Supporting Information

Fluorination-Triggered Tandem Cyclization of Styrene-type Carboxylic Acid to Access 3-Aryl Isocoumarin Derivatives under Microwave Irradiation

Jinwei Yuan, a,* Fanlin Zeng, a Wenpeng Mai, b Liangru Yang, a Yongmei Xiao, a
Pu Mao, a Donghui Wei c

a School of Chemistry & Chemical Engineering, Henan University of Technology; Academician Workstation for Natural Medicinal Chemistry of Henan Province, Zhengzhou 450001, P. R. China
b School of Materials and Chemical Engineering, Henan Institute of Engineering; Zhengzhou 451191, P. R. China
c College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China

*Corresponding authors:
E-mail: yuanjinweigs@126.com (Jinwei Yuan)

Contents

1. Screening the reaction conditions
2. Copies of spectra of products
1. Screening the reaction condition

![Chemical structure of reaction substrates](image)

Table S1 Screening the molar ratio of reaction substrates

<table>
<thead>
<tr>
<th>Entry</th>
<th>The molar ratio of 1a and 2</th>
<th>Yields (%)b</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2:1</td>
<td>50</td>
</tr>
<tr>
<td>2</td>
<td>1:1</td>
<td>58</td>
</tr>
<tr>
<td>3</td>
<td>1:1.2</td>
<td>63</td>
</tr>
<tr>
<td>4</td>
<td>1:1.5</td>
<td>70</td>
</tr>
<tr>
<td>5</td>
<td>1:2.0</td>
<td>61</td>
</tr>
</tbody>
</table>

a Reaction conditions: (E)-2-styrylbenzoic acid 1a (0.2 mmol, 44.8 mg), Selectflour reagent 2, in 3.0 mL CH$_3$CN solvent, 100 °C for 0.5 h.

b Isolated yield.
2. Copies of spectra of products

Fig. 1 1H NMR spectrum of compound 3a

Fig. 2 13C NMR spectrum of compound 3a
Fig. 3 19F NMR spectrum of compound 3a

Fig. 4 1H NMR spectrum of compound 3b
Fig. 5 13C NMR spectrum of compound 3b

Fig. 6 19F NMR spectrum of compound 3b
Fig. 7 1H NMR spectrum of compound 3c

Fig. 8 13C NMR spectrum of compound 3c
Fig. 9 19F NMR spectrum of compound 3c

Fig. 10 1H NMR spectrum of compound 3d
Fig. 11 13C NMR spectrum of compound 3d

Fig. 12 19F NMR spectrum of compound 3d
Fig. 13 1H NMR spectrum of compound 3e

Fig. 14 13C NMR spectrum of compound 3e
Fig. 15 19F NMR spectrum of compound 3e

Fig. 16 1H NMR spectrum of compound 3f
Fig. 17 13C NMR spectrum of compound 3f

Fig. 18 19F NMR spectrum of compound 3f
Fig. 19 1H NMR spectrum of compound 3g

Fig. 20 13C NMR spectrum of compound 3g
Fig. 21 19F NMR spectrum of compound 3g

Fig. 22 1H NMR spectrum of compound 3h
Fig. 23 13C NMR spectrum of compound 3h

Fig. 24 19F NMR spectrum of compound 3h
Fig. 25 1H NMR spectrum of compound 3i

Fig. 26 13C NMR spectrum of compound 3i
Fig. 27 19F NMR spectrum of compound 3i

Fig. 28 1H NMR spectrum of compound 3j
Fig. 29 13C NMR spectrum of compound 3j

Fig. 30 19F NMR spectrum of compound 3j
Fig. 31 1H NMR spectrum of compound 3k

Fig. 32 13C NMR spectrum of compound 3k
Fig. 33 19F NMR spectrum of compound 3k

Fig. 34 1H NMR spectrum of compound 4a
Fig. 35 13C NMR spectrum of compound 4a

Fig. 36 1H NMR spectrum of compound 4b
Fig. 37 13C NMR spectrum of compound 4b

Fig. 38 1H NMR spectrum of compound 4c
Fig. 39 13C NMR spectrum of compound 4c

Fig. 40 1H NMR spectrum of compound 4d
Fig. 41 13C NMR spectrum of compound 4d

Fig. 42 1H NMR spectrum of compound 4e
Fig. 43 13C NMR spectrum of compound 4e

Fig. 44 19F NMR spectrum of compound 4e
Fig. 45 1H NMR spectrum of compound 4f

Fig. 46 13C NMR spectrum of compound 4f
Fig. 47 1H NMR spectrum of compound 4g

Fig. 48 13C NMR spectrum of compound 4g