Catalyst-free and Solvent-free Hydroboration of Carboxylic Acids

Weifan Wang, a Man Luo, a Da Zhu, a Weiwei Yao, *b Li Xu a and Mengtao Ma a

a Department of Chemistry and Materials Science, College of Science, Nanjing Forestry University, Nanjing 210037, China
b College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China

Contents

General Information

General Procedure for Hydroboration of Carboxylic Acids

Spectroscopic Data for Acid Hydroboration Products

NMR Spectra of Acid Hydroboration Products

Experimental Observations

Computational Studies

References
EXPERIMENTAL SECTION

General Information. All reactions were performed under an atmosphere of nitrogen using glovebox technique. 1H, 13C{1H}, 11B{1H}, and 19F{1H} NMR spectra were recorded at 25°C on Bruker Avance III 600 MHz spectrometer in deuterated solvents and were referenced to the resonances of the solvent used. Chemicals were purchased from Sigma-Aldrich, Alfa Aesar, and Acros and used without further purification.

General Procedure for Hydroboration of Carboxylic Acids. Carboxylic acids (0.4 mmol) and HBpin (1.6 mmol) were placed in a 10 ml Schlenk flask equipped with a magnetic stir bar inside the glove box. Then the reaction mixture was stirred at 25°C for 6 hours or 60°C for 1 hour. The progress of the reaction was monitored by 1H NMR, 13C NMR, 11B NMR, and 19F NMR using mesitylene (0.4 mmol) as an internal standard. Two examples were selected to purify to get pure products: upon completion of the reaction, the combined organic layers were dried, evaporated and purified by column chromatography over silica-gel (100-200 mesh) using ethyl acetate/hexane (1:4) mixture as eluents to obtain the pure products (1a, 1g).

Spectroscopic Data for Acid Hydroboration Products

1H NMR (600 MHz, CDCl$_3$): δ 7.25–7.14 (m, 5 H), 4.83 (s, 2 H), 1.16 (s-overlap, 48 H). 13C{1H} NMR (151 MHz, CDCl$_3$): δ 139.19, 128.23, 127.32, 126.87, 82.99, 82.86, 66.61, 24.56, 24.49. 11B{1H} NMR (193 MHz, CDCl$_3$): δ 22.50.

1H NMR (600 MHz, CDCl$_3$): δ 7.12 (d, 2 H, 3$J_{HH} = 7.8$ Hz), 7.01 (d, 2 H, 3$J_{HH} = 7.8$ Hz), 4.77 (s, 2 H), 2.22 (s, 3 H), 1.15 (s-overlap, 48 H). 13C{1H} NMR (151 MHz,
CDCl₃): δ 136.86, 136.39, 128.91, 126.90, 82.96, 82.77, 66.57, 24.58, 24.51, 21.02.

¹¹B{¹H} NMR (193 MHz, CDCl₃): δ 22.44.

\[
\text{1e}^{[S1]} \quad \begin{align*}
\text{1H NMR (600 MHz, CDCl₃):} & \quad \delta 7.24 \text{ (d, 2 H, } J_{\text{HH}} = 7.8 \text{ Hz)},
\delta 7.17 \text{ (d, 2 H, } J_{\text{HH}} = 8.4 \\
& \quad \text{Hz), 4.79 (s, 2 H), 1.21 (s, 9 H), 1.15 (s-overlap, 48 H).}
\end{align*}
\]

¹³C{¹H} NMR (151 MHz, CDCl₃): δ 150.16, 136.26, 126.86, 125.10, 82.93, 82.74, 66.43, 34.40, 31.31, 24.55, 24.48. ¹¹B{¹H} NMR (193 MHz, CDCl₃): δ 22.50.

\[
\text{1f}^{[S3]} \quad \begin{align*}
\text{1H NMR (600 MHz, CDCl₃):} & \quad \delta 8.07 \text{ (d, 2 H, } J_{\text{HH}} = 9.0 \text{ Hz)},
\delta 7.39 \text{ (d, 2 H, } J_{\text{HH}} = 8.4 \\
& \quad \text{Hz).}
\end{align*}
\]

¹¹B{¹H} NMR (193 MHz, CDCl₃): δ 22.38.
Hz), 4.91 (s, 2 H), 1.16 (s-overlap, 48 H). 13C $\text{^1}H$ NMR (151 MHz, CDCl$_3$): δ 147.17, 146.58, 126.79, 123.45, 83.13, 82.93, 65.45, 24.51, 24.44. 11B $\text{^1}H$ NMR (193 MHz, CDCl$_3$): δ 22.44.

\[\text{F} \begin{array}{c} \text{OBpin} \\ 1g^{[S1,S3]} \end{array} \]

1H NMR (600 MHz, CDCl$_3$): δ 7.22–7.19 (m, 2 H), 6.91–6.88 (m, 2 H), 4.76 (s, 2 H), 1.16 (s-overlap, 48 H). 13C $\text{^1}H$ NMR (151 MHz, CDCl$_3$): δ 162.96, 161.33, 135.03, 135.01, 128.61, 128.56, 115.09, 114.94, 82.94, 82.89, 65.96, 24.52, 24.46. 11B $\text{^1}H$ NMR (193 MHz, CDCl$_3$): δ 22.40. 19F $\text{^1}H$ NMR (565 MHz, CDCl$_3$): δ -115.23.

\[\text{F} \begin{array}{c} \text{OBpin} \\ 1h^{[S5]} \end{array} \]

1H NMR (600 MHz, CDCl$_3$): δ 7.17–7.14 (m, 1 H), 6.97 (t, 2 H, $^3J_{HH} = 8.4$ Hz), 6.83–6.80 (m, 1 H), 4.79 (s, 2 H), 1.15 (s-overlap, 48 H). 13C $\text{^1}H$ NMR (151 MHz, CDCl$_3$): δ 163.68, 162.05, 141.90, 141.86, 129.76, 129.71, 121.94, 121.92, 114.11, 113.97, 113.45, 113.30, 82.95, 82.91, 65.82, 65.81, 24.49, 24.44. 11B $\text{^1}H$ NMR (193 MHz, CDCl$_3$): δ 22.44. 19F $\text{^1}H$ NMR (565 MHz, CDCl$_3$): δ -113.30.

\[\text{F} \begin{array}{c} \text{OBpin} \\ 1i^{[S4,S5]} \end{array} \]

1H NMR (600 MHz, CDCl$_3$): δ 7.35–7.32 (m, 1 H), 7.14–7.10 (m, 1 H), 7.00–6.98 (m, 1 H), 6.88 (t, 1 H, $^3J_{HH} = 9.6$ Hz), 4.89 (s, 2 H), 1.15 (s-overlap, 48 H). 13C $\text{^1}H$ NMR (151 MHz, CDCl$_3$): δ 161.04, 159.41, 129.00, 128.95, 128.85, 128.82, 126.51, 126.41, 123.94, 123.92, 115.00, 114.86, 82.93, 60.73, 60.70, 24.52, 24.48. 11B $\text{^1}H$ NMR (193 MHz, CDCl$_3$): δ 22.47. 19F $\text{^1}H$ NMR (565 MHz, CDCl$_3$): δ -119.30.
1H NMR (600 MHz, CDCl\textsubscript{3}): δ 7.18–7.15 (m, 4 H), 4.77 (s, 2 H), 1.15 (s-overlap, 48 H). 13C\{1H\} NMR (151 MHz, CDCl\textsubscript{3}): δ 137.74, 133.02, 128.34, 128.04, 82.93, 65.84, 24.52, 24.46. 11B\{1H\} NMR (193 MHz, CDCl\textsubscript{3}): δ 22.43.

