Electronic Supplementary Information for the manuscript:

Diversion of the Arbuzov reaction: alkylation of C-Cl instead of phosphonic ester formation on the fullerene cage

Ol’ga A. Kraevaya, a,b Alexander S. Peregradov, c Sergey I. Troyanov, d Ivan Godovikov, e Regina R. Klimova, f Vasilina A. Sergeeva, g Vyacheslav M. Martynenko, h Sandra Claes, i Alla A. Kusch, j Svetlana V. Kostyuk, j Dominique Schols, k Alexander F. Shestakov, b,k and Pavel A. Troshin** a,b

Table of contents

Experimental procedures .. 4

Synthesis of C_{60}Ar_3Cl derivatives 1a-4a... 5

Synthesis of C_{60}Ar_3H derivatives 1b-4b... 5

General procedure for the synthesis of C_{60}Ar_3R derivatives 1c-f to 4c-d.. 6

General procedure for the synthesis of polycarboxylic acids A1a-f to A4a-d.. 6

DFT study of the mechanism of the inversed Arbuzov reaction .. 17

Fig. T1. The calculated structure of C_{60}Ph_3Cl.. 17

Fig. T2. The calculated structure of the adduct of C_{60}Ph_3Cl and P(OMe)_3 ... 18

Fig. T3. The calculated structure of the complex of C_{60}Ph_3+ and Cl− .. 18

Fig. T4. The calculated structure of the radical pair C_{60}Ph_3+…ClP(OMe)_3+. .. 19

Fig. T5. The calculated structure of the ion pair C_{60}Ph_3+…ClP(OMe)_3+ .. 19

Fig. T6. The calculated structure of the transition state of methyl transfer .. 20

Fig. T7. The calculated structure of the post-reaction complex C_{60}Ph_3Me…OPCl(OMe)_3 20

Fig. T8. The calculated structure of intermediate product C_{60}Ph_3ClP(OMe)_3 ... 21

Fig. T9. The calculated structure of a four-term transition state of CH_3+ transfer to Cl− 22

Fig. T10. The calculated structure of the contact ion pair RP(OMe)_3+ Cl− ... 22

Fig. T11. The calculated structure of the transition state of CH_3+ transfer ... 22

Fig. T12. The total energy scheme of the reaction between C_{60}Ph_3Cl and P(OMe)_3 23

Biological assays .. 24

Table S1. Cytotoxicity of the fullerene derivatives in HELF cell line ... 25

Table S2. Cytotoxicity of the fullerene derivatives to the Vero cell culture ... 26

Table S3. Antiviral activity of the water-soluble fullerene derivatives against human cytomegalovirus (HCMV) .. 27

Table S4. Antiviral activity of the water-soluble fullerene derivatives against herpes simplex virus type I (HSV1) .. 28

Table S5. Antiviral activity of the water-soluble fullerene derivatives against influenza viruses............. 29

Table S6. Antiviral activity of the water-soluble fullerene derivatives against human immunodeficiency virus (HIV-1) .. 30
Fig. S1. HPLC profile of the reaction mixture of the alkylation reaction of 1a with P(OBu)$_3$, resulting in formation of 1f (C18 Cosmosil column, elution with toluene/acetonitrile mixtures 80%/20% v/v, 30°C, flow rate 1 mL/min) ...31

Fig. S2. HPLC profile of the reaction mixture of the alkylation reaction of 3a with P(OEt)$_3$, resulting in formation of 3d (C18 Cosmosil column, elution with toluene/acetonitrile mixtures 80%/20% v/v, 30°C, flow rate 1 mL/min) ...31

Fig. S3 1H NMR spectrum of compound 1c ...32
Fig. S4 13C NMR spectrum of compound 1c ...32
Fig. S5 1H-1H COSY NMR spectrum of compound 1c ..33
Fig. S6 1H-13C HSQ NMR spectrum of compound 1c ...33
Fig. S7 1H-13C HMBC NMR spectrum of compound 1c ...34
Fig. S8 1H NMR spectrum of compound 1d ...34
Fig. S9 13C NMR spectrum of compound 1d ...35
Fig. S10 1H-1H COSY NMR spectrum of compound 1d ...35
Fig. S11 1H-13C HSQC NMR spectrum of compound 1d ...36
Fig. S12 1H-13C HMBC NMR spectrum of compound 1d ...36
Fig. S13 1H NMR spectrum of compound 1e ...37
Fig. S14 13C NMR spectrum of compound 1e ...37
Fig. S15 1H-1H COSY NMR spectrum of compound 1e ...38
Fig. S16 1H-13C HSQC NMR spectrum of compound 1e ...38
Fig. S17 1H-13C HMBC NMR spectrum of compound 1e ...39
Fig. S18 1H NMR spectrum of compound 1f (* denotes impurity of P(OBu)$_3$)39
Fig. S19 13C NMR spectrum of compound 1f (* denotes impurity of P(OBu)$_3$)40
Fig. S20 1H-1H COSY NMR spectrum of compound 1f ...40
Fig. S21 1H-13C HSQC NMR spectrum of compound 1f ...41
Fig. S22 1H-13C HMBC NMR spectrum of compound 1f ...41
Fig. S23 1H NMR spectrum of compound 2a ...42
Fig. S24 13C NMR spectrum of compound 2a ...42
Fig. S25 1H-1H COSY NMR spectrum of compound 2a ...43
Fig. S26 1H-13C HSQC NMR spectrum of compound 2a ...43
Fig. S27 1H-13C HMBC NMR spectrum of compound 2a ...44
Fig. S28 1H NMR spectrum of compound 2b ...44
Fig. S29 13C NMR spectrum of compound 2b ...45
Fig. S30 1H-1H COSY NMR spectrum of compound 2b ...45
Fig. S31 1H-13C HSQC NMR spectrum of compound 2b ...46
Fig. S32 1H-13C HMBC NMR spectrum of compound 2b ...46
Fig. S33 1H NMR spectrum of compound 2c ... 47
Fig. S34 13C NMR spectrum of compound 2c ... 47
Fig. S35 1H-1H COSY NMR spectrum of compound 2c ... 48
Fig. S36 1H-13C HSQC NMR spectrum of compound 2c ... 48
Fig. S37 1H-13C HMBC NMR spectrum of compound 2c ... 49
Fig. S38 1H NMR spectrum of compound 2d ... 49
Fig. S39 13C NMR spectrum of compound 2d ... 50
Fig. S40 1H-1H COSY NMR spectrum of compound 2d ... 50
Fig. S41 1H-13C HSQC NMR spectrum of compound 2d ... 51
Fig. S42 1H-13C HMBC NMR spectrum of compound 2d ... 51
Fig. S43 1H NMR spectrum of compound 2f ... 52
Fig. S44 13C NMR spectrum of compound 2f ... 52
Fig. S45 1H-1H COSY NMR spectrum of compound 2f ... 53
Fig. S46 1H-13C HSQC NMR spectrum of compound 2f ... 53
Fig. S47 1H-13C HMBC NMR spectrum of compound 2f ... 54
Fig. S48 1H NMR spectrum of compound 3a ... 54
Fig. S49 13C NMR spectrum of compound 3a ... 55
Fig. S50 1H-1H COSY NMR spectrum of compound 3a ... 55
Fig. S51 1H-13C HSQC NMR spectrum of compound 3a ... 56
Fig. S52 1H-13C HMBC NMR spectrum of compound 3a ... 56
Fig. S53 1H NMR spectrum of compound 3b ... 57
Fig. S54 13C NMR spectrum of compound 3b ... 57
Fig. S55 1H-1H COSY NMR spectrum of compound 3b ... 58
Fig. S56 1H-13C HSQC NMR spectrum of compound 3b ... 58
Fig. S57 1H-13C HMBC NMR spectrum of compound 3b ... 59
Fig. S58 1H NMR spectrum of compound 3d ... 59
Fig. S59 13C NMR spectrum of compound 3d ... 60
Fig. S60 1H-1H COSY NMR spectrum of compound 3d ... 60
Fig. S61 1H-13C HSQC NMR spectrum of compound 3d ... 61
Fig. S62 1H-13C HMBC NMR spectrum of compound 3d ... 61
Fig. S63 1H NMR spectrum of compound 4a ... 62
Fig. S64 13C NMR spectrum of compound 4a ... 62
Fig. S65 1H-13C HSQC NMR spectrum of compound 4a ... 63
Fig. S66 1H-13C HMBC NMR spectrum of compound 4a ... 63
Fig. S67 1H NMR spectrum of compound 4c ... 64
Experimental procedures

