), 7.46 (t, $J = 7.6$ Hz, 2H), 7.14 (q, $J = 7.9$ Hz, 4H), 3.29 (t, $J = 7.7$ Hz, 2H), 3.04 (t, $J = 7.7$ Hz, 2H), 2.33 (s, 3H). 13C NMR (151 MHz, CDCl$_3$, ppm) δ 199.5, 138.3, 137.0, 135.8, 133.2, 129.3, 128.7, 128.4, 128.2, 40.8, 29.9, 21.1. HRMS m/z calcd for C$_{16}$H$_{16}$O [M+H]^+ 225.1279, found 225.1275.

3-(4-methoxyphenyl)-1-phenylpropan-1-one(4ca)^S3
[Structure Image]
White solid (213.6 mg, 89% yield). 1H NMR (400 MHz, CDCl$_3$, ppm) δ 7.96 (d, $J = 7.3$ Hz, 2H), 7.55 (d, $J = 6.7$ Hz, 1H), 7.46 (d, $J = 7.3$ Hz, 2H), 7.18 (d, $J = 8.1$ Hz, 2H), 6.85 (d, $J = 8.2$ Hz, 2H), 3.79 (s, 3H), 3.27 (dd, $J = 9.8$, 5.1 Hz, 2H), 3.02 (t, $J = 7.4$ Hz, 2H). 13C NMR (101 MHz, CDCl$_3$, ppm) δ 199.5, 158.1, 137.0, 133.5, 133.2, 129.5, 128.7, 128.2, 114.1, 55.4, 40.9, 29.4. HRMS m/z calcd for C$_{16}$H$_{16}$O$_2$ [M+H]^+ 241.1229, found 241.1229.

3-(4-fluorophenyl)-1-phenylpropan-1-one(4da)^S4
[Structure Image]
White solid (184.7 mg, 81% yield). 1H NMR (400 MHz, CDCl$_3$, ppm) δ 7.96 (d, $J = 7.6$ Hz, 2H), 7.56 (t, $J = 6.9$ Hz, 1H), 7.46 (t, $J = 7.2$ Hz, 2H), 7.25–7.15 (m, 2H), 6.98 (t, $J = 8.0$ Hz, 2H), 3.29 (t, $J = 7.4$ Hz, 2H), 3.05 (t, $J = 7.3$ Hz, 2H). 13C NMR (151 MHz, CDCl$_3$, ppm) δ 199.0, 162.4, 160.8, 137.0, 133.2, 129.9, 128.7, 128.1, 115.4, 115.3, 40.5, 29.4. HRMS m/z calcd for C$_{15}$H$_{13}$FO [M+H]^+ 229.1029, found 229.1025.
3-(4-chlorophenyl)-1-phenylpropan-1-one (4ea)S3

White solid (205.0 mg, 84% yield). 1H NMR (400 MHz, CDCl$_3$, ppm) δ 7.95 (d, $J = 7.5$ Hz, 2H), 7.55 (t, $J = 7.3$ Hz, 1H), 7.44 (t, $J = 7.5$ Hz, 2H), 7.35–7.27 (m, 2H), 7.25–7.19 (m, 2H), 3.30 (t, $J = 7.7$ Hz, 2H), 3.07 (t, $J = 7.6$ Hz, 2H). 13C NMR (101 MHz, CDCl$_3$, ppm)δ 199.3, 141.4, 137.0, 133.2, 128.7, 128.6, 128.5, 128.2, 126.3, 40.6, 30.2. HRMS m/z calcd for C$_{15}$H$_{13}$ClO [M+H]$^+$ 245.0733, found 245.0727.

3-(4-bromophenyl)-1-phenylpropan-1-one (4fa)S3

White solid (230.4 mg, 80% yield). 1H NMR (400 MHz, CDCl$_3$, ppm) δ 7.94 (dd, $J = 5.2$, 3.4 Hz, 2H), 7.60–7.53 (m, 1H), 7.45 (dd, $J = 10.5$, 4.7 Hz, 2H), 7.43–7.37 (m, 2H), 7.13 (d, $J = 8.3$ Hz, 2H), 3.28 (t, $J = 7.5$ Hz, 2H), 3.03 (t, $J = 7.5$ Hz, 2H). 13C NMR (101 MHz, CDCl$_3$, ppm)δ 198.9, 140.4, 136.9, 133.3, 131.7, 130.4, 128.8, 128.1, 120.0, 40.2, 29.6. HRMS m/z calcd for C$_{15}$H$_{13}$BrO [M+H]$^+$ 289.0228, found 289.0224.

4-(3-oxo-3-phenylpropyl)benzonitrile (4ga)S8

White solid (141.0 mg, 60% yield). 1H NMR (400 MHz, CDCl$_3$, ppm) δ 7.99–7.91 (m, 2H), 7.57 (dd, $J = 10.0$, 4.6 Hz, 3H), 7.46 (t, $J = 7.6$ Hz, 2H), 7.37 (d, $J = 8.1$ Hz, 2H), 3.33 (t, $J = 7.3$ Hz, 2H), 3.14 (t, $J = 7.3$ Hz, 2H). 13C NMR (101 MHz, CDCl$_3$, ppm)δ 198.4, 147.1, 136.7, 133.5, 132.5, 129.5, 128.9, 128.1, 119.1, 110.2, 39.6, 30.1. HRMS m/z calcd for C$_{16}$H$_{13}$NO [M+H]$^+$ 236.1075, found 236.1069.

3-(2-methoxyphenyl)-1-phenylpropan-1-one (4ha)S3

White solid (192.0 mg, 80% yield). 1H NMR (400 MHz, CDCl$_3$, ppm) δ 7.96 (d, $J = 7.6$ Hz, 2H), 7.54 (t, $J = 7.2$ Hz, 1H), 7.44 (t, $J = 7.5$ Hz, 2H), 7.21–7.06 (m, 4H), 3.29–3.18 (m, 2H), 3.09–2.99 (m, 2H), 2.34 (s, 3H). 13C NMR (151 MHz, CDCl$_3$, ppm)δ 199.4, 139.4, 136.9, 136.0, 133.1, 130.4, 128.7, 128.1, 126.4, 126.2, 39.2, 27.6, 19.4. HRMS m/z calcd for C$_{16}$H$_{16}$O$_2$[M+H]$^+$ 241.1229, found 241.1225.

S10
1-phenyl-3-(ferrocenyl)propan-1-one (4ia)\(^{53}\)

Red solid (279.8 mg, 88% yield). \(^1\)H NMR (400 MHz, CDCl\(_3\), ppm) \(\delta\) 8.00–7.95 (m, 2H), 7.60–7.53 (m, 1H), 7.47 (t, \(J = 7.6\) Hz, 2H), 4.15 (d, \(J = 4.1\) Hz, 7H), 4.09 (s, 2H), 3.25–3.16 (m, 2H), 2.83–2.75 (m, 2H). \(^{13}\)C NMR (101 MHz, CDCl\(_3\), ppm) \(\delta\) 199.6, 137.0, 133.1, 128.7, 128.2, 88.3, 68.8, 68.3, 67.6, 40.4. HRMS m/z calcld for C\(_{19}\)H\(_{18}\)FeO [M+H]+ 319.0785, found 319.0781.

3-(furan-2-yl)-1-phenylpropan-1-one (4ja)\(^{53}\)

Yellow solid (158.0 mg, 79% yield). \(^1\)H NMR (400 MHz, CDCl\(_3\), ppm) \(\delta\) 7.98 (d, \(J = 7.7\) Hz, 2H), 7.57 (t, \(J = 7.2\) Hz, 1H), 7.47 (t, \(J = 7.5\) Hz, 2H), 7.31 (s, 1H), 6.29 (s, 1H), 6.06 (s, 1H), 3.34 (t, \(J = 7.4\) Hz, 2H), 3.10 (t, \(J = 7.4\) Hz, 2H). \(^{13}\)C NMR (151 MHz, CDCl\(_3\), ppm) \(\delta\) 198.8, 154.9, 141.2, 136.9, 133.3, 128.7, 128.1, 110.4, 105.4, 37.1, 22.6. HRMS m/z calcld for C\(_{13}\)H\(_{12}\)O\(_2\) [M+H]+ 201.0916, found 201.0910.

1-phenyl-3-(thiophen-2-yl)propan-1-one (4ka)\(^{58}\)

Yellow solid (176.3 mg, 82% yield). \(^1\)H NMR (400 MHz, CDCl\(_3\), ppm) \(\delta\) 7.98 (d, \(J = 7.6\) Hz, 2H), 7.57 (t, \(J = 7.2\) Hz, 1H), 7.47 (t, \(J = 7.5\) Hz, 2H), 7.13 (d, \(J = 4.9\) Hz, 1H), 6.97–6.90 (m, 1H), 6.87 (s, 1H), 3.43–3.34 (m, 2H), 3.34–3.25 (m, 2H). \(^{13}\)C NMR (151 MHz, CDCl\(_3\), ppm) \(\delta\) 198.7, 144.0, 136.9, 133.3, 128.8, 128.2, 127.0, 124.8, 123.5, 40.7, 24.4. HRMS m/z calcld for C\(_{13}\)H\(_{12}\)OS [M+H]+ 216.0609, found 216.0605.

Chalcone (5aa)\(^{59}\)

Yellow solid (183.0 mg, 88% yield). \(^1\)H NMR (600 MHz, CDCl\(_3\), ppm) \(\delta\) 8.06–8.01 (m, 2H), 7.82 (d, \(J = 15.7\) Hz, 1H), 7.64 (dd, \(J = 6.4, 2.8\) Hz, 2H), 7.57 (dd, \(J = 13.9, 6.6\) Hz, 2H), 7.51 (dd, \(J = 16.7, 8.9\) Hz, 2H), 7.45–7.39 (m, 3H). \(^{13}\)C NMR (151 MHz, CDCl\(_3\), ppm) \(\delta\) 190.5, 144.8, 138.2, 134.9, 132.8, 130.6, 129.0, 128.6, 128.5, 122.1. HRMS m/z calcld for C\(_{13}\)H\(_{12}\)O [M+H]+ 209.0966, found 209.0970.