1H NMR (600 MHz, CDCl\textsubscript{3}): δ 7.33 (d, 2 H, \textit{J}_{HH} = 8.4 Hz), 7.11 (d, 2 H, \textit{J}_{HH} = 8.4 Hz), 4.76 (s, 2 H), 1.16 (s-overlap, 48 H). 13C\{1H\} NMR (151 MHz, CDCl\textsubscript{3}): δ 138.26, 131.32, 128.37, 121.13, 82.97, 82.96, 65.88, 24.55, 24.49. 11B\{1H\} NMR (193 MHz, CDCl\textsubscript{3}): δ 22.40.

1H NMR (600 MHz, CDCl\textsubscript{3}): δ 7.40–7.37 (m, 2 H), 7.18 (t, 1 H, \textit{J}_{HH} = 7.2 Hz), 7.01–6.99 (m, 1 H), 4.86 (s, 2 H), 1.14 (s-overlap, 48 H). 13C\{1H\} NMR (151 MHz, CDCl\textsubscript{3}): δ 138.25, 132.17, 128.56, 127.72, 127.27, 121.43, 82.95, 82.88, 66.16, 24.49, 24.43. 11B\{1H\} NMR (193 MHz, CDCl\textsubscript{3}): δ 22.47.

1H NMR (600 MHz, CDCl\textsubscript{3}): δ 7.23–7.19 (m, 4 H), 5.14 (q, 1 H, \textit{J}_{HH} = 6.6 Hz), 4.80 (s, 2 H), 1.37 (d, 3 H, \textit{J}_{HH} = 6.6 Hz), 1.16 (s-overlap, 48 H). 13C\{1H\} NMR (151 MHz, CDCl\textsubscript{3}): δ 143.73, 138.04, 126.60, 125.20, 82.92, 82.78, 82.58, 72.28, 66.40, 25.35, 24.52, 24.45, 24.43. 11B\{1H\} NMR (193 MHz, CDCl\textsubscript{3}): δ 22.34.
1H NMR (600 MHz, CDCl₃): δ 7.23 (d, 2 H, ³JHH = 8.4 Hz), 6.93 (d, 2 H, ³JHH = 8.4 Hz), 4.79 (s, 2 H), 2.13 (s, 3 H), 1.14 (s-overlap, 48 H). 13C{1H} NMR (151 MHz, CDCl₃): δ 169.00, 149.85, 136.69, 127.60, 121.26, 82.80, 82.75, 65.89, 24.42, 24.35, 20.79. 11B{1H} NMR (193 MHz, CDCl₃): δ 22.36.

1H NMR (600 MHz, CDCl₃): δ 7.16−7.05 (m, 5 H), 3.87−3.75 (m, 2 H), 2.88−2.83 (m, 1 H), 1.17 (d, 3 H, ³JHH = 7.2 Hz), 1.14 (s-overlap, 48 H). 13C{1H} NMR (151 MHz, CDCl₃): δ 143.58, 128.13, 127.41, 126.19, 82.80, 82.35, 70.19, 41.23, 24.38, 24.35, 17.39. 11B{1H} NMR (193 MHz, CDCl₃): δ 22.08.

1H NMR (600 MHz, CDCl₃): δ 7.13−7.03 (m, 10 H), 4.29 (d, 2 H, ³JHH = 7.2 Hz), 4.11 (t, 1 H, ³JHH = 7.2 Hz), 1.13 (s-overlap, 48 H). 13C{1H} NMR (151 MHz, CDCl₃): δ 141.64, 128.37, 128.25, 126.35, 82.87, 82.49, 67.68, 52.46, 24.42, 24.39. 11B{1H} NMR (193 MHz, CDCl₃): δ 22.07.

1H NMR (600 MHz, CDCl₃): δ 7.90 (d, 1 H, ³JHH = 8.4 Hz), 7.69 (d, 1 H, ³JHH = 7.8 Hz).
Hz), 7.62 (d, 1 H, $^3J_{HH} = 7.8$ Hz), 7.44 (d, 1 H, $^3J_{HH} = 7.2$ Hz), 7.36–7.27 (m, 3 H), 5.26 (s, 2 H), 1.11 (s-overlap, 48 H). 13C{1H} NMR (151 MHz, CDCl$_3$): δ 134.58, 133.51, 130.90, 128.46, 128.08, 125.97, 125.54, 125.21, 124.75, 123.34, 82.87, 82.79, 64.87, 24.50, 24.41. 11B{1H} NMR (193 MHz, CDCl$_3$): δ 22.55.

\[\text{OBpin} \]

1H NMR (600 MHz, CDCl$_3$): δ 7.68–7.65 (m, 4 H), 7.33–7.28 (m, 3 H), 4.96 (s, 2 H), 1.12 (s-overlap, 48 H). 13C{1H} NMR (151 MHz, CDCl$_3$): δ 136.65, 133.29, 132.79, 127.92, 127.80, 127.58, 125.94, 125.63, 125.07, 124.76, 82.92, 82.87, 66.64, 24.52, 24.43. 11B{1H} NMR (193 MHz, CDCl$_3$): δ 22.53.

\[\text{OBpin} \]

1H NMR (600 MHz, CDCl$_3$): δ 3.80 (q, 2 H, $^3J_{HH} = 7.2$ Hz), 1.17 (s-overlap, 48 H), 1.12 (t, 3 H, $^3J_{HH} = 6.6$ Hz). 13C{1H} NMR (151 MHz, CDCl$_3$): δ 82.90, 82.41, 60.48, 24.48, 24.43, 17.11. 11B{1H} NMR (193 MHz, CDCl$_3$): δ 22.06.

\[\text{OBpin} \]

1H NMR (600 MHz, CDCl$_3$): δ 3.73 (t, 2 H, $^3J_{HH} = 6.6$ Hz), 1.49–1.44 (m, 2 H), 1.25–1.22 (m, 4 H), 1.16 (s-overlap, 48 H), 0.80 (t, 3 H, $^3J_{HH} = 7.2$ Hz). 13C{1H} NMR (151 MHz, CDCl$_3$): δ 82.78, 82.29, 64.68, 31.04, 27.66, 24.40, 24.36, 22.22, 13.85. 11B{1H} NMR (193 MHz, CDCl$_3$): δ 22.09.

\[\text{OBpin} \]

1H NMR (600 MHz, CDCl$_3$): δ 3.74 (t, 2 H, $^3J_{HH} = 6.6$ Hz), 1.49–1.44 (m, 2 H), 1.28–1.21 (m, 8 H), 1.17 (s-overlap, 48 H), 0.79 (t, 3 H, $^3J_{HH} = 6.6$ Hz). 13C{1H} NMR (151 MHz, CDCl$_3$): δ 82.88, 82.37, 64.79, 31.77, 31.41, 28.91, 25.50, 24.46, 24.42,
22.52, 13.97. 11B 1H NMR (193 MHz, CDCl₃): δ 22.06.