Chlorofullerene C₆₀Cl₆ was prepared as described in P. A. Troshin et al., Fullerenes, Nanotubes, Carbon Nanostruct., 2003, 11, 165. Methyl esters of hydrocinnamic (1), phenylsuccinic (2), 3-phenylglutaric (3) and 2-phenylpropanoic (4) acids were synthesized from commercially available acids using standard procedure (esterification in methanol in presence of catalytic amount of sulfuric acid). Methyl esters were distilled in vacuo and dried over 4Å molecular sieves. Toluene for alkylation reactions was distilled and dried over sodium flakes (water content – 22 ppm).
Synthesis of $\text{C}_{60}\text{Ar}_5\text{Cl}$ derivatives 1a-4a

The arylation of C_{60}Cl_6 in nitrobenzene was performed following the previously established procedure (O. A. Troshina, P. A. Troshin, A. S. Peregudov, V. I. Kozlovskiy, J. Balzarini and R. N. Lyubovskaya, *Org. Biomol. Chem.*, 2007, 5, 2783).

Nitrobenzene was carefully distilled and dried over 4Å molecular sieves for two days. Content of water (<7 ppm) was defined using Mettler Toledo C10SX Karl Fischer titrator.

Synthesis of $\text{C}_{60}\text{Ar}_5\text{H}$ derivatives 1b-4b

Replacement of Cl in $\text{C}_{60}\text{Ar}_5\text{Cl}$ with H was achieved using Ph$_3$P/H$_2$O treatment reported by group of R. Taylor (A.G. Avent *et al.*, *J. Chem. Soc., Chem. Commun.*, 1994, 1463).
General procedure for the synthesis of C₆₀Ar₅R derivatives 1c-f to 4c-d

A triple-neck round-bottom 50 mL flask equipped with a magnetic stirring bar, thermometer (0-150°C), stopper and condenser was evacuated and filled with argon three times. Compound C₆₀Ar₅Cl (0.07 mmol) and dry toluene (50 mL) were introduced to the flask in a steam of argon and the mixture was stirred for 10 min until complete dissolution of C₆₀Ar₅Cl. Phosphite P(OR)₃ (1.75 mmol, 25 eq.) was added in a steam of argon and reaction mixture was heated at reflux and stirred for 1h. Dynamics of the reaction was controlled by HPLC. When the signal of C₆₀Ar₅Cl was not observed by HPLC, reaction mixture was cooled to room temperature and poured on the top of the silica gel column. The target product was eluted using toluene/methanol mixtures (97-90% : 3-10% v/v). The obtained solutions were concentrated at the rotary evaporator, washed with acetonitrile and dried in air. Compounds C₆₀Ar₅R (1c-f, 2c,d,f, 3d and 4c-d) were obtained as bright-orange powders.

General procedure for the synthesis of polycarboxylic acids A1a-f to A4a-d

R= Me(c), Et(d), iPr(e), nBu(f)

R= Me(c), Et(d), iPr(e), nBu(f)

X=

1 COOCH₃

2 COOCH₃

Y=

A1 COOK

A2 COOH

A3 COOK

A4 COOK
Compounds A1(a-f), A2(a-d,f), A3(a,b,d) and A4(a,c,d) were synthesized according to the following procedure. Fullerene derivative C60Ar5X (X=H, Cl, Me, Et, iPr, nBu) (0.07 mmol), toluene (25 mL), acetic acid (25 mL) and HCl (5 mL) were introduced into a two-necked round bottom 100mL flask equipped with a teflon-coated magnetic stirring bar, condenser and thermometer (0-100°C). The mixture was stirred at 65-70°C for 3-4 days and concentrated using a rotary evaporator to afford an orange powder, which was washed with acetonitrile and dried in air.

Water-soluble salts of the fullerene derivatives were obtained as follows. Fullerene-based polycarboxylic acid (0.07 mmol), distilled water (20 mL) and stoichiometric amount of anhydrous potassium carbonate (24.2 mg 0.175 mmol) were placed into a single-necked flask and the reaction mixture was intensively stirred until complete dissolution. Than the solution was filtered through a PES syringe filter (average pore size 0.45 μm) and freeze-dried for 8 h to afford an orange powder of water-soluble salt with quantitative yield.

X-ray crystallography for 1c

Data collection for single crystal of 1c (0.050 × 0.040 × 0.015 mm3) was carried out with a MAR225 CCD detector at 100 K using synchrotron radiation at the BESSY storage ring, BL 14.3 (λ = 0.8950 Å, PSF of the Free University of Berlin, Germany). The structure was solved using SHELXD and refined against |F²| with SHELXL-2014/7. Absorption correction was not applied. Crystal data for 1c: C111H58O10, M = 1551.58, monoclinic, P2₁/c, a = 21.893(2), b = 16.150(1), c = 20.433(1) Å, β = 95.293(5), V = 7193.7(9) Å³, Z = 4, Anisotropic refinement with 13833 reflections and 1020 parameters yielded a conventional R1 = 0.1818 for 7916 reflections with I > 2σ (I) and wR2 = 0.3908 for all reflections. Terminal carboxylated alkyl groups were refined with very large thermal parameters due to long distances from the fullerene cage. All methylene and methyl hydrogen atoms were placed into geometrically calculated positions and refined in the riding mode. For more details see CCDC 1893318.

Selected spectroscopic data

Compounds 1a and 1b have been synthesized and fully characterized earlier (Mendeleev Commun., 2012, 22, 254–256).

1c (Yield 95%). ¹H NMR (600 MHz, CDCl₃, δ, ppm): 1.46 (s, 3H), 2.54 (t, 2H, J = 7.8 Hz), 2.65–2.73 (m, 8H), 2.83 (t, 2H, J = 7.8 Hz), 2.98 - 3.06 (m, 8H), 3.62 (s, 3H), 3.68 (s, 6H), 3.73 (s, 6H), 6.94 (d, 2H, J = 8.3 Hz), 7.13 (d, 2H, J = 8.3 Hz), 7.17 (m, 8H), 7.64 (d, 4H, J = 7.2 Hz), 7.75 (d, 4H, J = 8.2 Hz).

¹³C NMR (151 MHz, CDCl₃, δ, ppm): 30.27 (CH₂), 30.58 (CH₂), 30.60 (CH₃), 34.38 (CH₃, cage-bonded), 35.29 (CH₂), 35.59 (CH₂), 35.70 (CH₃), 51.63 (CH₃), 51.68 (CH₃), 51.72 (CH₃), 57.91 (C_sp3 fullerene cage),
Elemental analysis: 138.55, 148.58, 148.73, 148.89, 150.12, 154.74, 157.44, 158.40, 173.21 (ESI MS: m/z= 1565 ([M]).

ESI MS: m/z= 1552 ([M]).

Elemental analysis: C_{11}H_{30}O_{10} (M_{w}=1551.68): calcd., %: C 85.92, H 3.77; found, %: C 85.67, H 3.82.