3-phenyl-1-(p-tolyl)prop-2-en-1-one (5ab)\(^{59}\)
Yellow solid (206.5 mg, 93% yield).\(^1\)H NMR (600 MHz, CDCl\(_3\), ppm) \(\delta\) 7.95 (d, \(J = 8.0\) Hz, 2H), 7.81 (d, \(J = 15.7\) Hz, 1H), 7.68–7.62 (m, 2H), 7.54 (d, \(J = 15.6\) Hz, 1H), 7.42 (dd, \(J = 4.9, 1.7\) Hz, 3H), 7.31 (d, \(J = 8.0\) Hz, 2H), 2.44 (s, 3H). \(^{13}\)C NMR (151 MHz, CDCl\(_3\), ppm) \(\delta\) 190.1, 144.5, 143.8, 135.8, 135.1, 130.5, 129.5, 129.1, 128.8, 128.5, 122.2, 21.8. HRMS \(m/z\) calcld for C\(_{16}\)H\(_{14}\)O[M+H]\(^+\) 223.1123, found 223.1124.

1-(4-methoxyphenyl)-3-phenylprop-2-en-1-one (5ac)

Yellow solid (216.6 mg, 91% yield).\(^1\)H NMR (600 MHz, CDCl\(_3\), ppm) \(\delta\) 8.05 (d, \(J = 8.3\) Hz, 2H), 7.80 (d, \(J = 15.6\) Hz, 1H), 7.64 (d, \(J = 7.0\) Hz, 2H), 7.55 (d, \(J = 15.6\) Hz, 1H), 7.46–7.36 (m, 3H), 6.99 (d, \(J = 8.3\) Hz, 2H), 3.89 (s, 3H). \(^{13}\)C NMR (151 MHz, CDCl\(_3\), ppm) \(\delta\) 188.8, 163.6, 144.1, 135.2, 131.2, 130.9, 130.4, 129.0, 128.5, 122.0, 114.0, 55.6. HRMS \(m/z\) calcld for C\(_{16}\)H\(_{14}\)O\(_2\)[M+H]\(^+\) 239.1072, found 239.1070.

1-(4-fluorophenyl)-3-phenylprop-2-en-1-one (5ad)

Yellow solid (185.3 mg, 82% yield).\(^1\)H NMR (600 MHz, CDCl\(_3\), ppm) \(\delta\) 8.08–8.03 (m, 2H), 7.81 (d, \(J = 15.7\) Hz, 1H), 7.64 (dd, \(J = 6.3, 2.7\) Hz, 2H), 7.50 (d, \(J = 15.6\) Hz, 1H), 7.45–7.39 (m, 3H), 7.17 (t, \(J = 8.5\) Hz, 2H). \(^{13}\)C NMR (151 MHz, CDCl\(_3\), ppm) \(\delta\) 188.8, 166.5, 164.8, 145.1, 134.9, 134.6, 131.2, 130.7, 129.1, 128.6, 121.7, 115.9, 115.8. HRMS \(m/z\) calcld for C\(_{13}\)H\(_{10}\)FO[M+H]\(^+\) 227.0872, found 227.0870.

1-(4-chlorophenyl)-3-phenylprop-2-en-1-one (5ae)

Yellow solid (205.7 mg, 85% yield).\(^1\)H NMR (600 MHz, CDCl\(_3\), ppm) \(\delta\) 7.96 (d, \(J = 8.4\) Hz, 2H), 7.82 (d, \(J = 15.7\) Hz, 1H), 7.68–7.61 (m, 2H), 7.48 (dd, \(J = 12.0, 5.3\) Hz, 3H), 7.45–7.39 (m, 3H). \(^{13}\)C NMR (151 MHz, CDCl\(_3\), ppm) \(\delta\) 189.3, 145.5, 139.3, 136.6, 134.8, 130.9, 130.0, 129.1, 128.6, 121.6. HRMS \(m/z\) calcld for C\(_{15}\)H\(_{11}\)ClO[M+H]\(^+\) 243.0577, found 243.0573.

1-(4-bromophenyl)-3-phenylprop-2-en-1-one (5af)

Yellow solid (206.5 mg, 93% yield).\(^1\)H NMR (600 MHz, CDCl\(_3\), ppm) \(\delta\) 7.95 (d, \(J = 8.0\) Hz, 2H), 7.81 (d, \(J = 15.7\) Hz, 1H), 7.68–7.62 (m, 2H), 7.54 (d, \(J = 15.6\) Hz, 1H), 7.42 (dd, \(J = 4.9, 1.7\) Hz, 3H), 7.31 (d, \(J = 8.0\) Hz, 2H), 2.44 (s, 3H). \(^{13}\)C NMR (151 MHz, CDCl\(_3\), ppm) \(\delta\) 190.1, 144.5, 143.8, 135.8, 135.1, 130.5, 129.5, 129.1, 128.8, 128.5, 122.2, 21.8. HRMS \(m/z\) calcld for C\(_{16}\)H\(_{14}\)O[M+H]\(^+\) 223.1123, found 223.1124.
Yellow solid (228.8 mg, 80% yield). \(^\text{1}H\) NMR (600 MHz, CDCl\(_3\), ppm) \(\delta\) 7.88 (d, \(J = 8.5\) Hz, 2H), 7.81 (d, \(J = 15.7\) Hz, 1H), 7.67–7.61 (m, 4H), 7.47 (d, \(J = 15.7\) Hz, 1H), 7.44–7.39 (m, 3H). \(^{13}C\) NMR (151 MHz, CDCl\(_3\), ppm) \(\delta\) 189.4, 145.5, 137.0, 134.8, 132.0, 130.8, 130.1, 129.1, 128.6, 128.0, 121.5. HRMS m/z calcld for C\(_{15}\)H\(_{11}\)BrO[M+H]\(^+\) 287.0072, found 287.0060.

\[
\text{3-phenyl-1-(m-tolyl)prop-2-en-1-one (5ag) S12}
\]

Yellow solid (195.4 mg, 88% yield). \(^\text{1}H\) NMR (600 MHz, CDCl\(_3\), ppm) \(\delta\) 7.95 (d, \(J = 8.0\) Hz, 2H), 7.81 (d, \(J = 15.7\) Hz, 1H), 7.68–7.62 (m, 2H), 7.54 (d, \(J = 15.6\) Hz, 1H), 7.42 (dd, \(J = 4.9, 1.7\) Hz, 3H), 7.31 (d, \(J = 8.0\) Hz, 2H), 2.44 (s, 3H). \(^{13}C\) NMR (151 MHz, CDCl\(_3\), ppm) \(\delta\) 190.7, 144.6, 138.5, 138.3, 135.0, 133.6, 130.5, 129.0, 128.5, 125.8, 122.3, 21.4. HRMS m/z calcld for C\(_{16}\)H\(_{14}\)O[M+H]\(^+\) 223.1123, found 223.1118.

\[
\text{(3-bromophenyl)-3-phenylprop-2-en-1-one (5ah) S12}
\]

Yellow solid (228.8 mg, 80% yield). \(^\text{1}H\) NMR (600 MHz, CDCl\(_3\), ppm) \(\delta\) 8.12 (d, \(J = 1.3\) Hz, 1H), 7.91 (d, \(J = 7.7\) Hz, 1H), 7.80 (dd, \(J = 15.7, 1.3\) Hz, 1H), 7.69–7.65 (m, 1H), 7.64–7.59 (m, 2H), 7.44 (dd, \(J = 15.7, 1.3\) Hz, 1H), 7.40 (dd, \(J = 3.8, 1.6\) Hz, 3H), 7.37–7.32 (m, 1H). \(^{13}C\) NMR (151 MHz, CDCl\(_3\), ppm) \(\delta\) 188.8, 145.6, 139.9, 135.6, 134.6, 131.5, 130.8, 130.2, 129.0, 128.6, 127.0, 123.0, 121.3. HRMS m/z calcld for C\(_{16}\)H\(_{14}\)BrO[M+H]\(^+\) 287.0072, found 287.0076.

\[
\text{3-phenyl-1-(o-tolyl)prop-2-en-1-one (5ai) S12}
\]

Yellow solid (228.8 mg, 80% yield). \(^\text{1}H\) NMR (600 MHz, CDCl\(_3\), ppm) \(\delta\) 7.57 (dd, \(J = 6.6, 2.9\) Hz, 2H), 7.49 (dd, \(J = 17.0, 11.8\) Hz, 2H), 7.43–7.36 (m, 4H), 7.28 (t, \(J = 7.4\) Hz, 2H), 7.15 (d, \(J = 16.0\) Hz, 1H), 2.46 (s, 3H). \(^{13}C\) NMR (151 MHz, CDCl\(_3\), ppm) \(\delta\) 186.6, 146.0, 139.2, 137.0, 134.7, 131.4, 130.7, 130.6, 129.1, 128.5, 128.2, 126.8, 125.6, 20.3. HRMS m/z calcld for C\(_{16}\)H\(_{14}\)O[M+H]\(^+\) 223.1123, found 223.1123.

\[
\text{(2-chlorophenyl)-3-phenylprop-2-en-1-one (5aj) S13}
\]
Yellow oil (196.0 mg, 81% yield). \(^1\)H NMR (600 MHz, CDCl\(_3\), ppm) \(\delta\) 7.56 (dd, \(J = 7.1, 2.2\) Hz, 2H), 7.50–7.44 (m, 3H), 7.43–7.38 (m, 4H), 7.36 (td, \(J = 7.4, 1.1\) Hz, 1H), 7.14 (d, \(J = 16.1\) Hz, 1H). \(^{13}\)C NMR (151 MHz, CDCl\(_3\), ppm) \(\delta\) 193.9, 146.3, 139.2, 134.5, 131.4, 131.0, 130.4, 129.4, 129.1, 128.6, 126.9, 126.3. HRMS m/z calcld for C\(_{15}\)H\(_{11}\)ClO\([\text{M+H}]^+\) 243.0577, found 243.0571.