\[
\begin{align*}
\text{Cl} & \quad \text{OBpin} \quad 2d^{[S9]} \\
^{1}\text{H NMR} (600 \text{ MHz, CDCl}_3): & \quad \delta 3.90 (t, 2 \text{ H}, 3J_{\text{HH}} = 6.0 \text{ Hz}), 3.53 (t, 2 \text{ H}, 3J_{\text{HH}} = 6.6 \text{ Hz}), 1.93-1.88 (m, 2 \text{ H}), 1.17 (s-overlap, 48 \text{ H}). \quad ^{13}\text{C} \quad ^{1}\text{H} \text{ NMR} (151 \text{ MHz, CDCl}_3): \quad \delta 82.93, 82.74, 61.38, 41.13, 34.19, 24.51, 24.46. \quad ^{11}\text{B} \quad ^{1}\text{H} \text{ NMR} (193 \text{ MHz, CDCl}_3): \quad \delta 22.11.
\end{align*}
\]

\[
\begin{align*}
\text{OBpin} \quad 2e^{[S1,S3]} \\
^{1}\text{H NMR} (600 \text{ MHz, CDCl}_3): & \quad \delta 3.42 (s, 2 \text{ H}), 1.17 (s-overlap, 48 \text{ H}), 0.81 (s, 9 \text{ H}). \quad ^{13}\text{C} \quad ^{1}\text{H} \text{ NMR} (151 \text{ MHz, CDCl}_3): \quad \delta 82.89, 82.40, 74.78, 32.23, 25.92, 24.78, 24.45. \quad ^{11}\text{B} \quad ^{1}\text{H} \text{ NMR} (193 \text{ MHz, CDCl}_3): \quad \delta 22.12.
\end{align*}
\]

\[
\begin{align*}
\text{OBpin} \quad 2f^{[S2,S9]} \\
^{1}\text{H NMR} (600 \text{ MHz, CDCl}_3): & \quad \delta 3.74 (t, 2 \text{ H}, 3J_{\text{HH}} = 6.6 \text{ Hz}), 1.49-1.45 (m, 2 \text{ H}), 1.18, 1.16 (s-overlap, 74 \text{ H}), 0.80 (t, 3 \text{ H}, 3J_{\text{HH}} = 7.2 \text{ Hz}). \quad ^{13}\text{C} \quad ^{1}\text{H} \text{ NMR} (151 \text{ MHz, CDCl}_3): \quad \delta 82.98, 82.48, 64.91, 31.95, 31.50, 29.72, 29.63, 29.39, 29.35, 25.63, 24.56, 24.52, 22.70, 14.10. \quad ^{11}\text{B} \quad ^{1}\text{H} \text{ NMR} (193 \text{ MHz, CDCl}_3): \quad \delta 22.06.
\end{align*}
\]

\[
\begin{align*}
\text{OBpin} \quad 2g^{[S2,S9]} \\
^{1}\text{H NMR} (600 \text{ MHz, CDCl}_3): & \quad \delta 3.74 (t, 2 \text{ H}, 3J_{\text{HH}} = 6.6 \text{ Hz}), 1.49-1.45 (m, 2 \text{ H}), 1.17, 1.16, 1.14 (s-overlap, 78 \text{ H}), 0.80 (t, 3 \text{ H}, 3J_{\text{HH}} = 6.6 \text{ Hz}). \quad ^{13}\text{C} \quad ^{1}\text{H} \text{ NMR} (151 \text{ MHz, CDCl}_3): \quad \delta 82.44, 81.82, 64.88, 31.93, 31.49, 30.51, 30.30, 30.28, 29.67, 29.39, 25.64, 24.84, 24.50, 24.47, 22.66, 14.09. \quad ^{11}\text{B} \quad ^{1}\text{H} \text{ NMR} (193 \text{ MHz, CDCl}_3): \quad \delta 22.24.
\end{align*}
\]

\[
\begin{align*}
\text{OBpin} \quad 2h^{[S3]} \\
^{1}\text{H NMR} (600 \text{ MHz, CDCl}_3): & \quad \delta 3.56 (d, 2 \text{ H}, 3J_{\text{HH}} = 6.6 \text{ Hz}), 1.65-1.40 (m, 7 \text{ H}), 1.36 (q, 2 \text{ H}, 3J_{\text{HH}} = 6.6 \text{ Hz}), 1.33-1.27 (m, 2 \text{ H}), 1.17 (s-overlap, 48 \text{ H}), 1.10-1.05 (m, 2 \text{ H}),
\end{align*}
\]
$0.89–0.81$ (m, 2 H). 13C $\{^1$H$\}$ NMR (151 MHz, CDCl$_3$): δ 82.90, 82.40, 70.24, 39.30, 29.28, 26.48, 25.73, 24.48, 24.45. 11B $\{^1$H$\}$ NMR (193 MHz, CDCl$_3$): δ 22.05.

![Diagram](image)

$2i^{[S2]}$

1H NMR (600 MHz, CDCl$_3$): δ 3.90 (t, 2 H, 3J$_{HH} = 6.0$ Hz), 1.65–1.54 (m, 5 H), 1.36 (q, 2 H, 3J$_{HH} = 6.6$ Hz), 1.33–1.27 (m, 2 H). 1.17 (s-overlap, 48 H), 1.09–1.04 (m, 2 H), 0.84–0.77 (m, 2 H). 13C $\{^1$H$\}$ NMR (151 MHz, CDCl$_3$): δ 82.93, 82.43, 62.68, 38.94, 33.86, 33.18, 26.56, 26.24, 24.52, 24.47. 11B $\{^1$H$\}$ NMR (193 MHz, CDCl$_3$): δ 22.07.

![Diagram](image)

$2j^{[S1,S3]}$

1H NMR (600 MHz, CDCl$_3$): δ 7.16–7.13 (m, 2 H), 7.08–7.04 (m, 3 H), 3.76 (t, 2 H, 3J$_{HH} = 6.6$ Hz), 2.58 (t, 2 H, 3J$_{HH} = 7.2$ Hz), 1.80–1.75 (m, 2 H), 1.15 (s-overlap, 48 H). 13C $\{^1$H$\}$ NMR (151 MHz, CDCl$_3$): δ 141.71, 128.37, 128.22, 125.67, 82.82, 82.50, 63.98, 33.08, 31.79, 24.49, 24.43. 11B $\{^1$H$\}$ NMR (193 MHz, CDCl$_3$): δ 22.18.

![Diagram](image)

$2k^{[S1,S3]}$

1H NMR (600 MHz, CDCl$_3$): δ 7.15–7.12 (m, 2 H), 7.06–7.02 (m, 3 H), 3.75 (t, 2 H, 3J$_{HH} = 6.0$ Hz), 2.51 (t, 2 H, 3J$_{HH} = 7.8$ Hz), 1.60–1.55 (m, 2 H), 1.52–1.47 (m, 2 H), 1.15 (s-overlap, 48 H). 13C $\{^1$H$\}$ NMR (151 MHz, CDCl$_3$): δ 142.16, 128.26, 128.10, 125.53, 82.82, 82.37, 64.48, 35.38, 30.89, 27.32, 24.43, 24.39. 11B $\{^1$H$\}$ NMR (193 MHz, CDCl$_3$): δ 22.10.

![Diagram](image)

$2l^{[S1,S3]}$

1H NMR (600 MHz, CDCl$_3$): δ 3.72 (t, 4 H, 3J$_{HH} = 6.6$ Hz), 1.53–1.42 (m, 4 H), 1.28–1.25 (m, 4 H), 1.17 (s-overlap, 84 H). 13C $\{^1$H$\}$ NMR (151 MHz, CDCl$_3$): δ 82.72,
NMR Spectra of Acid Hydroboration Products (mesitylene (*), excess HBpin (×), O(Bpin)$_2$(+))
$^{11}{\text{B}}$

![11B spectrum]

$^{1}{\text{H}}$

![1H spectrum]
1H

OBpin

$1d$

1H

OBpin

$1d$

^{13}C

OBpin

$1d$
\[^{1}H \]

\[\text{Br} \quad \text{OBpin} \quad \text{Ik} \]

\[^{13}C \]

\[\text{Br} \quad \text{OBpin} \quad \text{Ik} \]
11B

Br \quad OBpin \quad Ik

1H

OBpin \quad Ik

Br \quad 1.13 \quad 0.005

0.8-1.2 2.15 1.43 4.66

8.5-9.0 5.90 9.10 4.90

8.5-9.0 5.90 9.10 4.90
1H

1H spectrum of compound 2a.