1d (Yield 92%). {^1}H NMR (600 MHz, CDCl_{3}, δ, ppm): 0.91 (t, 3H, J = 7.1 Hz), 1.49 (q, 2H, J = 7.0 Hz), 2.55 – 2.59 (m, 2H), 2.67-2.73 (m, 8H), 2.87 (t, 2H, J = 7.8 Hz), 2.97-3.07 (m, J = 22.8, 8H), 3.64 (s, 3H), 3.69 (s, 6H), 3.72 (s, 6H), 7.00 (d, 2H, J = 8.3 Hz), 7.15-7.19 (m, 8H), 7.26 (d, 2H, J = 8.3 Hz), 7.60 (d, 4H, J = 8.2 Hz), 7.71 (d, 4H, J = 8.2 Hz).

{^{13}}C NMR (151 MHz, CDCl_{3}, δ, ppm): 9.64 (CH_{2}CH_{3}), 30.27 (CH_{2}), 30.54 (CH_{2}), 30.61 (CH_{2}), 33.59 (CH_{2}CH_{3}), 35.27 (CH_{3}), 35.55 (CH_{3}), 35.71 (CH_{3}), 51.66 (CH_{3}), 51.69 (CH_{3}), 58.41 (C_{sp3} fullerene cage), 60.91 (C_{sp3} fullerene cage), 63.24 (C_{sp3} fullerene cage), 65.48 (C_{sp3} fullerene cage), 127.89, 128.07, 128.47, 128.54, 128.79, 129.01, 130.88, 136.96, 138.60, 139.24, 140.04, 140.14, 141.02, 142.66, 143.59, 143.90, 144.01, 144.12, 144.17, 144.32, 144.36, 144.70, 144.74, 145.33, 145.54, 147.09, 147.30, 147.37, 147.66, 147.86, 148.07, 148.20, 148.28, 148.47, 148.57, 148.71, 148.80, 151.47, 153.33, 155.82, 156.94, 173.22 (COOCH_{3}).

ESI MS: m/z= 1565 ([M]).

Elemental analysis: C_{11}H_{40}O_{10} (M_{w}=1565.70): calcd., %: C 85.92, H 3.86; found, %: C 85.63, H 3.97.

1e (Yield 80%). {^1}H NMR (600 MHz, CDCl_{3}, δ, ppm): 0.59 (d, 6H, J = 6.2 Hz), 2.41 (m, 1H), 2.60 (t, 2H, J = 7.7 Hz), 2.65 (t, 4H, J = 7.7 Hz), 2.74 (t, 4H, J = 7.6 Hz), 2.89 (t, 2H, J = 7.5 Hz), 2.95 (t, 4H, J = 7.5 Hz), 3.08 (t, 4H, J = 7.5 Hz), 3.65 (s, 3H), 3.68 (s, 6H), 3.73 (s, 6H), 7.08 (d, 2H, J = 7.9 Hz), 7.12 (d, 4H, J = 7.7 Hz), 7.26 (d, 4H, J = 7.7 Hz), 7.54–7.63 (m, 6H), 7.93 (d, 4H, J = 7.8 Hz).

{^{13}}C NMR (151 MHz, CDCl_{3}, δ, ppm): 22.53 (CH(CH_{3})_{2}), 30.30 (CH_{2}), 30.48 (CH_{2}), 30.62 (CH_{2}), 35.22 (CH(CH_{3})_{2}), 35.36 (CH_{3}), 35.53 (CH_{3}), 35.71 (CH_{3}), 51.66 (CH_{3}), 51.71 (CH_{3}), 58.24 (C_{sp3} fullerene cage), 61.25 (C_{sp3} fullerene cage), 63.10 (C_{sp3} fullerene cage), 71.65 (C_{sp3} fullerene cage), 127.58, 128.56, 128.63, 128.74, 129.09, 131.54, 138.20, 138.80, 139.16, 140.00, 140.18, 142.54, 142.66, 142.74, 143.27, 143.66, 143.94, 144.10, 144.25, 144.33, 144.75, 145.28, 145.56, 147.20, 147.34, 147.53, 147.86, 147.95, 148.23, 148.28, 148.55, 148.58, 148.73, 148.89, 150.12, 154.74, 157.44, 158.40, 173.21 (COOCH_{3}), 173.23 (COOCH_{3}).

ESI MS: m/z= 1579 ([M]).

Elemental analysis: C_{11}H_{30}O_{10} (M_{w}=1579.73): calcd., %: C 85.92, H 3.96; found, %: C 85.66, H 3.99.

1f (Yield 95%). {^1}H NMR (600 MHz, CDCl_{3}, δ, ppm): 0.62 (t, 3H, J = 7.3 Hz), 0.79-0.87 (m, 2H), 1.37–1.49 (m, 4H), 2.57 (t, 2H, J = 7.8 Hz), 2.65–2.74 (m, 8H), 2.87 (t, 2H, J = 7.7 Hz), 2.96–3.06 (m, 8H),
Elemental analysis: C 58.46 (3.80 (m, 30H), 4.02)

\[137.52, 137.61, 138.24, 138.74, 143.00, 143.19, 143.57, 143.72, 143.87, 144.01, 144.03, 144.09, 144.11, 144.29, 144.33, 144.38, 144.77, 145.42, 145.55, 147.09, 147.31, 147.38, 147.70, 147.87, 148.10, 148.20, 148.29, 148.49, 148.59, 148.74, 148.82, 151.48, 153.51, 156.60, 156.96, 173.18 (C=OCH), 173.21 (C=OCH).

ESI MS: m/z= 1594 ([M]).

Elemental analysis: C_{114}H_{64}O_{10} (M_{w}=1593.76): calcd., %: C 85.91, H 4.05; found, %: C 85.30, H 4.25.

2a (Yield 80%). \(^{1}\)H NMR (500 MHz, CDCl\(_3\), \(\delta\), ppm): 2.53 – 2.86 (m, 5H), 3.07 – 3.37 (m, 5H), 3.60 – 3.88 (m, 30H), 3.95-4.23 (m, 5H), 6.95–7.39 (m, 12H), 7.51 – 7.72 (m, 4H), 7.76 – 7.97 (m, 4H).

\(^{13}\)C NMR (126 MHz, CDCl\(_3\), \(\delta\), ppm): 37.45 (C\(_2\)H), 37.48 (C\(_2\)H), 37.52 (C\(_2\)H), 37.55 (C\(_2\)H), 37.58 (C\(_2\)H), 46.57 (C\(_2\)H), 46.74 (C\(_2\)H), 46.75 (CH), 51.91 (CH\(_2\)), 51.97 (CH\(_2\)), 52.01 (CH\(_2\)), 52.42 (CH\(_2\)), 52.47 (CH\(_2\)), 52.52 (CH\(_3\)), 57.80 (C\(_{sp3}\) fullerene cage), 128.24, 60.44 (C\(_{sp3}\) fullerene cage), 63.12 (C\(_{sp3}\) fullerene cage), 75.98 (C\(_{sp3}\) fullerene cage-Cl), 125.31, 126.87, 127.55, 127.74, 128.26, 128.43, 128.72, 128.94, 129.53, 130.55, 136.77, 137.52, 137.61, 138.24, 138.74, 143.00, 143.19, 143.57, 143.72, 143.87, 144.28, 144.38, 144.46, 144.64, 145.14, 145.22, 146.44, 147.30, 147.45, 147.93, 148.26, 148.36, 148.54, 148.74, 148.78, 148.84, 148.86, 150.18, 150.89, 153.73, 156.47, 171.78 (C=OCH\(_3\)), 171.82 (C=OCH\(_3\)), 171.86 (C=OCH\(_3\)), 173.12 (C=OCH\(_3\)), 173.17 (C=OCH\(_3\)).