\(1\)-mesityl-3-phenylprop-2-en-1-one (5ak)\(^{14}\)

White solid (207.5 mg, 83% yield). \(^1\)H NMR (400 MHz, CDCl\(_3\), ppm) \(\delta\) 7.57 – 7.43 (m, 2H), 7.37 (d, \(J = 4.5\) Hz, 3H), 7.26–7.13 (m, 1H), 7.00–6.83 (m, 3H), 2.32 (s, 3H), 2.19 (s, 6H). \(^{13}\)C NMR (151 MHz, CDCl\(_3\), ppm) \(\delta\) 201.2, 146.5, 138.4, 137.4, 134.6, 134.2, 130.8, 130.0, 128.8, 128.4, 21.2, 19.4. HRMS m/z calcld for C\(_{18}\)H\(_{18}\)O\([\text{M+H}]^+\) 251.1436, found 251.1427.

\(1\)-(naphthalen-2-yl)-3-phenylprop-2-en-1-one (5al)\(^{10}\)

White solid (237.4 mg, 92% yield). \(^1\)H NMR (600 MHz, CDCl\(_3\), ppm) \(\delta\) 8.54 (s, 1H), 8.12 (dd, \(J = 8.5, 1.3\) Hz, 1H), 8.00 (d, \(J = 8.0\) Hz, 1H), 7.94 (d, \(J = 8.5\) Hz, 1H), 7.92–7.86 (m, 2H), 7.70 (dd, \(J = 9.0, 6.6\) Hz, 3H), 7.61 (dd, \(J = 11.0, 3.9\) Hz, 1H), 7.57 (t, \(J = 7.0\) Hz, 1H), 7.48–7.41 (m, 3H). \(^{13}\)C NMR (151 MHz, CDCl\(_3\), ppm) \(\delta\) 190.4, 144.8, 135.6, 135.1, 132.7, 130.6, 130.0, 129.6, 129.1, 128.6, 127.9, 126.9, 124.6, 122.2. HRMS m/z calcld for C\(_{19}\)H\(_{14}\)O\([\text{M+H}]^+\) 259.1123, found 259.1130.

3-phenyl-1-(thiophen-2-yl)prop-2-en-1-one (5am)\(^{12}\)

Yellow solid (156.2 mg, 73% yield). \(^1\)H NMR (600 MHz, CDCl\(_3\), ppm) \(\delta\) 7.86 (t, \(J = 10.3\) Hz, 2H), 7.70–7.66 (m, 1H), 7.66–7.61 (m, 2H), 7.42 (t, \(J = 9.3\) Hz, 4H), 7.20–7.16 (m, 1H). \(^{13}\)C NMR (151 MHz, CDCl\(_3\), ppm) \(\delta\) 182.1, 145.6, 144.1, 134.8, 134.0, 131.9, 130.7 129.0, 128.6 128.4 121.7. HRMS m/z calcld for C\(_{13}\)H\(_{10}\)OS\([\text{M+H}]^+\) 215.0531, found 215.0535.

1-ferrocenyl-3-phenyl-2-propen-1-one (5an)\(^{15}\)
Red solid (284.4 mg, 90% yield). 1H NMR (40 MHz, CDCl$_3$, ppm)δ 7.81 (d, $J = 15.4$ Hz, 1H), 7.66 (s, 2H), 7.43 (s, 3H), 7.26 (s, 1H), 7.14 (d, $J = 15.4$ Hz, 1H), 4.92 (s, 2H), 4.60 (s, 2H), 4.22 (s, 5H). 13C NMR (151 MHz, CDCl$_3$, ppm)δ 193.1, 141.0, 135.3, 130.2, 129.1, 128.4, 123.1, 80.8, 72.9, 70.2, 69.9. HRMS m/z calcd for C$_{19}$H$_{16}$FeO $[M+H]^+$ 317.0629, found 317.0634.

2-benzylidene cyclohexan-1-one (5aq)

![Structure](image)

Yellow oil (152.2 mg, 82% yield). 1H NMR (400 MHz, CDCl$_3$, ppm) δ 7.50 (t, $J = 2.1$ Hz, 1H), 7.43–7.35 (m, 4H), 7.32 (dd, $J = 8.5$, 5.1, 2.7 Hz, 1H), 2.84 (td, $J = 6.6$, 2.1 Hz, 2H), 2.54 (t, $J = 6.7$ Hz, 2H), 1.99–1.88 (m, 2H), 1.82–1.72 (m, 2H). 13C NMR (101 MHz, CDCl$_3$, ppm) δ 201.9, 136.8, 135.7, 130.4, 128.6, 40.5, 29.1, 24.0, 23.5. HRMS m/z calcd for C$_{13}$H$_{14}$O $[M+H]^+$ 187.1123, found 187.1117.

1-phenyl-3-(p-tolyl) prop-2-en-1-one (5ba)

![Structure](image)

Yellow solid (208.7 mg, 94% yield). 1H NMR (600 MHz, CDCl$_3$, ppm) δ 8.03 (d, $J = 8.1$ Hz, 2H), 7.81 (d, $J = 15.7$ Hz, 1H), 7.60–7.53 (m, 3H), 7.53–7.46 (m, 3H), 7.22 (d, $J = 7.8$ Hz, 2H), 2.39 (s, 3H). 13C NMR (151 MHz, CDCl$_3$, ppm) δ 190.6, 161.7, 144.7, 138.6, 132.6, 130.3, 128.6, 128.5, 127.7, 119.8, 114.5, 55.4. HRMS m/z calcd for C$_{16}$H$_{14}$O$_2$ $[M+H]^+$ 223.1127, found 223.1127.

3-(4-methoxyphenyl)-1-phenyl prop-2-en-1-one (5ca)

![Structure](image)

Yellow solid (214.2 mg, 90% yield). 1H NMR (600 MHz, CDCl$_3$, ppm) δ 8.01 (d, $J = 7.3$ Hz, 2H), 7.78 (d, $J = 15.6$ Hz, 1H), 7.62–7.53 (m, 3H), 7.48 (t, $J = 7.6$ Hz, 2H), 7.41 (d, $J = 15.6$ Hz, 1H), 6.92 (d, $J = 8.6$ Hz, 2H), 3.83 (s, 3H). 13C NMR (151 MHz, CDCl$_3$, ppm) δ 190.6, 161.7, 144.7, 138.6, 132.6, 130.3, 128.6, 128.5, 127.7, 119.8, 114.5, 55.4. HRMS m/z calcd for C$_{16}$H$_{14}$O$_2$ $[M+H]^+$ 239.1072, found 239.1068.

3-(4-fluorophenyl)-1-phenyl prop-2-en-1-one (5da)

![Structure](image)

Yellow solid (198.9 mg, 88% yield). 1H NMR (400 MHz, CDCl$_3$, ppm) δ 8.01 (d, $J = 7.8$ Hz, 2H), 7.77 (d, $J = 15.7$ Hz, 1H), 7.69–7.55 (m, 3H), 7.49 (dd, $J = 19.4$, 11.6 Hz, 3H), 7.10 (t, $J = 8.3$ Hz, 2H). 13C NMR (151 MHz, CDCl$_3$, ppm) δ 190.4, 165.0, 163.4, 143.5, 138.3, 132.9, 131.4, 130.4,
3-(4-chlorophenyl)-1-phenylprop-2-en-1-one (5ea)

Yellowsolid (215.4 mg, 89% yield). 1H NMR (400 MHz, CDCl$_3$, ppm) δ 8.01 (d, $J = 7.6$ Hz, 2H), 7.76 (d, $J = 15.7$ Hz, 1H), 7.59 (dd, $J = 12.2$, 7.7 Hz, 3H), 7.54–7.44 (m, 3H), 7.39 (d, $J = 8.2$ Hz, 2H). 13C NMR (101 MHz, CDCl$_3$, ppm) δ 190.3, 143.4, 136.5, 133.5, 133.1, 129.7, 129.4, 128.7, 122.6. HRMS m/z calcd for C$_{15}$H$_{11}$FO$^{[M+H]^+}$ 227.0872, found 227.0873.

3-(4-bromophenyl)-1-phenylprop-2-en-1-one (5fa)

Yellowsolid (237.4 mg, 83% yield). 1H NMR (600 MHz, CDCl$_3$, ppm) δ 8.01 (d, $J = 7.3$ Hz, 2H), 7.72 (d, $J = 15.7$ Hz, 1H), 7.58 (t, $J = 7.4$ Hz, 1H), 7.52 (t, $J = 9.1$ Hz, 3H), 7.49 (dd, $J = 8.2$, 4.3 Hz, 4H). 13C NMR (151 MHz, CDCl$_3$, ppm) δ 190.2, 143.4, 138.1, 133.9, 133.0, 132.3, 129.9, 128.8, 128.6, 124.9, 122.6. HRMS m/z calcd for C$_{15}$H$_{11}$BrO$^{[M+H]^+}$ 287.0072, found 287.0063.