13C

13C spectrum of compound 2a.
\[^1H \]

\[\text{OBpin} \]

\[2c \]

\[^{13}C \]

\[\text{OBpin} \]

\[2c \]
^{11}B

^{13}C

^{1}H
13C

11B

1H
^{13}\text{C}

\begin{align*}
\text{OBpin} \\
2i
\end{align*}

^{11}\text{B}

\begin{align*}
\text{OBpin} \\
2i
\end{align*}
1H

\[\text{OBpin} \]

2k

13C

\[\text{OBpin} \]

2k
^{11}B

\[
\begin{align*}
&\text{OBpin} \\
&\begin{array}{c}
\text{CH}_2 \\
\text{OBpin}
\end{array} \\
&\text{1p}
\end{align*}
\]

^{1}H

\[
\begin{align*}
&\text{OBpin} \\
&\text{OBpin} \\
&\text{2l}
\end{align*}
\]
13C

13B
^1H

![NMR spectrum of ^1H](image)

![Structure of phenylethanol](image)

^{13}C

![NMR spectrum of ^{13}C](image)

![Structure of phenylethanol](image)
Experimental Observations

(1) HBpin (2.0 mmol) was added dropwise to Acetic acid (2.0 mmol) in a 10 ml Schlenk flask equipped with a magnetic stir bar inside the glove box. Hydrogen evolution was observed as the reaction progressed. Then the reaction mixture was stirred at 25°C for 3 hours. The progress of the reaction was monitored by 1H NMR, 13C NMR, and 11B NMR.

(2) HBpin (4.0 mmol) was added dropwise to Acetic acid (2.0 mmol) in a 10 ml Schlenk flask equipped with a magnetic stir bar inside the glove box. Hydrogen evolution was observed as the reaction progressed. Then the reaction mixture was stirred at 25°C for 6 hours. The progress of the reaction was monitored by 1H NMR, 13C NMR, and 11B NMR.

(3) HBpin (6.0 mmol) was added dropwise to Acetic acid (2.0 mmol) in a 10 ml Schlenk flask equipped with a magnetic stir bar inside the glove box. Hydrogen evolution was
observed as the reaction progressed. Then the reaction mixture was stirred at 25°C for 12 hours. The progress of the reaction was monitored by 1H NMR, 13C NMR, and 11B NMR.

Acetic acid (0.4 mmol) and HBpin (1.6 mmol) were placed in a 10 ml Schlenk flask equipped with a magnetic stir bar inside the glove box. Hydrogen evolution was observed as the reaction progressed. Then the reaction mixture was stirred at 0°C for 5 hours, 7 hours, 12 hours and 18 hours. The progress of the reaction was monitored by 1H NMR, 13C NMR, and 11B NMR.
1H NMR (600 MHz, CDCl$_3$): δ 2.06 (s, 3 H), 1.25 (s, 12 H). 13C{1H} NMR (151 MHz,
CDCl$_3$): δ 167.93, 84.23, 24.49, 22.19. 11B{1H} NMR (193 MHz, CDCl$_3$): δ 21.91. HRMS (ESI): m/z Calcd. For C$_8$H$_{15}$BO$_4$ [M$^{+}$+Na]: 209.0961; Found 209.1049.

0°C 5h

1H

OBpin

3a

13C

OBpin

3a
^{11}B

^{1}H

$0^\circ\text{C} 7\text{h}$

OBpin

$3a$
Computational Studies

All structures were initially optimized using density functional theory (DFT) by using the B3LYP\cite{S11} functional as implemented in Gaussian 09\cite{S12}. Optimizations were carried out in a solvent model (SMD, solvent = acetic acid)\cite{S13} by using the 6-
31G*\cite{14} basis set for C, H, O, B. The critical stationary points were characterized by frequency calculations in order to verify that they have the right number of imaginary frequencies, and the intrinsic reaction coordinates (IRC)\cite{15} were followed to verify the energy profiles connecting the key transition structures to the correct associated local minima. The energies showed in the manuscript have been refined by single-point calculations with the M06\cite{16} functional and def2-TZVP\cite{17} basis set on the previously optimized structures. The values correspond to Free Gibbs energies and are given in kcal/mol. These energies are relative to the acetic acid and HBpin, marked as $G = 0.0$ kcal/mol in the figure 1.

Table S1: E_{el} represents the single point energies at def2-TZVP. Thermal corrections to enthalpy (H_{corr}) and Gibbs free energy (G_{corr}) were calculated at 298.15K and 1atm. ΔG_{sol} are calculated by employing the SMD model at M06-2X/def2-TZVP level. The optimized cartesian coordinates are also given.

HBpin (B3LYP)
$E_{el} = -412.032005$
$H_{corr}= 0.201984$
$G_{corr}= 0.158359$
$\Delta G_{sol}= -0.01219$

\begin{verbatim}
B -0.00007100 1.94494200 -0.00035500
H -0.00025200 3.13486700 -0.00032600
O -1.08610200 1.20090400 -0.36752200
O 1.08622900 1.20116200 0.36656500
C -0.78923700 -0.19149000 -0.04498300
C 0.78924100 -0.19149200 0.04502600
C -1.37972600 -1.07413000 -1.14309000
H -1.14054600 -2.12925900 -0.96739700
H -2.46942100 -0.97057400 -1.14828500
H -1.01063100 -0.79279000 -2.13191900
C -1.48003700 -0.48320900 1.29355200
H -2.54921100 -0.27221400 1.19415500
H -1.36098600 -1.53070600 1.58961600
H -1.08481000 0.15102900 2.09318000
C 1.48004300 -0.48415600 -1.29329100
H 2.54929600 -0.27361500 -1.19385600
\end{verbatim}
<table>
<thead>
<tr>
<th>Atom</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>1.360534</td>
<td>-1.531745</td>
<td>-1.588846</td>
</tr>
<tr>
<td>H</td>
<td>1.085229</td>
<td>0.149881</td>
<td>-2.093283</td>
</tr>
<tr>
<td>C</td>
<td>1.379677</td>
<td>-1.073296</td>
<td>1.143800</td>
</tr>
<tr>
<td>H</td>
<td>1.140849</td>
<td>-2.128609</td>
<td>0.968709</td>
</tr>
<tr>
<td>H</td>
<td>2.469345</td>
<td>-0.969425</td>
<td>1.149263</td>
</tr>
<tr>
<td>H</td>
<td>1.010175</td>
<td>-0.791435</td>
<td>2.132334</td>
</tr>
</tbody>
</table>

Acetic acid (B3LYP)
- $E_{el} = -229.189$
- $H_{corr} = 0.067541$
- $G_{corr} = 0.034765$
- $\Delta G_{sol} = -0.010132$