ESI MS: m/z= 1828 ([M-CI]).

Elemental analysis: C_{120}H_{66}ClO_{20} (M_{w}=1862.27): calcd., %: C 77.40, H 3.52; found, %: C 77.31, H 3.77.

2b (Yield 95%). \(^{1}\)H NMR (500 MHz, CDCl\(_3\), \(\delta\), ppm): 2.59 – 2.78 (m, 5H), 3.08 - 3.37 (m, 5H), 3.63 – 3.80 (m, 30H), 4.02 – 4.20 (m, 5H), 5.20 (s, 1H), 7.06 (d, 2H, J = 8.1 Hz), 7.08 - 7.12 (m, 4H), 7.23 – 7.27 (m, 4H), 7.33 (d, 2H, J = 7.5 Hz), 7.51 (d, 4H, J = 8.0 Hz), 7.67 – 7.73 (m, 4H).

\(^{13}\)C NMR (126 MHz, CDCl\(_3\), \(\delta\), ppm): 37.39 (C\(_2\)H), 37.42 (C\(_2\)H), 37.45 (C\(_2\)H), 37.49 (C\(_2\)H), 37.53 (C\(_2\)H), 46.56 (C\(_2\)H), 46.68 (C\(_2\)H), 46.72 (CH), 51.99 (CH\(_3\)), 52.02 (CH\(_3\)), 52.43 (CH\(_3\)), 52.47 (CH\(_3\)), 52.53 (CH\(_3\)), 58.46 (C\(_{sp3}\) fullerene cage), 58.60 (C\(_{sp3}\) fullerene cage), 60.62 (C\(_{sp3}\) fullerene cage), 62.81 (C\(_{sp3}\) fullerene cage-H), 127.74, 128.02, 128.15, 128.22, 128.33, 128.52, 128.60, 128.63, 128.91, 129.02, 136.88, 137.29, 137.50, 139.15, 143.25, 143.60, 144.17, 144.25, 144.33, 144.97, 145.24, 145.49, 145.73, 146.91, 147.11, 147.21, 147.79, 148.13, 148.19, 148.31, 148.44, 148.73, 148.80, 148.86, 151.32, 151.88, 152.49, 155.83, 155.87, 171.75 (C=OCH\(_3\)), 173.05 (C=OCH\(_3\)), 173.11 (C=OCH\(_3\)), 173.14 (C=OCH\(_3\)).

ESI MS: m/z= 1827 ([M-H]).

Elemental analysis: C_{120}H_{66}O_{20} (M_{w}=1827.83): calcd., %: C 78.85, H 3.64; found, %: C 78.55, H 3.89.
2c (Yield 95%). 1H NMR (500 MHz, CDCl$_3$, δ, ppm): 1.47 (s, 3H), 2.47 – 2.81 (m, 5H), 3.06 – 3.33 (m, 5H), 3.55 – 3.83 (m, 30H), 3.92–4.27 (m, 5H), 6.97 - 7.07 (m, 2H), 7.13 - 7.21 (m, 2H), 7.21 - 7.36 (m, 8H), 7.52 – 7.61 (m, 2H), 7.62 – 7.82 (m, 8H).

13C NMR (126 MHz, CDCl$_3$, δ, ppm): 34.35 (CH$_3$, cage-boned), 37.48 (CH$_2$), 37.54 (CH$_3$), 46.49 (CH), 46.73 (CH), 51.91 (CH$_3$), 51.97 (CH$_3$), 52.02 (CH$_3$), 52.41 (CH$_3$), 52.52 (CH$_3$), 57.82 (C$_{sp3}$ fullerene cage), 60.70 (C$_{sp3}$ fullerene cage), 62.18 (C$_{sp3}$ fullerene cage), 62.30 (C$_{sp3}$ fullerene cage), 127.57, 128.09, 128.36, 128.63, 128.85, 129.21, 130.45, 130.93, 136.41, 137.49, 139.11, 142.05, 142.83, 143.67, 144.11, 144.32, 144.45, 144.68, 145.28, 145.55, 147.10, 147.29, 147.33, 147.84, 148.17, 148.25, 148.36, 148.51, 148.68, 148.79, 148.82, 151.33, 152.80, 156.68, 171.76 (COOCH$_3$), 171.80 (COOCH$_3$), 173.07 (COOCH$_3$), 173.11 (COOCH$_3$), 173.14 (COOCH$_3$), 173.18 (COOCH$_3$).

ESI MS: m/z = 1841 ([M$^+$]).

Elemental analysis: C$_{121}$H$_{68}$O$_{20}$ (M$_w$=1841.86): calcd., %: C 78.91, H 3.72; found, %: C 79.02, H 3.80.

2d (Yield 94%). 1H NMR (500 MHz, CDCl$_3$, δ, ppm): 0.91 (t, 3H, J = 6.9 Hz), 1.51 (m, 2H), 2.56 – 2.84 (m, 5H), 3.10 – 3.33 (m, 5H), 3.60 – 3.80 (m, 30H), 3.98 – 4.21 (m, 5H), 7.00 – 7.14 (m, 2H), 7.14 – 7.37 (m, 10H), 7.59 – 7.67 (m, 4H), 7.69 – 7.82 (m, 4H).

13C NMR (126 MHz, CDCl$_3$, δ, ppm): 9.67 (CH$_3$CH$_3$), 33.79 (CH$_2$CH$_3$), 37.47 (CH$_2$), 37.49 (CH$_3$), 37.53 (CH$_2$), 46.51 (CH), 46.71 (CH), 46.75 (CH), 51.94 (CH$_3$), 51.97 (CH$_3$), 52.01 (CH$_3$), 52.47 (CH$_3$), 52.53 (CH$_3$), 58.29 (C$_{sp3}$ fullerene cage), 60.83 (C$_{sp3}$ fullerene cage), 63.20 (C$_{sp3}$ fullerene cage), 65.53 (C$_{sp3}$ fullerene cage), 125.31, 127.20, 127.48, 128.04, 128.24, 128.29, 128.36, 129.05, 129.16, 131.17, 136.45, 137.43, 138.36, 139.93, 142.31, 142.76, 143.44, 143.72, 144.11, 144.21, 144.35, 144.45, 144.55, 145.15, 145.37, 147.12, 147.33, 147.41, 147.93, 148.17, 148.26, 148.34, 148.54, 148.68, 148.83, 148.87, 151.05, 153.03, 155.89, 156.74, 171.78 (COOCH$_3$), 173.11 (COOCH$_3$), 173.16 (COOCH$_3$), 173.18 (COOCH$_3$).

ESI MS: m/z = 1856 ([M$^+$]).

Elemental analysis: C$_{122}$H$_{70}$O$_{20}$ (M$_w$=1855.88): calcd., %: C 78.96, H 3.80; found, %: C 78.77, H 3.78.

2f (Yield 85%). 1H NMR (600 MHz, CDCl$_3$, δ, ppm): 0.48 - 0.57 (m, 3H), 0.69 – 0.82 (m, 2H), 1.33 – 1.48 (m, 4H), 2.82 – 2.55 (m, 5H), 7.18 – 7.26 (m, 10H), 3.34 – 3.09 (m, 5H), 3.82 – 3.60 (m, 30H), 3.98 - 4.23 (m, 5H), 7.03 – 7.11 (m, 2H), 7.57 - 7.63 (m, 4H), 7.68 - 7.75 (m, 4H).