4-(3-oxo-3-phenylprop-1-en-1-yl)benzonitrile (5ga)

Yellowsolid (177.1 mg, 76% yield). 1H NMR (600 MHz, CDCl$_3$, ppm) δ 8.02 (d, $J = 8.1$ Hz, 2H), 7.76 (d, $J = 15.7$ Hz, 1H), 7.71 (q, $J = 8.3$ Hz, 4H), 7.64–7.58 (m, 2H), 7.52 (t, $J = 7.6$ Hz, 2H). 13C NMR (151 MHz, CDCl$_3$, ppm) δ 189.8, 142.2, 139.3, 137.7, 133.4, 132.8, 128.8, 128.7, 125.2, 118.5, 113.6. HRMS m/z calcd for C$_{16}$H$_{11}$NO$^{[M+H]^+}$ 234.0919, found 234.0914.

3-(2-methoxyphenyl)-1-phenylprop-2-en-1-one (5ha)

Yellowsolid (204.7 mg, 86% yield). 1H NMR (400 MHz, CDCl$_3$, ppm) δ 8.11 (d, $J = 15.6$ Hz, 1H), 8.02 (d, $J = 7.5$ Hz, 2H), 7.67 (d, $J = 7.4$ Hz, 1H), 7.50 (dt, $J = 25.6$, 12.3 Hz, 4H), 7.32–7.12 (m, 3H), 2.43 (s, 3H). 13C NMR (151 MHz, CDCl$_3$, ppm) δ 190.2, 142.3, 138.2, 133.8, 132.7, 130.9, 130.2, 128.5, 126.3, 123.0, 19.8. HRMS m/z calcd for C$_{16}$H$_{14}$O$_2$ [M+H]$^+$ 239.1072, found 239.1070.
3-ferrocenyl-1-phenylprop-2-enone (5ia)

Red solid (271.8 mg, 86% yield). 1H NMR (600 MHz, CDCl$_3$, ppm) δ 8.00 (d, J = 7.5 Hz, 2H), 7.77 (d, J = 15.3 Hz, 1H), 7.55 (t, J = 6.9 Hz, 1H), 7.48 (t, J = 1.7 Hz, 2H), 7.15 (d, J = 15.3 Hz, 1H), 4.59 (s, 2H), 4.47 (s, 2H), 4.16 (s, 4H). 13C NMR (101 MHz, CDCl$_3$, ppm) δ 189.7, 146.8, 138.6, 128.5, 128.3, 119.1, 79.1, 71.4, 69.8, 69.0. HRMS m/z calcd for C$_{19}$H$_{16}$FeO [M+H]$^+$ 317.0629, found 317.0634.

3-(furan-2-yl)-1-phenylprop-2-en-1-one (5ja)

Yellow solid (162.4 mg, 82% yield). 1H NMR (400 MHz, CDCl$_3$, ppm) δ 8.03 (d, J = 7.5 Hz, 2H), 7.58 (dd, J = 15.2, 11.4 Hz, 2H), 7.54–7.41 (m, 4H), 6.71 (d, J = 2.9 Hz, 1H), 6.51 (s, 1H). 13C NMR (101 MHz, CDCl$_3$, ppm) δ 189.9, 151.7, 145.0, 138.2, 132.8, 130.7, 128.6, 119.4, 116.3, 112.8. HRMS m/z calcd for C$_{13}$H$_{10}$O$_2$ [M+H]$^+$ 199.0759, found 199.0764.

1-phenyl-3-(thiophen-2-yl)prop-2-en-1-one (5ka)

Yellow solid (179.8 mg, 84% yield). 1H NMR (600 MHz, CDCl$_3$, ppm) δ 8.02–7.97 (m, 2H), 7.93 (d, J = 15.3 Hz, 1H), 7.58–7.53 (m, 1H), 7.48 (t, J = 7.5 Hz, 2H), 7.39 (d, J = 5.0 Hz, 1H), 7.35–7.29 (m, 2H), 7.08–7.04 (m, 1H). 13C NMR (151 MHz, CDCl$_3$, ppm) δ 189.8, 140.4, 138.1, 137.2, 132.8, 132.1, 128.9, 128.6, 128.4, 120.7. HRMS m/z calcd for C$_{13}$H$_{10}$OS [M+H]$^+$ 215.0531, found 215.0538.

1,3-diphenylpropan-1-ol (6aa)

Colorless oil (188.7 mg, 89% yield). 1H NMR (600 MHz, CDCl$_3$, ppm) δ 7.42–7.35 (m, 4H), 7.34–7.29 (m, 3H), 7.25–7.20 (m, 3H), 4.70 (dd, J = 7.8, 5.4 Hz, 1H), 2.82–2.74 (m, 1H), 2.74–2.66 (m, 1H), 2.20–2.12 (m, 1H), 2.06 (dq, J = 13.9, 6.2 Hz, 2H). 13C NMR (151 MHz, CDCl$_3$, ppm) δ 144.7, 141.9, 128.7, 128.4, 127.7, 126.0, 73.9, 40.6, 32.1. HRMS m/z calcd for C$_{15}$H$_{16}$O[M] 212.1201, found 212.1201.

3-phenyl-1-(p-tolyl)propan-1-ol (6ab)
Colorless oil (205.7 mg, 91% yield). 1H NMR (600 MHz, CDCl$_3$, ppm) δ 7.31 (t, $J = 7.6$ Hz, 2H), 7.26 (t, $J = 5.6$ Hz, 2H), 7.24–7.20 (m, 3H), 7.19 (d, $J = 7.9$ Hz, 2H), 4.65 (dd, $J = 7.3$, 5.9 Hz, 1H), 2.79–2.72 (m, 1H), 2.71–2.64 (m, 1H), 2.38 (s, 3H), 2.20–2.11 (m, 1H), 2.10–1.98 (m, 2H). 13C NMR (151 MHz, CDCl$_3$, ppm) δ 142.0, 141.7, 137.3, 129.3, 128.5, 126.0, 73.8, 40.5, 32.2, 21.2. HRMS m/z calcd for C$_{16}$H$_{18}$O[M]226.1358, found 206.1351.

1-(4-methoxyphenyl)-3-phenylpropan-1-ol (6ac)

\[\text{\begin{array}{c}
\text{\includegraphics[width=1cm]{image}} \\
\end{array}} \]

Colorless oil (201.3 mg, 94% yield). 1H NMR (600 MHz, CDCl$_3$, ppm) δ 7.28 (d, $J = 8.0$ Hz, 4H), 7.18 (t, $J = 7.3$ Hz, 3H), 6.89 (d, $J = 8.5$ Hz, 2H), 4.64 (t, $J = 6.6$ Hz, 1H), 3.81 (s, 3H), 2.77–2.69 (m, 1H), 2.69–2.61 (m, 1H), 2.14 (dt, $J = 14.0$, 8.0 Hz, 1H), 2.05–1.96 (m, 1H), 1.76 (s, 1H). 13C NMR (151 MHz, CDCl$_3$, ppm) δ 159.3, 142.0, 136.8, 128.6, 127.4, 126.0, 114.0, 73.7, 55.5, 40.5, 32.3. HRMS m/z calcd for C$_{16}$H$_{18}$O$_2$[M]242.1307, found 242.1307.

1-(4-fluorophenyl)-3-phenylpropan-1-ol (6ad)

\[\text{\begin{array}{c}
\text{\includegraphics[width=1cm]{image}} \\
\end{array}} \]

Colorless oil (179.5 mg, 78% yield). 1H NMR (600 MHz, CDCl$_3$, ppm) δ 7.35–7.27 (m, 4H), 7.23–7.17 (m, 3H), 7.07–7.02 (m, 2H), 4.67 (dd, $J = 7.7$, 5.5 Hz, 1H), 2.77–2.70 (m, 1H), 2.70–2.63 (m, 1H), 2.16–2.09 (m, 1H), 2.07–1.94 (m, 2H). 13C NMR (151 MHz, CDCl$_3$, ppm) δ 163.1, 161.5, 141.7, 140.4, 128.5, 127.7, 126.1, 115.5, 115.4, 73.3, 40.7, 32.1. HRMS m/z calcd for C$_{15}$H$_{15}$FO[M] 230.1107, found 230.1106.

1-(4-chlorophenyl)-3-phenylpropan-1-ol (6ae)

\[\text{\begin{array}{c}
\text{\includegraphics[width=1cm]{image}} \\
\end{array}} \]

Colorless oil (196.9 mg, 80% yield). 1H NMR (600 MHz, CDCl$_3$, ppm) δ 7.33 (d, $J = 8.3$ Hz, 2H), 7.29 (t, $J = 7.7$ Hz, 4H), 7.20 (t, $J = 8.6$ Hz, 3H), 4.69–4.65 (m, 1H), 2.77–2.70 (m, 1H), 2.70–2.63 (m, 1H), 2.14–2.07 (m, 1H), 2.04–1.96 (m, 1H), 1.83 (s, 1H). 13C NMR (151 MHz, CDCl$_3$, ppm) δ 143.2, 141.6, 133.4, 128.8, 128.6, 127.4, 126.1, 73.3, 40.6, 32.1. HRMS m/z calcd for C$_{15}$H$_{15}$ClO[M] 246.0811, found 246.0810.

1-(4-bromophenyl)-3-phenylpropan-1-ol (6af)

\[\text{\begin{array}{c}
\text{\includegraphics[width=1cm]{image}} \\
\end{array}} \]

518
Colorless oil (240.7 mg, 83% yield). 1H NMR (600 MHz, CDCl$_3$, ppm) δ 7.48 (d, $J = 8.3$ Hz, 2H), 7.29 (t, $J = 7.5$ Hz, 2H), 7.23 (d, $J = 8.3$ Hz, 2H), 7.19 (t, $J = 8.3$ Hz, 3H), 4.66 (dd, $J = 7.6$, 5.5 Hz, 1H), 2.73 (ddd, $J = 15.1$, 9.6, 5.9 Hz, 1H), 2.70–2.63 (m, 1H), 2.14–2.06 (m, 1H), 2.03–1.95 (m, 1H), 1.79 (s, 1H).