<table>
<thead>
<tr>
<th>Atom</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>-1.397232</td>
<td>-0.110316</td>
<td>-0.000009</td>
</tr>
<tr>
<td>H</td>
<td>-1.684338</td>
<td>-0.691148</td>
<td>0.882718</td>
</tr>
<tr>
<td>H</td>
<td>-1.917836</td>
<td>0.847429</td>
<td>-0.001265</td>
</tr>
<tr>
<td>H</td>
<td>-1.684095</td>
<td>-0.693461</td>
<td>-0.881286</td>
</tr>
<tr>
<td>C</td>
<td>0.092272</td>
<td>0.125934</td>
<td>-0.000037</td>
</tr>
<tr>
<td>O</td>
<td>0.645040</td>
<td>1.202361</td>
<td>0.000008</td>
</tr>
<tr>
<td>O</td>
<td>0.779000</td>
<td>-1.046603</td>
<td>-0.000003</td>
</tr>
<tr>
<td>H</td>
<td>1.723706</td>
<td>-0.802592</td>
<td>0.000072</td>
</tr>
</tbody>
</table>

H_2 (B3LYP)
- $E_{el} = -1.17965$
- $H_{corr} = 0.013450$
- $G_{corr} = -0.001342$
- $\Delta G_{sol} = -0.000393$

<table>
<thead>
<tr>
<th>Atom</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>0.000000</td>
<td>0.000000</td>
<td>0.371394</td>
</tr>
<tr>
<td>H</td>
<td>0.000000</td>
<td>0.000000</td>
<td>-0.371394</td>
</tr>
</tbody>
</table>

TS1 (B3LYP)
- $E_{el} = -641.148$
- $H_{corr} = 0.264868$
- $G_{corr} = 0.207945$
- $\Delta G_{sol} = -0.019291$

<table>
<thead>
<tr>
<th>Atom</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>2.910584</td>
<td>1.152735</td>
<td>0.796252</td>
</tr>
<tr>
<td>H</td>
<td>2.706125</td>
<td>0.965674</td>
<td>1.854676</td>
</tr>
<tr>
<td>H</td>
<td>3.848296</td>
<td>1.697652</td>
<td>0.678620</td>
</tr>
<tr>
<td>H</td>
<td>2.083954</td>
<td>1.748498</td>
<td>0.395530</td>
</tr>
<tr>
<td>C</td>
<td>2.980596</td>
<td>-0.141878</td>
<td>0.034810</td>
</tr>
<tr>
<td></td>
<td>x</td>
<td>y</td>
<td>z</td>
</tr>
<tr>
<td>---</td>
<td>------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>O</td>
<td>3.84332400</td>
<td>-0.46885700</td>
<td>-0.73660600</td>
</tr>
<tr>
<td>O</td>
<td>1.93107900</td>
<td>-1.00853900</td>
<td>0.32369600</td>
</tr>
<tr>
<td>H</td>
<td>1.59612400</td>
<td>-1.73234700</td>
<td>-0.62789000</td>
</tr>
<tr>
<td>B</td>
<td>0.40572400</td>
<td>-0.86356300</td>
<td>-0.27206000</td>
</tr>
<tr>
<td>H</td>
<td>0.72627400</td>
<td>-1.85321300</td>
<td>-1.17353300</td>
</tr>
<tr>
<td>O</td>
<td>0.09500700</td>
<td>0.32589900</td>
<td>-0.91714700</td>
</tr>
<tr>
<td>H</td>
<td>0.05513700</td>
<td>-1.26366000</td>
<td>0.64072700</td>
</tr>
<tr>
<td>C</td>
<td>-1.16663620</td>
<td>0.79364100</td>
<td>-0.35163000</td>
</tr>
<tr>
<td>H</td>
<td>-1.49852200</td>
<td>2.26879000</td>
<td>-1.89195000</td>
</tr>
<tr>
<td>H</td>
<td>-2.13566700</td>
<td>0.67184000</td>
<td>-2.30272300</td>
</tr>
<tr>
<td>C</td>
<td>-0.84104000</td>
<td>1.88286100</td>
<td>0.67888500</td>
</tr>
<tr>
<td>H</td>
<td>-0.26838300</td>
<td>2.67856700</td>
<td>0.19111900</td>
</tr>
<tr>
<td>H</td>
<td>-1.75183900</td>
<td>2.32796500</td>
<td>1.09355000</td>
</tr>
<tr>
<td>H</td>
<td>-0.24473000</td>
<td>1.48501500</td>
<td>1.50539000</td>
</tr>
<tr>
<td>C</td>
<td>-2.57106300</td>
<td>-1.37342300</td>
<td>-0.67975200</td>
</tr>
<tr>
<td>H</td>
<td>-2.76735500</td>
<td>-2.34754100</td>
<td>-0.22135200</td>
</tr>
<tr>
<td>H</td>
<td>-3.53165200</td>
<td>-0.90651800</td>
<td>-0.92197100</td>
</tr>
<tr>
<td>H</td>
<td>-2.02520400</td>
<td>-1.54392900</td>
<td>-1.61296400</td>
</tr>
<tr>
<td>C</td>
<td>-2.55550400</td>
<td>-0.30222500</td>
<td>1.58734200</td>
</tr>
<tr>
<td>H</td>
<td>-3.43872200</td>
<td>0.31894600</td>
<td>1.39862600</td>
</tr>
<tr>
<td>H</td>
<td>-2.89728300</td>
<td>-1.26810700</td>
<td>1.97272800</td>
</tr>
<tr>
<td>H</td>
<td>-1.95118200</td>
<td>0.17329000</td>
<td>2.36286700</td>
</tr>
</tbody>
</table>

Int1 (B3LYP)

Eel = -640.059
Hcorr = 0.250238
Gcorr = 0.194125
ΔGsol = -0.020574
<table>
<thead>
<tr>
<th>Element</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>1.95286300</td>
<td>1.42204100</td>
<td>1.42760800</td>
</tr>
<tr>
<td>H</td>
<td>3.03458000</td>
<td>1.49577800</td>
<td>1.26848700</td>
</tr>
<tr>
<td>H</td>
<td>1.56801400</td>
<td>2.43152700</td>
<td>1.60436000</td>
</tr>
<tr>
<td>H</td>
<td>1.77194500</td>
<td>0.82970000</td>
<td>2.32700200</td>
</tr>
<tr>
<td>C</td>
<td>1.36626000</td>
<td>1.77379800</td>
<td>-0.98862300</td>
</tr>
<tr>
<td>H</td>
<td>0.87438500</td>
<td>2.71746200</td>
<td>-0.73262500</td>
</tr>
<tr>
<td>H</td>
<td>2.40827200</td>
<td>1.98979500</td>
<td>-1.24530900</td>
</tr>
<tr>
<td>H</td>
<td>0.87114300</td>
<td>1.36132800</td>
<td>-1.87359800</td>
</tr>
<tr>
<td>C</td>
<td>2.08754600</td>
<td>-1.48840700</td>
<td>1.09194800</td>
</tr>
<tr>
<td>H</td>
<td>2.16469500</td>
<td>-2.54151500</td>
<td>0.80555000</td>
</tr>
<tr>
<td>H</td>
<td>3.05376100</td>
<td>-1.16803300</td>
<td>1.49519700</td>
</tr>
<tr>
<td>H</td>
<td>1.33675700</td>
<td>-1.40963100</td>
<td>1.88474300</td>
</tr>
<tr>
<td>C</td>
<td>2.74731700</td>
<td>-0.80260200</td>
<td>-1.23213300</td>
</tr>
<tr>
<td>H</td>
<td>3.69014200</td>
<td>-0.33836400</td>
<td>-0.92121100</td>
</tr>
<tr>
<td>H</td>
<td>2.93937400</td>
<td>-1.86287000</td>
<td>-1.42401600</td>
</tr>
<tr>
<td>H</td>
<td>2.42410200</td>
<td>-0.34471500</td>
<td>-2.16969700</td>
</tr>
</tbody>
</table>