13C NMR (151 MHz, CDCl$_3$, δ, ppm): 13.88 (CH$_3$CH$_2$), 22.14 (CH$_3$CH$_2$), 27.67 46.53 (CH), (CH$_3$CH$_2$), 37.42 (CH$_2$), 37.45 (CH$_2$), 37.48 (CH$_2$), 37.51 (CH$_2$), 37.53 (CH$_2$), 40.86 (CH$_3$CH$_2$), 46.69 (CH), 46.71 (CH), 46.73 (CH), 46.75 (CH), 51.89 (CH$_3$), 51.95 (CH$_3$), 51.99 (CH$_3$), 52.37 (CH$_3$), 52.44 (CH$_3$), 52.46 (CH$_3$), 52.50 (CH$_3$), 58.22 (C$_{sp3}$ fullerene cage), 60.89 (C$_{sp3}$ fullerene cage), 63.10 (C$_{sp3}$ fullerene cage), 65.49 (C$_{sp3}$ fullerene cage), 127.02, 127.47, 127.95, 128.23, 128.47, 128.83, 129.23, 130.91, 136.60, 137.52, 138.45, 139.84, 142.22, 142.76, 143.49, 143.78, 144.12, 144.20, 144.36, 144.47, 144.57, 145.22, 145.34, 147.10, 147.31, 147.39, 147.91, 148.17, 148.24, 148.33, 148.54, 148.68, 148.84, 148.87, 151.05, 153.20, 156.74, 171.72 (COOCH$_3$), 173.06 (COOCH$_3$), 173.09 (COOCH$_3$), 173.13 (COOCH$_3$), 173.15 (COOCH$_3$).
ESI MS: m/z= 1919 ([M+Cl]).

Elemental analysis: C_{123}H_{74}O_{20} (M_w=1883.94): calcd., %: C 79.06, H 3.96; found, %: C 78.80, H 4.13.

3a (Yield 87%). \(^1\)H NMR (500 MHz, CDCl₃, δ, ppm): 2.54 – 2.86 (m, 20H), 3.51 – 3.75 (m, 35H), 7.02 (d, 2H, J = 8.3 Hz), 7.16 (d, 2H, J = 8.3 Hz), 7.19 (d, 4H, J = 8.1 Hz), 7.24 (d, 4H, J = 8.1 Hz), 7.52 (d, 4H, J = 8.1 Hz), 7.82 (d, 4H, J = 8.1 Hz).

\(^1\)C NMR (126 MHz, CDCl₃, δ, ppm): 37.79 (CH), 37.99 (CH), 38.10 (CH), 40.17 (CH₂), 40.38 (CH₂), 40.42 (CH₂), 40.44 (CH₂), 40.49 (CH₂), 51.59 (CH₃), 51.70 (CH₃), 51.71 (CH₃), 51.74 (CH₃), 57.92 (C_{sp3} fullerene cage), 60.49 (C_{sp3} fullerene cage), 63.12 (C_{sp3} fullerene cage), 76.36 (C_{sp3} fullerene cage-Cl), 125.31, 126.66, 127.54, 127.67, 127.77, 127.98, 128.24, 128.34, 128.41, 128.54, 128.75, 128.89, 129.05, 130.32, 136.03, 137.40, 141.94, 142.27, 142.35, 142.52, 142.94, 143.36, 143.43, 143.72, 143.75, 144.04, 144.23, 144.32, 144.43, 144.59, 145.24, 145.37, 146.67, 147.27, 147.30, 147.44, 147.91, 148.21, 148.33, 148.52, 148.72, 148.78, 148.84, 150.41, 151.06, 153.57, 156.65, 171.89 (COOCH₃), 171.92 (COOCH₃), 171.94 (COOCH₃).

ESI MS: m/z= 1896 ([M-Cl]).

Elemental analysis: C_{125}H_{75}ClO_{20} (M_w=1932.41): calcd., %: C 77.69, H 3.91; found, %: C 77.48, H 4.05.

3b (Yield 95%). \(^1\)H NMR (600 MHz, CDCl₃, δ, ppm): 2.58 – 2.84 (m, 20H), 3.52 – 3.74 (m, 35H), 5.20 (s, 1H), 7.07 – 7.11 (m, 6H), 7.21 (d, 4H, J = 8.2 Hz), 7.31 (d, 2H, J = 8.2 Hz), 7.45 (d, 4H, J = 8.2 Hz), 7.64 (d, 4H, J = 8.2 Hz).

\(^1\)C NMR (151 MHz, CDCl₃, δ, ppm): 37.74 (CH), 37.90 (CH), 37.96 (CH), 40.27 (CH₂), 40.37 (CH₂), 40.42 (CH₂), 40.45 (CH₂), 51.71 (CH₃), 51.74 (CH₃), 51.78 (CH₃), 58.61 (C_{sp3} fullerene cage), 58.66 (C_{sp3} fullerene cage), 60.70 (C_{sp3} fullerene cage), 62.89 (C_{sp3} fullerene cage-H), 127.53, 127.67, 127.76, 128.01, 128.34, 128.40, 128.49, 128.58, 131.98, 132.09, 132.15, 138.48, 141.88, 142.16, 142.30, 143.16, 143.75, 144.09, 144.17, 144.19, 144.28, 144.29, 144.37, 144.43, 145.39, 145.65, 145.93, 145.95, 146.90, 147.10, 147.19, 147.74, 147.76, 148.09, 148.13, 148.28, 148.40, 148.69, 148.73, 148.80, 151.69, 152.14, 152.44, 156.01, 171.89 (COOCH₃).

ESI MS: m/z= 1896 ([M-H]).

Elemental analysis: C_{125}H_{76}O_{20} (M_w=1897.96): calcd., %: C 79.10, H 4.04; found, %: C 78.82, H 4.10.

3d (Yield 91%). \(^1\)H NMR (500 MHz, CDCl₃, δ, ppm): 0.79 (t, 3H, J = 7.1 Hz), 1.42 (q, 2H, J = 6.7 Hz), 2.54 – 2.89 (m, 20H), 3.51 – 3.77 (m, 35H), 7.04 (d, 2H, J = 8.4 Hz), 7.19 – 7.25 (m, 10H), 7.58 (d, 4H, J = 8.3 Hz), 7.65 (d, 4H, J = 8.3 Hz).

\(^1\)C NMR (126 MHz, CDCl₃, δ, ppm): 9.45 (CH₂CH₃), 33.58 (CH₂CH₃), 37.63 (CH), 38.02 (CH), 38.05 (CH), 40.12 (CH₂), 40.40 (CH₂), 40.42 (CH₂), 40.47 (CH₂), 40.54 (CH₂), 51.60 (CH₃), 51.66 (CH₃), 51.71 (CH₃), 58.40 (C_{sp3} fullerene cage), 60.91 (C_{sp3} fullerene cage), 63.18 (C_{sp3} fullerene cage), 65.42 (C_{sp3} fullerene cage), 126.78, 127.51, 127.78, 128.16, 129.01, 130.87, 137.52, 139.07, 141.46, 141.67, 142.23, 142.32, 142.70, 143.59, 143.93, 144.05, 144.08, 144.14, 144.30, 144.40, 144.70, 144.74, 145.30, 145.47, 147.10, 147.32, 147.39,
147.49, 147.90, 148.12, 148.22, 148.31, 148.51, 148.62, 148.77, 148.84, 171.89 (COOCH₃), 171.92 (COOCH₃).

Elemental analysis: C₁₂₇H₈₀O₂₀ (M₀=1926.02): calcd., %: C 79.20, H 4.19; found, %: C 78.93, H 4.23.

4a (Yield 75%). ¹H NMR (600 MHz, CDCl₃, δ, ppm): 1.40 – 1.69 (m, 15H), 3.56 – 3.83 (m, 20H), 7.06 (d, 2H, J = 8.5 Hz), 7.22 (d, 4H, J = 5.3 Hz), 7.24 – 7.36 (m, 6H), 7.55 – 7.67 (m, 4H), 7.81 – 7.95 (m, 4H).