13C NMR (151 MHz, CDCl$_3$, ppm) δ 143.7, 141.6, 131.7, 128.6, 127.8, 126.1, 121.5, 73.3, 40.6, 32.1. HRMS m/z calcd for C$_{15}$H$_{15}$BrO[M] 290.0306, found 290.0300.

3-phenyl-1-(m-tolyl)propan-1-ol (6ag)

Colorless oil (196.7 mg, 87% yield). 1H NMR (600 MHz, CDCl$_3$, ppm) δ 7.29 (t, $J = 7.6$ Hz, 2H), 7.24 (d, $J = 7.5$ Hz, 1H), 7.23–7.18 (m, 3H), 7.18 (s, 1H), 7.15 (d, $J = 7.6$ Hz, 1H), 7.10 (d, $J = 7.4$ Hz, 1H), 4.66 (dd, $J = 7.8$, 5.4 Hz, 1H), 2.80–2.73 (m, 1H), 2.71–2.64 (m, 1H), 2.36 (s, 3H), 2.18–2.10 (m, 1H), 2.07–2.00 (m, 1H). 13C NMR (151 MHz, CDCl$_3$, ppm) δ 144.7, 142.0, 138.3, 128.5, 126.8, 126.0, 123.1, 74.0, 40.6, 32.3. HRMS m/z calcd for C$_{16}$H$_{18}$O[M] 226.1358, found 226.1353.

1-(3-bromophenyl)-3-phenylpropan-1-ol (6ah)

Colorless oil (234.9 mg, 81% yield). 1H NMR (600 MHz, CDCl$_3$, ppm) δ 7.55 (s, 1H), 7.45 (d, $J = 7.7$ Hz, 1H), 7.34 (t, $J = 7.4$ Hz, 2H), 7.29 (d, $J = 7.4$ Hz, 1H), 7.25–7.21 (m, 3H), 4.66 (dd, $J = 7.3$, 5.7 Hz, 1H), 2.82–2.75 (m, 1H), 2.75–2.67 (m, 1H), 2.18 (s, 1H), 2.12 (td, $J = 14.2$, 8.4 Hz, 1H), 2.03 (dt, $J = 14.2$, 6.0 Hz, 1H). 13C NMR (151 MHz, CDCl$_3$, ppm) δ 147.0, 141.5, 130.7, 130.2, 129.1, 128.5, 126.1, 124.6, 122.7, 73.2, 40.5, 32.0. HRMS m/z calcd for C$_{15}$H$_{15}$BrO[M] 290.0306, found 290.0305.

3-phenyl-1-(o-tolyl)propan-1-ol (6ai)

Colorless oil (185.4 mg, 82% yield). 1H NMR (400 MHz, CDCl$_3$, ppm) δ 7.50 (d, $J = 7.5$ Hz, 1H), 7.30 (t, $J = 7.4$ Hz, 2H), 7.20 (dd, $J = 19.7$, 7.4 Hz, 5H), 7.13 (d, $J = 7.3$ Hz, 1H), 4.91 (dd, $J = 8.1$, 4.4 Hz, 1H), 2.91–2.80 (m, 1H), 2.79–2.67 (m, 1H), 2.24 (s, 3H), 2.12–1.95 (m, 3H). 13C NMR (151 MHz, CDCl$_3$, ppm) δ 142.8, 141.9, 134.5, 130.5, 128.5, 127.3, 126.4, 126.0, 125.2, 67.0, 39.5, 32.4, 19.0. HRMS m/z calcd for C$_{16}$H$_{18}$O[M] 226.1358, found 226.1352.

1-(2-chlorophenyl)-3-phenylpropan-1-ol (6aj)

Colorless oil (187.0 mg, 76% yield). 1H NMR (400 MHz, CDCl$_3$, ppm) δ 7.59 (dd, $J = 7.7$, 1.6 Hz, 1H), 7.35–7.32 (m, 1H), 7.30–7.29 (m, 1H), 7.27 (s, 1H), 7.22 (dd, $J = 7.0$, 5.3 Hz, 3H), 7.19 (t, J
= 5.7 Hz, 2H), 5.15 (dd, J = 8.4, 4.1 Hz, 1H), 2.93–2.82 (m, 1H), 2.76 (ddd, J = 13.8, 9.8, 6.7 Hz, 1H), 2.19–2.08 (m, 1H), 2.07–1.96 (m, 1H). 13C NMR (101 MHz, CDCl$_3$, ppm) δ 142.0, 141.7, 131.9, 129.5, 129.1, 128.6, 128.2, 127.1, 125.9, 125.3, 70.3, 39.0, 32.2. HRMS m/z calc'd for C$_{15}$H$_{15}$ClO[M] 246.0811, found 246.0810.

1-(naphthalen-2-yl)-3-phenylpropan-1-ol (6a)

White solid (238.4 mg, 91% yield). 1H NMR (600 MHz, CDCl$_3$, ppm) δ 7.85 (t, J = 6.5 Hz, 3H), 7.79 (s, 1H), 7.48 (dd, J = 13.1, 7.8 Hz, 3H), 7.29 (t, J = 7.5 Hz, 2H), 7.24–7.17 (m, 3H), 4.89–4.85 (m, 1H), 2.83–2.75 (m, 1H), 2.75–2.67 (m, 1H), 2.23 (dt, J = 14.3, 8.0 Hz, 1H), 2.14 (dt, J = 14.6, 6.1 Hz, 1H), 1.99 (s, 1H). 13C NMR (151 MHz, CDCl$_3$, ppm) δ 142.0, 141.9, 133.4, 133.2, 128.7, 128.4, 128.1, 127.8, 126.3, 126.0, 124.8, 124.2, 74.1, 40.5, 32.2. HRMS m/z calc'd for C$_{19}$H$_{18}$O[M] 262.1358, found 262.1357.

3-phenyl-1-(thiophen-2-yl)propan-1-ol (6am)

Yellow oil (170.0 mg, 78% yield). 1H NMR (600 MHz, CDCl$_3$, ppm) δ 7.29 (t, J = 7.6 Hz, 2H), 7.25 (s, 1H), 7.23–7.17 (m, 3H), 7.03–6.94 (m, 2H), 4.95–4.90 (m, 1H), 2.78 (ddd, J = 15.2, 9.5, 6.0 Hz, 1H), 2.74–2.68 (m, 1H), 2.26–2.18 (m, 1H), 2.18–2.11 (m, 1H), 2.04 (s, 1H). 13C NMR (151 MHz, CDCl$_3$, ppm) δ 148.6, 141.6, 128.6, 126.8, 126.1, 124.8, 124.1, 69.7, 40.8, 32.2. HRMS m/z calc'd for C$_{13}$H$_{14}$OS[M] 218.0765, found 218.0759.

1-ferrocenyl-2-phenyl-ethanol (6an)

Red oil (291.2 mg, 91% yield). 1H NMR (400 MHz, CDCl$_3$, ppm) δ 7.39 (t, J = 13.6 Hz, 5H), 4.68 (t, J = 6.2 Hz, 1H), 4.15 (d, J = 13.4 Hz, 9H), 2.61 (s, 1H), 2.57–2.45 (m, 1H), 2.45–2.28 (m, 1H), 2.22–1.89 (m, 2H). 13C NMR (101 MHz, CDCl$_3$, ppm) δ 142.1, 128.5, 125.8, 94.2, 68.8, 68.3, 68.0, 67.2, 65.5, 39.7, 32.3. HRMS m/z calc'd for C$_{19}$H$_{20}$FeO [M] 320.0864, found 320.0861.

1-phenyl-3-(p-tolyl)propan-1-ol (6ba)

Colorless oil (207.9 mg, 92% yield). 1H NMR (600 MHz, CDCl$_3$, ppm) δ 7.43–7.34 (m, 4H), 7.34–7.27 (m, 1H), 7.16–7.09 (m, 4H), 4.69 (dd, J = 7.5, 5.7 Hz, 1H), 2.77–2.69 (m, 1H), 2.69–2.61 (m, 1H), 2.34 (s, 3H), 2.13 (ddd, J = 14.0, 11.4, 7.6 Hz, 1H), 2.07–2.00 (m, 1H). 13C
NMR (151 MHz, CDCl₃, ppm) δ 144.7, 138.8, 135.4, 129.2, 128.6, 128.4, 127.7, 126.1, 74.0, 40.7, 31.7, 21.1. HRMS m/z caleed for C₁₆H₁₇O[M] 226.1358, found 226.1357.

3-(4-methoxyphenyl)-1-phenylpropan-1-ol (6ca)⁹

Colorless oil (225.1 mg, 93% yield). ¹H NMR (600 MHz, CDCl₃, ppm) δ 7.41–7.33 (m, 4H), 7.33–7.28 (m, 1H), 7.13 (d, J = 8.4 Hz, 2H), 6.85 (d, J = 8.4 Hz, 2H), 4.67 (dd, J = 7.7, 5.4 Hz, 1H), 3.80 (s, 3H), 2.75–2.67 (m, 1H), 2.67–2.59 (m, 1H), 2.16–2.05 (m, 2H), 2.05–1.95 (m, 1H). ¹³C NMR (151 MHz, CDCl₃, ppm) δ 157.9, 144.7, 133.9, 129.4, 128.6, 127.7, 126.0, 113.9, 73.9, 55.3, 40.8, 31.2. HRMS m/z calcd for C₁₆H₁₈O₂[M] 242.1307, found 242.1304.