TS2 (B3LYP)
Eel = -1052.04
Hcorr=0.451469
Gcorr= 0.373436
ΔGsol= -0.03109

<table>
<thead>
<tr>
<th>Element</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>-0.12621600</td>
<td>-2.52730200</td>
<td>-0.28171700</td>
</tr>
<tr>
<td>H</td>
<td>-0.43632900</td>
<td>-3.21260100</td>
<td>-1.08260200</td>
</tr>
<tr>
<td>H</td>
<td>0.79193600</td>
<td>-2.90693400</td>
<td>0.16770700</td>
</tr>
<tr>
<td>H</td>
<td>-0.92141100</td>
<td>-2.45218600</td>
<td>0.46003500</td>
</tr>
<tr>
<td>C</td>
<td>0.16376800</td>
<td>-1.20202400</td>
<td>-0.93864300</td>
</tr>
<tr>
<td>O</td>
<td>1.27461400</td>
<td>-1.00423600</td>
<td>-1.54972200</td>
</tr>
<tr>
<td>O</td>
<td>-0.87224400</td>
<td>-0.45130800</td>
<td>-1.33604600</td>
</tr>
<tr>
<td>B</td>
<td>-2.06144400</td>
<td>-0.19398300</td>
<td>-0.66916800</td>
</tr>
<tr>
<td>O</td>
<td>-2.9355900</td>
<td>-0.46583800</td>
<td>0.64807900</td>
</tr>
<tr>
<td>O</td>
<td>-3.08738700</td>
<td>0.40665100</td>
<td>-1.33018100</td>
</tr>
<tr>
<td>C</td>
<td>-3.70980600</td>
<td>-0.17106800</td>
<td>0.88660900</td>
</tr>
<tr>
<td>C</td>
<td>-4.05395400</td>
<td>0.80765400</td>
<td>-0.30936100</td>
</tr>
<tr>
<td>C</td>
<td>-3.83993800</td>
<td>0.43428500</td>
<td>2.28103100</td>
</tr>
<tr>
<td>H</td>
<td>-4.87685100</td>
<td>0.72717600</td>
<td>2.48038600</td>
</tr>
<tr>
<td>H</td>
<td>-3.54696200</td>
<td>-0.30586200</td>
<td>3.03218600</td>
</tr>
<tr>
<td>H</td>
<td>-3.19913200</td>
<td>1.30994900</td>
<td>2.40267000</td>
</tr>
<tr>
<td>C</td>
<td>-4.45147400</td>
<td>-1.51085600</td>
<td>0.81387200</td>
</tr>
<tr>
<td>H</td>
<td>-4.02058200</td>
<td>-2.19752800</td>
<td>1.54912100</td>
</tr>
<tr>
<td>H</td>
<td>-5.51595000</td>
<td>-1.39223600</td>
<td>1.03985200</td>
</tr>
<tr>
<td>H</td>
<td>-4.35871300</td>
<td>-1.96925600</td>
<td>-0.17602600</td>
</tr>
<tr>
<td>C</td>
<td>-3.76802900</td>
<td>2.28088100</td>
<td>0.00523000</td>
</tr>
<tr>
<td>Atom</td>
<td>X</td>
<td>Y</td>
<td>Z</td>
</tr>
<tr>
<td>------</td>
<td>----------</td>
<td>---------</td>
<td>----------</td>
</tr>
<tr>
<td>H</td>
<td>-3.840987</td>
<td>2.860298</td>
<td>-0.919846</td>
</tr>
<tr>
<td>H</td>
<td>-4.488145</td>
<td>2.685174</td>
<td>0.723824</td>
</tr>
<tr>
<td>H</td>
<td>-2.759895</td>
<td>2.417387</td>
<td>0.409027</td>
</tr>
<tr>
<td>C</td>
<td>-5.455653</td>
<td>0.651551</td>
<td>-0.892080</td>
</tr>
<tr>
<td>H</td>
<td>-6.217295</td>
<td>0.897219</td>
<td>-0.143582</td>
</tr>
<tr>
<td>H</td>
<td>-5.574490</td>
<td>1.337180</td>
<td>-1.736262</td>
</tr>
<tr>
<td>H</td>
<td>-5.634351</td>
<td>-0.363450</td>
<td>-1.253752</td>
</tr>
<tr>
<td>B</td>
<td>1.857362</td>
<td>-0.336891</td>
<td>-0.207686</td>
</tr>
<tr>
<td>H</td>
<td>0.754489</td>
<td>-0.393166</td>
<td>0.471459</td>
</tr>
<tr>
<td>O</td>
<td>2.900356</td>
<td>-1.138803</td>
<td>0.317794</td>
</tr>
<tr>
<td>O</td>
<td>2.266323</td>
<td>1.005155</td>
<td>-0.365641</td>
</tr>
<tr>
<td>C</td>
<td>3.948915</td>
<td>-0.233575</td>
<td>0.721495</td>
</tr>
<tr>
<td>C</td>
<td>3.703990</td>
<td>1.004898</td>
<td>-0.226914</td>
</tr>
<tr>
<td>C</td>
<td>5.291733</td>
<td>-0.939065</td>
<td>0.529855</td>
</tr>
<tr>
<td>H</td>
<td>6.127099</td>
<td>-0.263801</td>
<td>0.750816</td>
</tr>
<tr>
<td>H</td>
<td>5.359885</td>
<td>-1.794700</td>
<td>1.210655</td>
</tr>
<tr>
<td>H</td>
<td>5.403288</td>
<td>-1.312686</td>
<td>-0.490549</td>
</tr>
<tr>
<td>C</td>
<td>3.741164</td>
<td>0.102348</td>
<td>2.207551</td>
</tr>
<tr>
<td>H</td>
<td>3.702521</td>
<td>-0.831978</td>
<td>2.777353</td>
</tr>
<tr>
<td>H</td>
<td>4.555377</td>
<td>0.716105</td>
<td>2.609282</td>
</tr>
<tr>
<td>H</td>
<td>2.797093</td>
<td>0.634314</td>
<td>2.361980</td>
</tr>
<tr>
<td>C</td>
<td>4.318643</td>
<td>0.815166</td>
<td>-1.623519</td>
</tr>
<tr>
<td>H</td>
<td>3.927907</td>
<td>1.592847</td>
<td>-2.287529</td>
</tr>
<tr>
<td>H</td>
<td>5.411702</td>
<td>0.894327</td>
<td>-1.604709</td>
</tr>
<tr>
<td>H</td>
<td>4.044952</td>
<td>-0.156506</td>
<td>-2.044910</td>
</tr>
<tr>
<td>C</td>
<td>4.126508</td>
<td>2.355851</td>
<td>0.350417</td>
</tr>
<tr>
<td>H</td>
<td>5.205267</td>
<td>2.382157</td>
<td>0.546281</td>
</tr>
<tr>
<td>H</td>
<td>3.893571</td>
<td>3.151110</td>
<td>-0.365819</td>
</tr>
<tr>
<td>H</td>
<td>3.596640</td>
<td>2.576477</td>
<td>1.280236</td>
</tr>
</tbody>
</table>