¹³C NMR (126 MHz, CDCl₃, δ, ppm): 18.39 (CH₃), 18.54 (CH₃), 18.57 (CH₃), 44.87 (CH), 45.06 (CH), 52.07 (CH₃), 52.12 (CH₃), 57.87 (Cqp₃ fullerene cage), 60.51 (Cqp₃ fullerene cage), 63.22(Cqp₃ fullerene cage), 76.01 (Cqp₃ fullerene cage–Cl), 126.55, 127.29, 127.91, 127.95, 128.06, 128.80, 129.20, 129.67, 130.35, 130.49, 136.26, 137.71, 139.37, 140.22, 140.34, 142.56, 142.94, 143.34, 143.37, 143.76, 143.99, 144.23, 144.34, 144.43, 144.60, 145.27, 145.33, 147.31, 147.45, 147.92, 148.22, 148.33, 148.52, 148.73, 148.79, 148.85, 150.41, 151.04, 153.82, 156.70, 174.69 (COOCH₃), 174.78 (COOCH₃).

ESI MS: m/z = 1537 ([M-Cl]).

Elemental analysis: C₁₁₀H₅₅ClO₁₀ (M₀=1572.09): calcd., %: C 84.04, H 3.53; found, %: C 84.31, H 3.30.

4c (Yield 94%). ¹H NMR (500 MHz, CDCl₃, δ, ppm): 1.42 (d, 3H, J = 7.2 Hz), 1.51 (s, 3H), 1.53 – 1.59 (m, 12H), 3.52 – 3.87 (m, 20H), 7.00 – 7.07 (m, 2H), 7.16 – 7.22 (m, 2H), 7.23 – 7.33 (m, 8H), 7.63 – 7.71 (m, 4H), 7.73 – 7.81 (m, 4H).

¹³C NMR (126 MHz, CDCl₃, δ, ppm): 18.46 (CH₃), 18.60 (CH₃), 18.65 (CH₃), 34.48 (CH₃, cage-boned), 44.81 (CH), 45.04 (CH), 45.08 (CH), 45.09 (CH), 52.07 (CH₃), 52.12 (CH₃), 57.87 (Cqp₃ fullerene cage), 60.78 (Cqp₃ fullerene cage), 62.22 (Cqp₃ fullerene cage), 62.25 (Cqp₃ fullerene cage), 126.95, 127.31, 127.73, 127.76, 127.95, 128.04, 128.47, 128.64, 129.03, 130.29, 136.96, 138.55, 138.58, 138.62, 139.03, 140.13, 140.17, 141.61, 142.77, 143.79, 144.06, 144.16, 144.29, 144.41, 144.79, 145.40, 145.68, 147.11, 147.30, 147.34, 147.83, 148.13, 148.24, 148.35, 148.50, 148.63, 148.78, 151.53, 153.07, 153.10, 157.20, 160.12, 160.20, 160.26, 174.76 (COOCH₃), 174.80 (COOCH₃).

ESI MS: m/z = 1551 ([M]).

Elemental analysis: C₁₁₁H₅₈O₁₀ (M₀=1551.68): calcd., %: C 85.92, H 3.77; found, %: C 85.66, H 4.04.

4d (Yield 92%). ¹H NMR (500 MHz, CDCl₃, δ, ppm): 0.91 – 1.00 (m, 3H), 1.45 (d, 3H, J = 7.2 Hz), 1.52 – 1.61 (m, 14H), 3.54-3.86 (m, 20H) 7.04 – 7.14 (m, 2H), 7.21 – 7.34 (m, 10H), 7.60 – 7.69 (m, 4H), 7.73 – 7.81 (m, 4H).

¹³C NMR (126 MHz, CDCl₃, δ, ppm): 9.71 (CH₂CH₃), 18.50 (CH₃), 18.54 (CH₃), 18.60 (CH₃), 33.80 (CH₂CH₃), 44.84 (CH), 45.02 (CH), 45.05 (CH), 45.08 (CH), 52.13 (CH₃), 58.36 (Cqp₃ fullerene cage), 60.91 (Cqp₃ fullerene cage), 63.29 (Cqp₃ fullerene cage), 65.56 (Cqp₃ fullerene cage), 126.92, 127.24, 127.69, 127.83, 127.90, 128.05, 128.12, 129.03, 130.98, 131.02, 137.83, 139.04, 139.42, 140.11, 141.87, 142.69, 143.57, 143.82, 144.05, 144.16, 144.32, 144.40, 144.69, 145.27, 145.50, 147.11, 147.33, 147.40, 147.51, 147.90, 148.11,
Elemental analysis: C_{112}H_{60}O_{10} (M_w=1565.70): calcd., %: C 85.92, H 3.86; found, %: C 85.78, H 4.15.

A1e. ¹H NMR (600 MHz, DMSO-d₆, δ, ppm): 1.42 (s, 3H), 2.41 (t, 2H, J = 7.6 Hz), 2.52 – 2.60 (m, 8H), 2.67 (t, 2H, J = 6.8 Hz), 2.81 – 2.89 (m, 8H), 6.97 (d, 2H, J = 8.3 Hz), 7.03 (d, 2H, J = 8.0 Hz), 7.23 (d, 8H, J = 8.1 Hz), 7.61 (d, 4H, J = 8.1 Hz), 7.67 (d, 4H, J = 8.1 Hz), 12.16 (br.s, 5H).

¹³C NMR (151 MHz, DMSO-d₆, δ, ppm): 30.02 (CH₃), 30.35 (CH₂), 30.44 (CH₂), 34.51 (CH₃, cage-bonded), 35.08 (CH₂), 35.44 (CH₂), 35.67 (CH₂), 57.81 (Csp³ fullerene cage), 60.88 (Csp³ fullerene cage), 62.14 (Csp³ fullerene cage), 62.25 (Csp³ fullerene cage), 128.17, 128.56, 128.67, 129.29, 129.54, 129.81, 135.16, 136.76, 140.22, 140.40, 141.16, 141.30, 142.36, 142.58, 143.86, 143.95, 144.02, 144.10, 144.20, 144.22, 144.68, 144.80, 145.62, 145.92, 146.95, 147.19, 147.66, 147.95, 148.02, 148.19, 148.31, 148.38, 148.57, 148.61, 152.10, 153.42, 157.41, 160.42, 174.17 (COOH), 174.21 (COOH), 174.23 (COOH).

Elemental analysis: C_{106}H_{48}O_{10} (M_w=1481.54): calcd., %: C 85.94, H 3.27; found, %: C 85.86, H 3.44.

A1d. ¹H NMR (600 MHz, DMSO-d₆, δ, ppm): 0.86 (t, 3H, J = 6.9 Hz), 1.34 – 1.43 (m, 2H), 2.44 (t, 2H, J = 7.6 Hz), 2.53 – 2.59 (m, 8H), 2.69 (t, 2H, J = 7.3 Hz), 2.79 – 2.90 (m, 8H), 7.03 (d, 2H, J = 8.2 Hz), 7.15 (d, 2H, J = 8.1 Hz), 7.19 – 7.26 (m, 8H), 7.52 (d, 4H, J = 8.1 Hz), 7.62 (d, 4H, J = 8.1 Hz).

¹³C NMR (151 MHz, DMSO-d₆, δ, ppm): 9.79 (CH₂CH₃), 30.02 (CH₃), 30.31 (CH₂), 30.41 (CH₂), 33.87 (CH₂CH₃), 35.10 (CH₂), 35.44 (CH₂), 35.70 (CH₂), 58.41 (Csp³ fullerene cage), 61.01 (Csp³ fullerene cage), 63.24 (Csp³ fullerene cage), 65.41 (Csp³ fullerene cage), 127.85, 128.59, 129.19, 129.52, 130.55, 135.96, 137.65, 140.37, 140.52, 141.38, 142.51, 143.77, 143.88, 143.99, 144.01, 144.23, 144.47, 144.50, 144.72, 145.40, 145.74, 146.98, 147.23, 147.26, 147.76, 147.95, 148.03, 148.18, 148.33, 148.39, 148.57, 148.69, 151.76, 153.71, 156.04, 157.20, 174.16 (COOH), 174.19 (COOH).