3-(4-fluorophenyl)-1-phenylpropan-1-ol (6da)⁹

Colorless oil (184.0 mg, 80% yield). ¹H NMR (600 MHz, CDCl₃, ppm) δ 7.39–7.33 (m, 4H), 7.33–7.29 (m, 1H), 7.14 (dd, J = 8.3, 5.6 Hz, 2H), 6.98 (t, J = 8.7 Hz, 2H), 4.66 (dd, J = 7.7, 5.4 Hz, 1H), 2.77–2.69 (m, 1H), 2.68–2.61 (m, 1H), 2.22–2.16 (m, 1H), 2.15–2.06 (m, 1H), 2.04–1.95 (m, 1H). ¹³C NMR (151 MHz, CDCl₃, ppm) δ 162.1, 160.5, 144.6, 137.5, 129.8, 128.6, 127.8, 126.0, 115.2, 115.1, 73.8, 40.6, 31.3. HRMS m/z calcd for C₁₅H₁₅FO[M] 230.1107, found 230.1107.

3-(4-chlorophenyl)-1-phenylpropan-1-ol (6ea)⁹

Colorless oil (204.2 mg, 83% yield). ¹H NMR (600 MHz, CDCl₃, ppm) δ 7.37–7.31 (m, 4H), 7.29 (t, J = 6.8 Hz, 1H), 7.24 (d, J = 8.6 Hz, 2H), 7.11 (d, J = 8.2 Hz, 2H), 4.65 (dd, J = 7.7, 5.5 Hz, 1H), 2.75–2.67 (m, 1H), 2.67–2.60 (m, 1H), 2.14–2.05 (m, 1H), 1.98 (ddd, J = 14.0, 9.4, 5.2 Hz, 1H), 1.94 (s, 1H). ¹³C NMR (151 MHz, CDCl₃, ppm) δ 144.5, 140.3, 131.7, 129.9, 128.6, 127.8, 126.0, 73.8, 40.4, 31.5. HRMS m/z calcd for C₁₅H₁₅ClO[M] 246.0811, found 246.0810.

3-(4-bromophenyl)-1-phenylpropan-1-ol (6fa)⁹

Colorless oil (232.0 mg, 80% yield). ¹H NMR (600 MHz, CDCl₃, ppm) δ 7.36–7.30 (m, 4H), 7.27 (t, J = 6.8 Hz, 1H), 7.22 (d, J = 8.6 Hz, 2H), 7.09 (d, J = 8.2 Hz, 2H), 4.63 (dd, J = 7.7, 5.5 Hz,
1H), 2.73–2.66 (m, 1H), 2.65–2.58 (m, 1H), 2.12–2.03 (m, 1H), 1.97 (ddd, J = 14.0, 9.4, 5.2 Hz, 1H), 1.92 (s, 1H). 13C NMR (151 MHz, CDCl₃, ppm) δ 144.5, 140.3, 131.7, 129.9, 128.6, 127.8, 126.0, 73.8, 40.4, 31.5. HRMS m/z calcd for C₁₅H₁₅BrO [M] 290.0306, found 290.0302.

3-(2-methoxyphenyl)-1-phenylpropan-1-ol (6ha)19

Colorless oil (205.7 mg, 85% yield). 1H NMR (400 MHz, CDCl₃, ppm) δ 7.42 (d, J = 4.1 Hz, 4H), 7.38–7.31 (m, 1H), 7.20 (s, 4H), 4.81–4.69 (m, 1H), 2.88–2.75 (m, 1H), 2.73–2.61 (m, 1H), 2.33 (s, 3H), 2.22–1.93 (m, 2H). 13C NMR (151 MHz, CDCl₃, ppm) δ 144.6, 140.1, 136.0, 130.2, 128.8, 128.5, 127.6, 126.0, 74.2, 39.3, 29.4, 19.3. HRMS m/z calcd for C₁₆H₁₈O₂ [M] 242.1307, found 242.1306.

3-ferrocenyl-1-phenylpropan-1-ol (6ia)23

Red oil (288.0 mg, 90% yield). 1H NMR (400 MHz, CDCl₃, ppm) δ 7.25 (t, J = 13.6 Hz, 5H), 4.54 (t, J = 6.2 Hz, 1H), 4.01 (d, J = 13.4 Hz, 9H), 2.47 (s, 1H), 2.43–2.31 (m, 1H), 2.31–2.14 (m, 1H), 2.08–1.75 (m, 2H). 13C NMR (151 MHz, CDCl₃, ppm) δ 144.7, 128.5, 127.6, 126.0, 88.6, 74.1, 68.6, 68.0, 67.2, 40.0, 25.7. HRMS m/z calcd for C₁₉H₁₈FeO [M] 320.0867, found 320.0864.

3-(furan-2-yl)-1-phenylpropan-1-ol (6ja)19

Yellow oil (159.6 mg, 79% yield). 1H NMR (400 MHz, CDCl₃, ppm) δ 7.36 (d, J = 4.2 Hz, 4H), 7.29 (dd, J = 8.9, 4.2 Hz, 2H), 6.29 (s, 1H), 6.01 (d, J = 2.2 Hz, 1H), 4.71 (dd, J = 7.3, 5.9 Hz, 1H), 2.81–2.65 (m, 2H), 2.12 (ddd, J = 30.2, 14.7, 7.6 Hz, 2H), 1.98 (s, 1H). 13C NMR (151 MHz, CDCl₃, ppm) δ 155.7, 144.5, 141.1, 128.7, 127.8, 126.0, 110.3, 105.2, 73.8, 37.3, 24.5. HRMS m/z calcd for C₁₃H₁₄O₂ [M] 202.0994, found 202.0996.

2-phenylquinoline (8a)33

Yellow solid (131.2 mg, 64% yield). 1H NMR (400 MHz, CDCl₃, ppm) δ 8.20 (dd, J = 12.6, 8.3 Hz, 4H), 7.85 (dd, J = 19.3, 8.3 Hz, 2H), 7.74 (t, J = 7.3 Hz, 1H), 7.62–7.43 (m, 4H). 13C NMR (101 MHz, CDCl₃, ppm) δ 157.4, 148.3, 139.7, 137.0, 129.8, 129.5, 129.0, 127.7, 127.3, 126.4, 119.1. HRMS m/z calcd for C₁₅H₁₁N [M+H]$^+$ 206.0970, found 206.0966.
2-(p-tolyl)quinoline (8b)

Yellow solid (146.7 mg, 67% yield). 1H NMR (400 MHz, CDCl$_3$, ppm) δ 8.24–8.16 (m, 2H), 8.09 (d, $J = 7.1$ Hz, 2H), 7.83 (dd, $J = 17.8, 8.3$ Hz, 2H), 7.73 (t, $J = 7.6$ Hz, 1H), 7.52 (t, $J = 7.4$ Hz, 1H), 7.34 (d, $J = 7.6$ Hz, 2H), 2.44 (s, 3H). 13C NMR (101 MHz, CDCl$_3$, ppm) δ 157.4, 148.3, 139.6, 136.9, 129.7, 127.6, 127.2, 126.2, 119.0, 21.5. HRMS m/z calcd for C$_{16}$H$_{13}$N [M+H]$^+$ 220.1126, found 220.1122.

2-(4-methoxyphenyl)quinolone (8c)

Yellow solid (164.5 mg, 70% yield). 1H NMR (400 MHz, CDCl$_3$, ppm) δ 8.16 (t, $J = 8.7$ Hz, 4H), 7.87–7.76 (m, 2H), 7.71 (t, $J = 7.5$ Hz, 1H), 7.50 (t, $J = 7.1$ Hz, 1H), 7.05 (d, $J = 8.4$ Hz, 2H), 3.88 (d, $J = 1.3$ Hz, 3H). 13C NMR (101 MHz, CDCl$_3$, ppm) δ 161.0, 157.0, 148.3, 136.9, 132.2, 130.1, 129.9, 129.7, 129.1, 127.6, 127.0, 126.1, 118.7, 114.4, 55.5. HRMS m/z calcd for C$_{16}$H$_{13}$NO [M+H]$^+$ 236.1075, found 236.1069.

2-(4-fluorophenyl)quinolone (8d)

Yellow solid (116.0 mg, 52% yield). 1H NMR (600 MHz, CDCl$_3$, ppm) δ 8.20 (d, $J = 8.6$ Hz, 1H), 8.17 (d, $J = 8.5$ Hz, 3H), 7.82 (d, $J = 8.3$ Hz, 2H), 7.73 (t, $J = 7.6$ Hz, 1H), 7.53 (t, $J = 7.4$ Hz, 1H), 7.21 (t, $J = 8.5$ Hz, 2H). 13C NMR (151 MHz, CDCl$_3$, ppm) δ 164.8, 163.1, 156.3, 148.3, 137.0, 135.9, 129.9, 129.7, 129.5, 127.6, 127.2, 126.5, 118.7, 116.0, 115.8. HRMS m/z calcd for C$_{15}$H$_{10}$FN [M+H]$^+$ 224.0876, found 224.0880.

2-(4-chlorophenyl)quinolone (8e)

Yellow solid (136.2 mg, 57% yield). 1H NMR (600 MHz, CDCl$_3$, ppm) δ 8.23 (d, $J = 8.6$ Hz, 1H), 8.18 (d, $J = 8.5$ Hz, 1H), 8.13 (d, $J = 8.5$ Hz, 2H), 7.84 (dd, $J = 8.2, 4.3$ Hz, 2H), 7.74 (t, $J = 7.7$ Hz, 1H), 7.54 (t, $J = 7.5$ Hz, 1H), 7.50 (d, $J = 8.5$ Hz, 2H). 13C NMR (151 MHz, CDCl$_3$, ppm) δ 156.1, 148.2, 138.0, 137.2, 135.8, 130.0, 129.7, 129.2, 129.0, 127.6, 127.4, 126.7, 118.7. HRMS m/z calcd for C$_{15}$H$_{10}$ClN [M+H]$^+$ 240.0580, found 240.0572.
2-(4-bromophenyl)quinolone (8f)\(^{53}\)

![Structure of 2-(4-bromophenyl)quinolone](image)

Yellow solid (149.5 mg, 53% yield). \(^1\)H NMR (600 MHz, CDCl\(_3\), ppm) \(\delta\) 8.22 (d, \(J = 8.6\) Hz, 1H), 8.19 (d, \(J = 8.5\) Hz, 1H), 8.06 (d, \(J = 8.4\) Hz, 2H), 7.83 (d, \(J = 8.4\) Hz, 2H), 7.74 (t, \(J = 7.6\) Hz, 1H), 7.65 (d, \(J = 8.4\) Hz, 2H), 7.54 (t, \(J = 7.5\) Hz, 1H). \(^{13}\)C NMR (101 MHz, CDCl\(_3\), ppm) \(\delta\) 156.1, 148.2, 138.4, 137.3, 132.1, 130.1, 129.7, 129.3, 127.6, 127.4, 126.7, 124.1, 118.7. HRMS \(m/z\) calcd for C\(_{13}\)H\(_{10}\)BrN [M+H]\(^+\) 282.9997, found 282.9990.

