Multicomponent Reaction for the Synthesis of Pyrido[1, 2-b] isoquinoline derivatives via [3+2] Cycloaddition Reaction between Alkynes and in situ Generated Isoquinolininium ylides

Sundar S. Shinde, a Soumi Laha, a Dharmendra K. Tiwari, b B. Sridhar, c and Pravin R. Likhar a

Catalysis & Fine Chemical Division, X-Ray Crystallography Centre, CSIR- Indian Institute of Chemical Technology, Uppal Road, Tarnaka Hyderabad-500007, INDIA, Molecular Synthesis and Drug Discovery Unit, Centre of Biomedical Research(CBMR), SGPGMIS Campus, Raebareli Road, Lucknow, 226014, UP, India.

Supporting Information

Table of contents

General information..2

Spectral copies of 1H NMR and 13C NMR ..3

NOE spectrum of compound (4v) ...28

X-ray crystallographic data for compound (4c) ...31
1. **General Information:**

All substrates and reagents were readily and commercially available. TLC analysis was performed using pre-coated glass plates. Column chromatography was conducted using silica gel (60-120 mesh). All 1H and 13C NMR spectra were recorded in deuterated chloroform (CDCl$_3$) on Avance 300 or 400 or Avance 500 spectrometers. Chemical shift (δ) are reported in parts per million (ppm) relative to residual CHCl$_3$ (1H: δ 7.26 (ppm), 13C: δ 77.00 (ppm) as an internal reference. Coupling constant (j) is reported in (Hz). Peak multiplicities are indicated as: s-singlet, t-triplet, q-quartet, m-multiplate and dd-doublet of doublet. Mass spectra were recorded by using 70 Ev spectrometer. High resolution mass spectrums (HRMS) were recorded using Applied Bio-sciences HRMS spectrometer at national center for mass spectroscopy.
Spectral copies of 1H NMR and 13C NMR
N_O_O_C_O_Et (4m)
COSY for compound (4v):
NOESY for compound (4v):
HMBC for compound (4v):
Figure caption: (4c) The molecular structure of KA181, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
X-ray crystallography study

X-ray data for the compound was collected at room temperature on a Bruker D8 QUEST instrument with an Iμs Mo microsource (λ = 0.7107 Å) and a PHOTON-100 detector. The raw data frames of KA181 were reduced and corrected for absorption effects using the Bruker Apex 3 software suite programs [1]. The structure was solved using intrinsic phasing method [2] and further refined with the SHELXL [2] program and expanded using Fourier techniques. Anisotropic displacement parameters were included for all non-hydrogen atoms. All C bound H atoms of were positioned geometrically and treated as riding on their parent C atoms [C-H = 0.93-0.97 Å, and Uiso(H) = 1.5Ueq(C) for methyl H or 1.2Ueq(C) for other H atoms].

Crystal Data for KA181: C23H18FNO4 (M = 391.38 g/mol): triclinic, space group P-1 (no. 2), a = 8.66220(10) Å, b = 10.7712(2) Å, c = 11.1760(2) Å, α = 102.4181(5)°, β = 97.3598(5)°, γ = 113.4266(4)°, V = 907.47(3) Å³, Z = 2, T = 294.15 K, μ(MoKα) = 0.105 mm⁻¹, Dcalc = 1.432 g/cm³, 31589 reflections measured (4.31° ≤ 2Θ ≤ 56.928°), 4553 unique (Rint = 0.0238, Rsigma = 0.0189) which were used in all calculations. The final R1 was 0.0457 (I > 2σ(I)) and wR2 was 0.1321 (all data). CCDC 1584703 contains supplementary Crystallographic data for the structure. These data can be obtained free of charge at www.ccdc.cam.ac.uk/conts/retrieving.html [or from the Cambridge Crystallographic Data Centre (CCDC), 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44(0) 1223 336 033; email: deposit@ccdc.cam.ac.uk].

Figure caption: The molecular structure of KA181, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.