Elemental analysis: C_{105}H_{50}O_{10} (M_w=1495.57): calcd., %: C 85.93, H 3.37; found, %: C 85.74, H 3.50.

A1e. ¹H NMR (500 MHz, DMSO-d₆, δ, ppm): 0.55 (d, 6H, J = 6.4 Hz), 2.35 – 2.38 (m, 1H), 2.46 – 2.54 (m, 6H), 2.62 (t, 4H, J = 7.6 Hz), 2.75 (t, 2H, J = 7.4 Hz), 2.81 (t, 4H, J = 7.4 Hz), 2.93 (t, 4H, J = 7.3 Hz), 7.14 (d, 2H, J = 8.3 Hz), 7.18 (d, 4H, J = 8.3 Hz), 7.35 (d, 4H, J = 8.3 Hz), 7.50 – 7.57 (m, 6H), 7.86 (d, 4H, J = 8.2 Hz), 12.16 (br.s, 5H).

¹³C NMR (126 MHz, DMSO-d₆, δ, ppm): 22.67 (CH(CH₃)₂), 30.12 (CH₂), 30.25 (CH₂), 30.47 (CH₂), 35.20 (CH(CH₃)₂), 35.29 (CH₂), 35.42 (CH₂), 35.75 (CH₂), 58.29 (Csp³ fullerene cage), 61.39 (Csp³ fullerene cage), 63.14 (Csp³ fullerene cage), 71.55 (Csp³ fullerene cage), 128.30, 128.54, 128.69, 129.32, 131.47, 137.39, 137.83, 140.37, 141.21, 141.52, 142.09, 142.43, 143.19, 143.33, 143.83, 143.93, 144.04, 144.12, 144.27, 144.45, 144.52, 145.41, 145.80, 147.14, 147.30, 147.47, 147.86, 147.92, 148.08, 148.20, 148.21, 148.41, 148.49, 148.62, 148.81, 150.46, 155.26, 157.75, 158.59, 174.15 (COOH), 174.19 (COOH).

Elemental analysis: C_{108}H_{52}O_{10} (M_w=1509.59): calcd., %: C 85.93, H 3.47; found, %: C 85.69, H 3.52.
A1f. 1H NMR (500 MHz, DMSO-d_6, δ, ppm): 0.57 (t, 3H, $J = 7.2$ Hz), 0.66-0.81 (m, 2H), 1.31-1.47 (m, 4H), 2.43 (t, 2H, $J = 7.7$ Hz), 2.52–2.60 (m, 8H), 2.72 (t, 2H, $J = 7.6$ Hz), 2.80–2.91 (m, 8H), 7.04 (d, 2H, $J = 6.5$ Hz), 7.13–7.25 (m, 10H), 7.52 (d, 4H, $J = 7.9$ Hz), 7.65 (d, 4H, $J = 8.1$ Hz).

13C NMR (126 MHz, DMSO-d_6, δ, ppm): 14.44 (CH$_3$(CH$_2$)$_3$), 22.36 (CH$_3$(CH$_2$)$_3$), 27.57 (CH$_3$(CH$_2$)$_3$), 30.07 (CH$_2$), 30.32 (CH$_2$), 30.43 (CH$_2$), 35.23 (CH$_2$), 35.52 (CH$_2$), 35.83 (CH$_2$), 40.67 (CH$_3$(CH$_2$)$_3$), 58.34 (C$_{sp}$ fullerene cage), 61.08 (C$_{sp}$ fullerene cage), 63.23 (C$_{sp}$ fullerene cage), 65.38 (C$_{sp}$ fullerene cage), 128.00, 128.49, 128.62, 129.06, 129.35, 130.60, 136.05, 140.42, 140.46, 141.39, 141.41, 142.14, 142.52, 143.83, 143.89, 144.00, 144.04, 144.23, 144.41, 144.56, 144.72, 145.00, 145.52, 145.71, 146.96, 147.21, 147.25, 147.73, 147.94, 148.01, 148.15, 148.33, 148.56, 148.68, 151.81, 153.90, 156.91, 157.19, 174.12 (COOH), 174.16 (COOH).

Elemental analysis: C$_{10}$H$_{14}$O$_{10}$ ($M_w=1523.62$): calcd., %: C 85.93, H 3.57; found, %: C 86.04, H 3.66.

A2a. 1H NMR (500 MHz, DMSO-d_6, acetone-d_6, CS$_2$, δ, ppm): 2.89–3.10 (m, 5H), 3.36 – 3.56 (m, 5H), 4.21–4.52 (m, 5H), 7.04–7.35 (m, 4H), 7.53–7.64 (m, 4H), 7.65–7.91 (m, 8H), 7.92–8.22 (m, 4H).

13C NMR (126 MHz, DMSO-d_6, acetone-d_6, CS$_2$, δ, ppm): 37.97 (CH$_2$), 37.99 (CH$_2$), 38.09 (CH$_2$), 38.19 (CH$_2$), 38.23 (CH$_2$), 38.29 (CH$_2$), 47.14 (CH), 47.43 (CH), 58.20 (C$_{sp}$ fullerene cage), 61.57 (C$_{sp}$ fullerene cage), 71.91 (C$_{sp}$ fullerene cage), 79.11 (C$_{sp}$ fullerene cage-CI), 125.26, 125.92, 125.95, 128.84, 128.93, 129.12, 129.24, 129.74, 131.56, 137.62, 138.42, 138.86, 139.40, 139.59, 143.28, 143.64, 144.23, 144.41, 144.45, 144.83, 144.96, 145.95, 146.23, 147.69, 147.99, 148.23, 148.35, 148.53, 148.60, 148.90, 148.99, 149.05, 149.17, 149.27, 152.46, 156.46, 159.84, 173.25 (COOH), 173.39 (COOH), 173.60 (COOH), 174.54 (COOH), 174.96 (COOH).

Elemental analysis: C$_{110}$H$_{54}$ClO$_{25}$ ($M_w=1722.00$): calcd., %: C 76.73, H 2.63; found, %: C 76.52, H 2.85.

A2b. 1H NMR (500 MHz, DMSO-d_6, acetone-d_6, CS$_2$, δ, ppm): 2.31 – 2.66 (m, 5H), 2.85–3.07 (m, 5H), 3.71 – 4.25 (m, 5H), 5.68 (s, 1H), 6.69 (d, 1H, $J = 8.4$ Hz), 6.92–7.44 (m, 12 H), 7.49–7.89 (m, 6H).

13C NMR (126 MHz, DMSO-d_6, acetone-d_6, CS$_2$, δ, ppm): 37.46 (CH$_2$), 37.53 (CH$_2$), 37.56 (CH$_2$), 37.63 (CH$_2$), 46.82 (CH$_2$), 46.92 (CH$_2$), 46.99 (CH), 58.62 (C$_{sp}$ fullerene cage), 58.83 (C$_{sp}$ fullerene cage), 60.87 (C$_{sp}$ fullerene cage), 62.85 (C$_{sp}$ fullerene cage-H), 128.35, 128.49, 128.55, 128.59, 128.75, 138.15, 138.85, 139.52, 143.10, 143.95, 144.07, 144.12, 144.24, 144.35, 144.43, 144.78, 145.70, 145.90, 147.12, 147.23, 147.72, 147.90, 148.04, 148.11, 148.24, 148.31, 148.37, 148.63, 148.67, 148.75, 148.84, 156.68, 157.07, 172.74 (COOH), 172.81 (COOH), 174.09 (COOH).