2-(4-(trifluoromethyl)phenyl)quinolone (8g)\(^{55}\)

![Structure of 2-(4-(trifluoromethyl)phenyl)quinolone](image)

Yellow solid (136.0 mg, 50% yield). \(^1\)H NMR (400 MHz, CDCl\(_3\), ppm) \(\delta\) 8.27 (t, \(J = 8.5\) Hz, 3H), 8.21 (d, \(J = 8.5\) Hz, 1H), 7.94–7.82 (m, 2H), 7.77 (t, \(J = 8.7\) Hz, 3H), 7.57 (t, \(J = 7.4\) Hz, 1H). \(^{13}\)C NMR (101 MHz, CDCl\(_3\), ppm) \(\delta\) 155.8, 148.3, 143.0, 137.3, 130.2, 129.9, 128.0, 127.6, 127.0, 125.9, 118.9. HRMS \(m/z\) calcd for C\(_{16}\)H\(_{10}\)F\(_3\)N [M+H]\(^+\) 273.0765, found 273.0770.

2-(m-tolyl)quinolone (8h)\(^{53}\)

![Structure of 2-(m-tolyl)quinolone](image)

Yellow solid (133.6 mg, 61% yield). \(^1\)H NMR (400 MHz, CDCl\(_3\), ppm) \(\delta\) 8.22 (t, \(J = 7.7\) Hz, 2H), 8.03 (s, 1H), 7.94 (d, \(J = 7.6\) Hz, 1H), 7.85 (dd, \(J = 16.9, 8.3\) Hz, 2H), 7.74 (t, \(J = 7.6\) Hz, 1H), 7.53 (t, \(J = 7.4\) Hz, 1H), 7.43 (t, \(J = 7.6\) Hz, 1H), 7.30 (d, \(J = 7.4\) Hz, 1H), 2.49 (s, 3H). \(^{13}\)C NMR (101 MHz, CDCl\(_3\), ppm) \(\delta\) 157.6, 138.7, 137.2, 130.4, 130.0, 129.6, 128.9, 128.5, 127.6, 127.3, 126.5, 125.0, 119.4, 21.7. HRMS \(m/z\) calcd for C\(_{16}\)H\(_{13}\)N [M+H]\(^+\) 220.1126, found 220.1125.

2-(o-tolyl)quinolone (8i)\(^{53}\)

![Structure of 2-(o-tolyl)quinolone](image)

Yellow solid (122.6 mg, 56% yield). \(^1\)H NMR (400 MHz, CDCl\(_3\), ppm) \(\delta\) 8.21 (dd, \(J = 19.1, 8.5\) Hz, 2H), 7.85 (d, \(J = 8.1\) Hz, 1H), 7.76 (t, \(J = 7.6\) Hz, 1H), 7.55 (dd, \(J = 11.9, 6.0\) Hz, 3H), 7.37 (s, 3H), 2.46 (s, 3H). \(^{13}\)C NMR (151 MHz, CDCl\(_3\), ppm) \(\delta\) 160.2, 147.8, 140.7, 136.0, 130.8, 129.8, 129.4, 128.5, 127.5, 126.7, 126.0, 122.3, 20.4. HRMS \(m/z\) calcd for C\(_{16}\)H\(_{13}\)N [M+H]\(^+\) 220.1126, found 220.1125.
2-(naphthalen-2-yl)quinoline (8j)S24

![Structure](image)

Yellow solid (181.1 mg, 71% yield). 1H NMR (400 MHz, CDCl$_3$, ppm) δ 8.63 (s, 1H), 8.38 (d, $J = 8.5$ Hz, 1H), 8.31–8.21 (m, 2H), 8.06–7.98 (m, 3H), 7.91 (dd, $J = 5.9$, 3.4 Hz, 1H), 7.84 (d, $J = 8.1$ Hz, 1H), 7.76 (t, $J = 7.6$ Hz, 1H), 7.59–7.51 (m, 3H). 13C NMR (101 MHz, CDCl$_3$, ppm) δ 157.2, 148.3, 137.1, 136.9, 134.0, 133.6, 129.9, 129.7, 129.0, 128.7, 127.8, 127.6, 127.4, 126.9, 126.5, 125.2, 119.3. HRMS m/z calcd for C$_{19}$H$_{13}$N [M+H]$^+$ 256.1126, found 256.1136.

2-(pyridin-3-yl)quinolone (8k)S3

![Structure](image)

Brown solid (133.9 mg, 65% yield). 1H NMR (400 MHz, CDCl$_3$, ppm) δ 9.35 (s, 1H), 8.69 (d, $J = 4.6$ Hz, 1H), 8.50 (d, $J = 7.9$ Hz, 1H), 8.24 (d, $J = 8.6$ Hz, 1H), 8.17 (d, $J = 8.5$ Hz, 1H), 7.91–7.79 (m, 2H), 7.74 (t, $J = 7.7$ Hz, 1H), 7.55 (t, $J = 7.5$ Hz, 1H), 7.44 (dd, $J = 7.7$, 4.9 Hz, 1H). 13C NMR (101 MHz, CDCl$_3$, ppm) δ 154.7, 150.2, 148.9, 148.5, 137.3, 135.2, 130.1, 129.9, 127.6, 126.9, 123.8, 118.6. HRMS m/z calcd for C$_{14}$H$_{10}$N$_2$ [M+H]$^+$ 207.0922, found 207.0923.

2-(thiophen-2-yl)quinoline (8l)S3

![Structure](image)

Yellow solid (128.7 mg, 61% yield). 1H NMR (400 MHz, CDCl$_3$, ppm) δ 8.18–8.07 (m, 2H), 7.84–7.73 (m, 3H), 7.70 (t, $J = 7.7$ Hz, 1H), 7.48 (dd, $J = 8.4$, 6.7 Hz, 2H), 7.20–7.12 (m, 1H). 13C NMR (101 MHz, CDCl$_3$, ppm) δ 152.4, 148.1, 145.4, 136.8, 130.0, 129.3, 128.8, 128.2, 127.6, 127.3, 126.2, 117.8. HRMS m/z calcd for C$_{13}$H$_9$NS [M+H]$^+$ 212.0534, found 212.0539.

2-(ferrocenyl)quinoline (8m)S3

![Structure](image)

Red solid (209.7 mg, 67% yield). 1H NMR (400 MHz, CDCl$_3$, ppm) δ 8.06 (t, $J = 9.5$ Hz, 2H), 7.75 (d, $J = 7.7$ Hz, 1H), 7.67 (t, $J = 7.3$ Hz, 1H), 7.58 (d, $J = 8.2$ Hz, 1H), 7.48 (t, $J = 7.1$ Hz, 1H), 5.09 (s, 2H), 4.48 (s, 2H), 4.07 (s, 5H). 13C NMR (101 MHz, CDCl$_3$, ppm) δ 159.6, 148.4, 135.6, 129.5, 129.1, 127.6, 126.8, 125.5, 119.6, 84.0, 70.6, 69.8, 68.1. HRMS m/z calcd for C$_{19}$H$_{15}$FeN [M+H]$^+$ 314.0632, found 314.0630.
References

Fig. S1 The observed (red) and simulated (black) PXRD patterns for 1a.
The 1H and 13C NMR spectra of products

Fig. S2 The 1H and 13C NMR spectra for 1,3-diphenylpropan-1-one (4aa)
Fig. S3 The 1H and 13C NMR spectra for 3-phenyl-1-(p-tolyl)propan-1-one(4ab)
Fig. S4 The 1H and 13C NMR spectra for 1-(4-methoxyphenyl)-3-phenylpropan-1-one (4ac)
Fig. S5 The 1H and 13C NMR spectra for 1-(4-fluorophenyl)-3-phenylpropan-1-one (4ad)
Fig. S6 The 1H and 13C NMR spectra for 1-(4-chlorophenyl)-3-phenylpropan-1-one (4ae)
Fig. S7 The 1H and 13C NMR spectra for 1-(4-bromophenyl)-3-phenylpropan-1-one (4af)
Fig. S8 The 1H and 13C NMR spectra for 3-phenyl-1-(m-tolyl)propan-1-one (4ag)
Fig. S9 The 1H and 13C NMR spectra for 1-(3-bromophenyl)-3-phenylpropan-1-one (4ah)
Fig. S10 The 1H and 13C NMR spectra for 3-phenyl-1-(o-tolyl)propan-1-one(4ai)
Fig. S11 The 1H and 13C NMR spectra for 1-(2-chlorophenyl)-3-phenylpropan-1-one (4aj)

$$\text{Cl} \quad \text{O} \quad \text{phenyl}$$

8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0
fl (ppm)

190.2 141.3 128.5 128.1 128.6 53.9 53.1 28.6 28.1 26.2
fl (ppm)