Int2(B3LYP)
Eel = -1052.14
Hcorr=0.457566
Gcorr= 0.379395
ΔGsol= -0.028009

<table>
<thead>
<tr>
<th>Atom</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>-0.357281</td>
<td>-3.831791</td>
<td>-0.026262</td>
</tr>
<tr>
<td>H</td>
<td>-0.168396</td>
<td>-4.174307</td>
<td>-1.047927</td>
</tr>
<tr>
<td>H</td>
<td>0.234633</td>
<td>-4.437045</td>
<td>0.666930</td>
</tr>
<tr>
<td>H</td>
<td>-1.419060</td>
<td>-3.960682</td>
<td>0.204717</td>
</tr>
<tr>
<td>C</td>
<td>0.027601</td>
<td>-2.369715</td>
<td>0.094250</td>
</tr>
<tr>
<td>O</td>
<td>1.408628</td>
<td>-2.259665</td>
<td>-0.189010</td>
</tr>
<tr>
<td>O</td>
<td>-0.690253</td>
<td>-1.601384</td>
<td>-0.861527</td>
</tr>
<tr>
<td>B</td>
<td>-1.654327</td>
<td>-0.724281</td>
<td>-0.473291</td>
</tr>
</tbody>
</table>
TS3 (B3LYP)
Eel = -1464.09
Hcorr = 0.657009
Gcorr = 0.555
ΔGsol = -0.042564

<table>
<thead>
<tr>
<th>Element</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>0.23838600</td>
<td>1.07804700</td>
<td>3.16146900</td>
</tr>
<tr>
<td>H</td>
<td>0.00020400</td>
<td>1.99890700</td>
<td>3.69509000</td>
</tr>
<tr>
<td>H</td>
<td>0.51964500</td>
<td>0.25923600</td>
<td>3.83636200</td>
</tr>
<tr>
<td>H</td>
<td>1.12874300</td>
<td>1.21816700</td>
<td>2.48594600</td>
</tr>
<tr>
<td>C</td>
<td>-0.81815500</td>
<td>0.64144900</td>
<td>2.27110100</td>
</tr>
<tr>
<td>O</td>
<td>-1.88367600</td>
<td>1.33957000</td>
<td>2.10344600</td>
</tr>
<tr>
<td>O</td>
<td>0.16909400</td>
<td>0.20336500</td>
<td>-0.32226100</td>
</tr>
<tr>
<td>B</td>
<td>0.63908500</td>
<td>-1.04936700</td>
<td>-0.27142900</td>
</tr>
<tr>
<td>O</td>
<td>0.17044600</td>
<td>-1.95228700</td>
<td>0.69789800</td>
</tr>
<tr>
<td>O</td>
<td>1.55816700</td>
<td>-1.65679090</td>
<td>-1.11040000</td>
</tr>
<tr>
<td>C</td>
<td>1.02690100</td>
<td>-3.11879300</td>
<td>0.66252000</td>
</tr>
<tr>
<td>C</td>
<td>1.58093200</td>
<td>-3.07129600</td>
<td>-0.81568800</td>
</tr>
<tr>
<td>C</td>
<td>0.19562300</td>
<td>-4.35388700</td>
<td>1.00589700</td>
</tr>
<tr>
<td>H</td>
<td>0.79784800</td>
<td>-5.26662700</td>
<td>0.92864600</td>
</tr>
<tr>
<td>H</td>
<td>-0.16964300</td>
<td>-4.27867200</td>
<td>2.03588800</td>
</tr>
<tr>
<td>H</td>
<td>-0.67126400</td>
<td>-4.45155900</td>
<td>0.34828600</td>
</tr>
<tr>
<td>C</td>
<td>2.12012400</td>
<td>-2.90383800</td>
<td>1.72042200</td>
</tr>
<tr>
<td>H</td>
<td>1.64609600</td>
<td>-2.77343500</td>
<td>2.69949700</td>
</tr>
<tr>
<td>H</td>
<td>2.80093000</td>
<td>-3.75923300</td>
<td>1.78463100</td>
</tr>
<tr>
<td>H</td>
<td>2.70301100</td>
<td>-2.00307500</td>
<td>1.50406200</td>
</tr>
<tr>
<td>C</td>
<td>0.65245100</td>
<td>-3.75526100</td>
<td>-1.83012200</td>
</tr>
<tr>
<td>H</td>
<td>0.98643500</td>
<td>-3.49970200</td>
<td>-2.84042500</td>
</tr>
<tr>
<td>H</td>
<td>0.66482400</td>
<td>-4.84575000</td>
<td>-1.72688000</td>
</tr>
<tr>
<td>H</td>
<td>-0.37972600</td>
<td>-3.40724100</td>
<td>-1.71839800</td>
</tr>
<tr>
<td>C</td>
<td>3.01057100</td>
<td>-3.58278200</td>
<td>-0.98863200</td>
</tr>
<tr>
<td>H</td>
<td>3.08652700</td>
<td>-4.64268800</td>
<td>-0.71836600</td>
</tr>
<tr>
<td>H</td>
<td>3.31202500</td>
<td>-3.47817700</td>
<td>-2.03591900</td>
</tr>
<tr>
<td>H</td>
<td>3.71646100</td>
<td>-3.01449500</td>
<td>-0.37869400</td>
</tr>
<tr>
<td>B</td>
<td>-2.79595000</td>
<td>0.98092500</td>
<td>1.05805600</td>
</tr>
<tr>
<td>H</td>
<td>-0.73705000</td>
<td>-0.31593500</td>
<td>1.75425500</td>
</tr>
<tr>
<td>O</td>
<td>-3.10437000</td>
<td>-0.30486100</td>
<td>0.79532800</td>
</tr>
<tr>
<td>O</td>
<td>-3.37954500</td>
<td>1.93653800</td>
<td>0.31463300</td>
</tr>
<tr>
<td>C</td>
<td>-4.13507000</td>
<td>-0.25457600</td>
<td>-0.25783900</td>
</tr>
<tr>
<td>C</td>
<td>-3.96276900</td>
<td>1.21463500</td>
<td>-0.83474000</td>
</tr>
<tr>
<td>C</td>
<td>-5.47360000</td>
<td>-0.48981700</td>
<td>0.44770300</td>
</tr>
<tr>
<td>H</td>
<td>-6.29889200</td>
<td>-0.52523200</td>
<td>0.27034800</td>
</tr>
<tr>
<td>H</td>
<td>-5.43612200</td>
<td>-1.44740200</td>
<td>0.97581400</td>
</tr>
<tr>
<td>H</td>
<td>-5.68691400</td>
<td>0.29494400</td>
<td>1.18059800</td>
</tr>
<tr>
<td>C</td>
<td>-3.84071300</td>
<td>-1.37380400</td>
<td>1.25047600</td>
</tr>
<tr>
<td>Atom</td>
<td>X</td>
<td>Y</td>
<td>Z</td>
</tr>
<tr>
<td>------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>H</td>
<td>-3.94948300</td>
<td>-2.34264800</td>
<td>-0.75312000</td>
</tr>
<tr>
<td>H</td>
<td>-4.54600100</td>
<td>-1.34030400</td>
<td>-2.08823400</td>
</tr>
<tr>
<td>H</td>
<td>-2.82446400</td>
<td>-1.30278400</td>
<td>-1.64255100</td>
</tr>
<tr>
<td>C</td>
<td>-5.26132800</td>
<td>1.91529200</td>
<td>-1.21807300</td>
</tr>
<tr>
<td>H</td>
<td>-5.03844000</td>
<td>2.93093800</td>
<td>-1.55806400</td>
</tr>
<tr>
<td>H</td>
<td>-5.75605300</td>
<td>1.38496300</td>
<td>-2.03942300</td>
</tr>
<tr>
<td>H</td>
<td>-5.95494300</td>
<td>1.98251600</td>
<td>-0.37689200</td>
</tr>
<tr>
<td>C</td>
<td>-2.93120500</td>
<td>1.31503800</td>
<td>-1.96255200</td>
</tr>
<tr>
<td>H</td>
<td>-3.29986800</td>
<td>0.83576100</td>
<td>-2.87552500</td>
</tr>
<tr>
<td>H</td>
<td>-2.74753900</td>
<td>2.37130100</td>
<td>-2.17955300</td>
</tr>
<tr>
<td>H</td>
<td>-1.97400700</td>
<td>0.86412700</td>
<td>-1.68264900</td>
</tr>
<tr>
<td>B</td>
<td>0.92699500</td>
<td>1.48685900</td>
<td>-0.04350500</td>
</tr>
<tr>
<td>H</td>
<td>0.10091800</td>
<td>2.19577400</td>
<td>0.55000300</td>
</tr>
<tr>
<td>O</td>
<td>2.08727600</td>
<td>1.14636500</td>
<td>0.83056000</td>
</tr>
<tr>
<td>O</td>
<td>1.48008000</td>
<td>2.16105800</td>
<td>-1.19011500</td>
</tr>
<tr>
<td>C</td>
<td>3.19880400</td>
<td>1.95244900</td>
<td>0.41492500</td>
</tr>
<tr>
<td>C</td>
<td>3.90381400</td>
<td>2.17934800</td>
<td>-1.12383300</td>
</tr>
<tr>
<td>C</td>
<td>4.49184300</td>
<td>1.19104900</td>
<td>0.71891800</td>
</tr>
<tr>
<td>H</td>
<td>5.37082100</td>
<td>1.74029300</td>
<td>0.36016200</td>
</tr>
<tr>
<td>H</td>
<td>4.59953300</td>
<td>1.05695900</td>
<td>1.80197900</td>
</tr>
<tr>
<td>H</td>
<td>4.48714700</td>
<td>0.20220600</td>
<td>0.25354800</td>
</tr>
<tr>
<td>C</td>
<td>3.17382200</td>
<td>3.26427000</td>
<td>1.22234200</td>
</tr>
<tr>
<td>H</td>
<td>3.21199500</td>
<td>3.02776400</td>
<td>2.29251100</td>
</tr>
<tr>
<td>H</td>
<td>4.02940800</td>
<td>3.90846100</td>
<td>0.99057700</td>
</tr>
<tr>
<td>H</td>
<td>2.25419800</td>
<td>3.82429100</td>
<td>1.02823600</td>
</tr>
<tr>
<td>C</td>
<td>3.45744000</td>
<td>1.05456700</td>
<td>-2.01859200</td>
</tr>
<tr>
<td>H</td>
<td>3.05484300</td>
<td>1.19125600</td>
<td>-3.02811600</td>
</tr>
<tr>
<td>H</td>
<td>4.55275900</td>
<td>1.07830900</td>
<td>-2.08260400</td>
</tr>
<tr>
<td>H</td>
<td>3.14003500</td>
<td>0.07024100</td>
<td>-1.66806100</td>
</tr>
<tr>
<td>C</td>
<td>3.39469700</td>
<td>3.52831400</td>
<td>-1.66657000</td>
</tr>
<tr>
<td>H</td>
<td>4.48371500</td>
<td>3.62944200</td>
<td>-1.57575900</td>
</tr>
<tr>
<td>H</td>
<td>3.13737900</td>
<td>3.60450000</td>
<td>-2.72873100</td>
</tr>
<tr>
<td>H</td>
<td>2.91907600</td>
<td>4.36577100</td>
<td>-1.15005500</td>
</tr>
</tbody>
</table>