S37
Fig. S12 The 1H and 13C NMR spectra for 1-mesityl-3-phenylpropan-1-one (4ak)
Fig. S13 The 1H and 13C NMR spectra for 1-(naphthalen-2-yl)-3-phenylpropan-1-one (4al)
Fig. S14 The 1H and 13C NMR spectra for 1-(naphthalen-2-yl)-3-phenylpropan-1-one (4am)
Fig. S15 The 1H and 13C NMR spectra for 3-phenyl-1-(ferroceny1)propan-1-one (4an)
Fig. S16 The 1H and 13C NMR spectra for 2-methyl-1,3-diphenylpropan-1-one (4ao)
Fig. S17 The 1H and 13C NMR spectra for 2-benzyl-1-phenylbutan-1-one (4ap)
Fig. S18 The 1H and 13C NMR spectra for 2-benzylcyclohexan-1-one (4aq)
Fig. S19 The 1H and 13C NMR spectra for 4,4-dimethyl-1-phenylpentan-3-one (4ar)
Fig. S20 The 1H and 13C NMR spectra for 1-phenyl-3-(p-tolyl)propan-1-one (4ba)
Fig. S21 The 1H and 13C NMR spectra for 3-(4-methoxyphenyl)-1-phenylpropan-1-one (4ca)
Fig. S22 The 1H and 13C NMR spectra for 3-(4-fluorophenyl)-1-phenylpropan-1-one (4da)
Fig. S23 The 1H and 13C NMR spectra for 3-(4-chlorophenyl)-1-phenylpropan-1-one (4ea)
Fig. S24 The 1H and 13C NMR spectra for 3-(4-bromophenyl)-1-phenylpropan-1-one (4fa)
Fig. S25 The 1H and 13C NMR spectra for 4-(3-oxo-3-phenylpropyl)benzonitrile(4ga)
Fig. S26 The 1H and 13C NMR spectra for 3-(2-methoxyphenyl)-1-phenylpropan-1-one (4ha)
Fig. S27 The 1H and 13C NMR spectra for 1-phenyl-3-(ferrocenyl)propan-1-one(4ia)
Fig. S28 The 1H and 13C NMR spectra for 3-(furan-2-yl)-1-phenylpropan-1-one (4ja)
Fig. S29 The 1H and 13C NMR spectra for 1-phenyl-3-(thiophen-2-yl)propan-1-one (4ka)
Fig. S30 The 1H and 13C NMR spectra for chalcone(5aa)
Fig. S31 The 1H and 13C NMR spectra for 3-phenyl-1-(p-tolyl)prop-2-en-1-one (5ab)
Fig. S32 The 1H and 13C NMR spectra for 1-(4-methoxyphenyl)-3-phenylprop-2-en-1-one (5ac)
Fig. S33 The 1H and 13C NMR spectra for 1-(4-fluorophenyl)-3-phenylprop-2-en-1-one(5ad)
Fig. S34 The 1H and 13C NMR spectra for 1-(4-chlorophenyl)-3-phenylprop-2-en-1-one (5ae)
Fig. S35 The 1H and 13C NMR spectra for 1-(4-bromophenyl)-3-phenylprop-2-en-1-one (5af)
Fig. S36 The 1H and 13C NMR spectra for 3-phenyl-1-(m-tolyl)prop-2-en-1-one(5ag)
Fig. S37 The 1H and 13C NMR spectra for (3-bromophenyl)-3-phenylprop-2-en-1-one (5ah)
Fig. S38 The 1H and 13C NMR spectra for 3-phenyl-1-(o-tolyl)prop-2-en-1-one (5ai)
Fig. S39 The 1H and 13C NMR spectra for (2-chlorophenyl)-3-phenylprop-2-en-1-one(5aj)
Fig. S40 The 1H and 13C NMR spectra for 1-mesityl-3-phenylprop-2-en-1-one (5ak)
Fig. S41 The 1H and 13C NMR spectra for 1-(naphthalen-2-yl)-3-phenylprop-2-en-1-one (5al)
Fig. S42 The 1H and 13C NMR spectra for 3-phenyl-1-(thiophen-2-yl)prop-2-en-1-one (5am)
Fig. S43 The 1H and 13C NMR spectra for 1-ferrocenyl-3-phenyl-2-propen-1-one(5an)
Fig. S44 The 1H and 13C NMR spectra for 2-benzylidencyclohexan-1-one(Saq)
Fig. S45 The 1H and 13C NMR spectra for 1-phenyl-3-(p-tolyl)prop-2-en-1-one (5ba)
Fig. S46 The 1H and 13C NMR spectra for 3-(4-methoxyphenyl)-1-phenylprop-2-en-1-one(5ca)
Fig. S47 The 1H and 13C NMR spectra for 3-(4-fluorophenyl)-1-phenylprop-2-en-1-one (5da)
Fig. S48 The 1H and 13C NMR spectra for 3-(4-chlorophenyl)-1-phenylprop-2-en-1-one (5ea)
Fig. S49 The 1H and 13C NMR spectra for 3-(4-bromophenyl)-1-phenylprop-2-en-1-one (5fa)
Fig. S50 The 1H and 13C NMR spectra for 4-(3-oxo-3-phenylprop-1-en-1-yl)benzonitrile(5ga)
Fig. S51 The 1H and 13C NMR spectra for 3-(2-methoxyphenyl)-1-phenylprop-2-en-1-one(5ha)
Fig. S52 The 1H and 13C NMR spectra for 3-ferrocenyl-1-phenylprop-2-enone (5ia)
Fig. S53 The 1H and 13C NMR spectra for 3-(furan-2-yl)-1-phenylprop-2-en-1-one(SJa)
Fig. S54 The 1H and 13C NMR spectra for 1-phenyl-3-(thiophen-2-yl)prop-2-en-1-one (5ka)
Fig. S55 The 1H and 13C NMR spectra for 1,3-diphenylpropan-1-ol (6aa)
Fig. S56 The 1H and 13C NMR spectra for 3-phenyl-1-(p-tolyl)propan-1-ol (6ab)
Fig. S57 The 1H and 13C NMR spectra for 1-(4-methoxyphenyl)-3-phenylpropan-1-ol (6ac)
Fig. S58 The 1H and 13C NMR spectra for 1-(4-fluorophenyl)-3-phenylpropan-1-ol (6ad)
Fig. S59 The 1H and 13C NMR spectra for 1-(4-chlorophenyl)-3-phenylpropan-1-ol (6ae)
Fig. S60 The 1H and 13C NMR spectra for 1-(4-bromophenyl)-3-phenylpropan-1-ol (6af)
Fig. S61 The 1H and 13C NMR spectra for 3-phenyl-1-(m-tolyl)propan-1-ol(64g)
Fig. S62 The 1H and 13C NMR spectra for 1-(3-bromophenyl)-3-phenylpropan-1-ol (6ah).
Fig. S63 The 1H and 13C NMR spectra for 3-phenyl-1-(o-tolyl)propan-1-ol(6ai)
Fig. S64 The 1H and 13C NMR spectra for 1-(2-chlorophenyl)-3-phenylpropan-1-ol (6aj)
Fig. S65 The 1H and 13C NMR spectra for 1-(naphthalen-2-yl)-3-phenylpropan-1-ol (6a1)
Fig. S66 The 1H and 13C NMR spectra for 3-phenyl-1-(thiophen-2-yl)propan-1-ol (6am)
Fig. S67 The 1H and 13C NMR spectra for 1-ferrocenyl-2-phenyl-ethanol (6an)
Fig. S68 The 1H and 13C NMR spectra for 1-phenyl-3-(p-tolyl)propan-1-ol (6ba)
Fig. S69 The 1H and 13C NMR spectra for 3-(4-methoxyphenyl)-1-phenylpropan-1-ol (6ca)
Fig. S70 The 1H and 13C NMR spectra for 3-(4-fluorophenyl)-1-phenylpropan-1-ol (6da)
Fig. S71 The 1H and 13C NMR spectra for 3-(4-chlorophenyl)-1-phenylpropan-1-ol (6ea)
Fig. S72 The 1H and 13C NMR spectra for 3-(4-bromophenyl)-1-phenylpropan-1-ol (6fa)
Fig. S73 The 1H and 13C NMR spectra for 3-(2-methoxyphenyl)-1-phenylpropan-1-ol (6ha)
Fig. S74 The 1H and 13C NMR spectra for 3-ferrocenyl-1-phenylpropan-1-ol (6ia)
Fig. S75 The 1H and 13C NMR spectra for 3-(furan-2-yl)-1-phenylpropan-1-ol (6ja)
Fig. S76 The 1H and 13C NMR spectra for 2-phenylquinoline(8a)
Fig. S77 The 1H and 13C NMR spectra for 2-(p-tolyl)quinolone (8b)
Fig. S78 The 1H and 13C NMR spectra for 2-(4-Methoxyphenyl)quinolone (8c)
Fig. S79 The 1H and 13C NMR spectra for 2-(4-fluorophenyl)quinolone (8d)
Fig. S80 The 1H and 13C NMR spectra for 2-(4-chlorophenyl)quinolone (8e)
Fig. S81 The 1H and 13C NMR spectra for 2-(4-bromophenyl)quinolone (8f)
Fig. S82 The 1H and 13C NMR spectra for 2-(4-(trifluoromethyl)phenyl)quinolone(8g)
Fig. S83 The 1H and 13C NMR spectra for 2-(m-tolyl)quinolone (8h)
Fig. S84 The 1H and 13C NMR spectra for 2-(o-tolyl)quinolone (8i)
Fig. S85 The 1H and 13C NMR spectra for 2-(naphthalen-2-yl)quinolone (8j)
Fig. S86 The 1H and 13C NMR spectra for 2-(pyridin-3-yl)quinolone (8k)
Fig. S87 The 1H and 13C NMR spectra for 2-(thiophen-2-yl)quinolone (81)
Fig. S88 The 1H and 13C NMR spectra for 2-(ferrocenyl)quinolone (8m)