nipBOBpin (B3LYP)
Eel =-898.233
Hcorr=0.392264
Gcorr= 0.322277
∆Gsol=-0.024935

<table>
<thead>
<tr>
<th>Atom</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>-0.00000100</td>
<td>-1.24015100</td>
<td>0.00003400</td>
</tr>
<tr>
<td>B</td>
<td>1.24138600</td>
<td>-0.68037300</td>
<td>-0.00463600</td>
</tr>
<tr>
<td>O</td>
<td>2.34267200</td>
<td>-1.37220100</td>
<td>0.43650600</td>
</tr>
<tr>
<td>O</td>
<td>1.52909100</td>
<td>0.57874600</td>
<td>-0.47576100</td>
</tr>
</tbody>
</table>
CH₃CH₂OBpin(B3LYP)
Eel = -565.996
Hcorr=0.268987
Gcorr= 0.214946
\(\Delta G_{sol} = -0.016724 \)

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>3.71666600</td>
<td>-0.14586300</td>
</tr>
<tr>
<td>H</td>
<td>2.97161500</td>
<td>-0.49432700</td>
</tr>
<tr>
<td>H</td>
<td>4.58048600</td>
<td>-0.81968300</td>
</tr>
<tr>
<td>H</td>
<td>4.04416200</td>
<td>0.85729800</td>
</tr>
<tr>
<td>C</td>
<td>3.13085700</td>
<td>-0.12903100</td>
</tr>
<tr>
<td>O</td>
<td>2.06036900</td>
<td>0.81544900</td>
</tr>
<tr>
<td>B</td>
<td>0.78700700</td>
<td>0.44663000</td>
</tr>
<tr>
<td>O</td>
<td>0.40854400</td>
<td>-0.81138900</td>
</tr>
<tr>
<td>O</td>
<td>-0.26665200</td>
<td>1.32275300</td>
</tr>
<tr>
<td>C</td>
<td>-1.04427800</td>
<td>-0.85215700</td>
</tr>
<tr>
<td>C</td>
<td>-1.42375900</td>
<td>0.67960400</td>
</tr>
<tr>
<td>C</td>
<td>-1.54744800</td>
<td>-1.71840200</td>
</tr>
<tr>
<td>H</td>
<td>-2.64280200</td>
<td>-1.71981300</td>
</tr>
<tr>
<td>H</td>
<td>-1.21340400</td>
<td>-2.75130100</td>
</tr>
<tr>
<td>H</td>
<td>-1.16440800</td>
<td>-1.37148100</td>
</tr>
<tr>
<td>C</td>
<td>-1.42143500</td>
<td>-1.48975700</td>
</tr>
<tr>
<td>H</td>
<td>-0.94714200</td>
<td>-2.47350700</td>
</tr>
<tr>
<td>H</td>
<td>-2.50423200</td>
<td>-1.62160100</td>
</tr>
<tr>
<td>H</td>
<td>-1.07032600</td>
<td>-0.88177100</td>
</tr>
<tr>
<td>C</td>
<td>-1.52704000</td>
<td>1.19208600</td>
</tr>
<tr>
<td>H</td>
<td>-1.58175200</td>
<td>2.28488200</td>
</tr>
<tr>
<td>H</td>
<td>-2.42029000</td>
<td>0.80899600</td>
</tr>
<tr>
<td>H</td>
<td>-0.64796000</td>
<td>0.90785700</td>
</tr>
<tr>
<td>C</td>
<td>-2.66436900</td>
<td>1.08971700</td>
</tr>
<tr>
<td>H</td>
<td>-3.55780300</td>
<td>0.58029000</td>
</tr>
<tr>
<td>H</td>
<td>-2.82180900</td>
<td>2.16839300</td>
</tr>
<tr>
<td>H</td>
<td>-2.55741700</td>
<td>0.86443100</td>
</tr>
<tr>
<td>H</td>
<td>3.88616400</td>
<td>0.18484800</td>
</tr>
<tr>
<td>H</td>
<td>2.77862900</td>
<td>-1.12833800</td>
</tr>
</tbody>
</table>

References