Elemental analysis: C$_{110}$H$_{46}$O$_{20}$ ($M_w=1687.56$): calcd., %: C 78.29, H 2.75; found, %: C 78.15, H 3.02.

A2c. 1H NMR (600 MHz, acetone-d_6, CS$_2$, δ, ppm): 1.46 – 1.54 (m, 3H), 2.39 – 2.52 (m, 1H), 2.53 – 2.75 (m, 4H), 2.90 – 3.00 (m, 1H), 3.01 – 3.17 (m, 4H), 6.97 – 7.19 (m, 4H), 7.21 – 7.46 (m, 8H), 7.49 – 7.96 (m, 8H).

13C NMR (151 MHz, acetone-d_6, CS$_2$, δ, ppm): 34.29 (CH$_3$, cage-bonded), 37.60 (CH$_2$), 37.65 (CH$_2$), 37.78 (CH$_2$), 37.82 (CH$_2$), 37.86 (CH$_2$), 47.02 (CH), 47.22 (CH), 47.27 (CH), 58.51 (C$_{sp}$ fullerene cage), 61.55 (C$_{sp}$ fullerene cage), 62.89 (C$_{sp}$ fullerene cage), 62.94 (C$_{sp}$ fullerene cage), 128.98, 129.12, 129.15, 129.39,
129.42, 129.55, 137.29, 139.06, 142.04, 143.50, 144.02, 144.62, 144.65, 144.67, 144.72, 144.77, 144.98, 145.13, 145.14, 145.60, 145.63, 145.66, 146.28, 146.31, 146.46, 146.49, 147.77, 147.98, 148.02, 148.50, 148.79, 148.87, 149.01, 149.15, 149.27, 149.43, 172.77 (COOH), 172.85 (COOH), 172.86 (COOH), 172.95 (COOH), 174.08 (COOH), 174.13 (COOH), 174.22 (COOH).

Elemental analysis: C_{111}H_{88}O_{20} (M_w=1701.59): calcd., %: C 78.35, H 2.84; found, %: C 78.13, H 3.08.

A2d. ^1H NMR (500 MHz, DMSO-d$_6$, acetone-d$_6$, CS$_2$, δ, ppm): 0.81 – 1.00 (m, 3H), 1.39-1.57 (m, 2H), 2.40 – 2.68 (m, 5H), 2.82 – 3.08 (m, 5H), 3.75 – 4.04 (m, 5H), 6.96 – 7.41 (m, 12H), 7.50 – 7.94 (m, 8H).

13C NMR (126 MHz, DMSO-d$_6$, acetone-d$_6$, CS$_2$, δ, ppm): 9.35 (CH$_2$CH$_3$), 33.69 (CH$_2$CH$_3$), 37.06 (CH$_2$), 37.23 (CH$_2$), 37.27 (CH$_2$), 46.20 (CH), 46.41 (CH), 46.48 (CH), 57.93 (C$_{sp3}$ fullerene cage), 60.57 (C$_{sp3}$ fullerene cage), 62.79 (C$_{sp3}$ fullerene cage), 65.11 (C$_{sp3}$ fullerene cage), 127.66, 128.29, 128.58, 130.42, 136.80, 137.75, 138.49, 138.73, 138.85, 141.13, 142.15, 143.28, 143.51, 143.64, 143.85, 144.20, 144.94, 145.23, 146.60, 146.88, 147.40, 147.59, 147.65, 147.81, 147.97, 148.03, 148.21, 148.33, 151.10, 153.14, 156.60, 172.55 (COOH), 173.61 (COOH), 173.75 (COOH), 173.77 (COOH), 173.82 (COOH).

Elemental analysis: C$_{112}$H$_{50}$O$_{20}$ (M$_w$=1715.61): calcd., %: C 78.41, H 2.94; found, %: C 78.31, H 3.22.

A2f. ^1H NMR (500 MHz, DMSO-d$_6$, δ, ppm): 0.45 – 0.54 (m, 3H), 0.61 – 0.71 (m, 2H), 1.26 – 1.35 (m, 2H), 1.46 – 1.59 (m, 2H), 2.56 – 2.67 (m, 5H), 2.83 – 3.07 (m, 5H), 3.79 – 4.11 (m, 5H), 7.09 – 7.018 (m, 4H), 7.59 – 7.64 (m, 8H), 7.74 (d, 4H, J = 7.6 Hz), 12.47 (s, 5H).

13C NMR (126 MHz, DMSO-d$_6$, δ, ppm): 14.22 (CH$_3$(CH$_2$)$_3$), 22.39 (CH$_3$(CH$_2$)$_3$), 28.16 (CH$_3$(CH$_2$)$_3$), 37.78, 37.80, 37.83, 37.98, 38.04, 38.10, 39.39, 39.55, 39.72, 39.89, 39.98, 40.05, 40.14, 40.22, 40.31, 40.39, 40.48, 40.73, 46.75, 46.92, 47.10, 58.21 (C$_{sp3}$ fullerene cage), 61.08 (C$_{sp3}$ fullerene cage), 63.11 (C$_{sp3}$ fullerene cage), 65.70 (C$_{sp3}$ fullerene cage), 128.23, 128.66, 128.71, 128.88, 130.86, 137.24, 138.37, 138.60, 139.33, 139.51, 141.51, 142.55, 143.86, 143.92, 143.96, 144.04, 144.18, 144.27, 144.61, 145.49, 145.69, 147.00, 147.24, 147.28, 147.79, 148.00, 148.03, 148.20, 148.39, 148.63, 148.75, 151.54, 153.93, 157.14, 173.02 (COOH), 173.05 (COOH), 173.07 (COOH), 173.11 (COOH), 174.19 (COOH), 174.32 (COOH), 174.34 (COOH), 174.41 (COOH), 174.45 (COOH).

Elemental analysis: C$_{112}$H$_{50}$O$_{20}$ (M$_w$=1743.67): calcd., %: C 78.53, H 3.12; found, %: C 78.29, H 3.16.

A3a. ^1H NMR (500 MHz, DMSO-d$_6$, acetone-d$_6$, CS$_2$, δ, ppm): 2.40 – 2.77 (m, 20H), 3.44 – 3.61 (m, 5H), 7.06 – 7.18 (m, 4H), 7.23 – 7.35 (m, 8H), 7.41 – 7.49 (m, 4H), 7.68 – 7.80 (m, 4H).

13C NMR (126 MHz, DMSO-d$_6$, acetone-d$_6$, CS$_2$, δ, ppm): 37.60 (CH), 37.97 (CH), 38.02 (CH), 38.08 (CH), 38.14 (CH), 58.09 (C$_{sp3}$ fullerene cage), 60.64 (C$_{sp3}$ fullerene cage), 63.29 (C$_{sp3}$ fullerene cage), 76.26 (C$_{sp3}$ fullerene cage-CI), 127.54, 127.73, 128.19, 128.25, 128.30, 128.38, 128.58, 128.65, 129.29, 130.10, 135.00, 136.37, 137.19, 141.70, 142.90, 143.12, 143.54, 143.75, 143.84, 144.05, 144.10, 144.17, 144.22, 144.31, 144.43, 144.56, 144.83, 145.54, 145.73, 145.90, 146.09, 146.75, 146.90, 147.01, 147.09, 147.22, 147.31, 147.44, 147.72, 147.91, 148.02, 148.14, 148.25, 148.35, 148.49, 148.63, 148.69, 148.81, 150.94, 151.21, 153.60, 156.97, 173.17 (COOH). * signals of the CH$_2$ groups are overlapped with DMSO-d$_6$ signals.
Elemental analysis: C_{113}H_{55}ClO_{20} (M_a=1792.14): calcd., %: C 77.07, H 3.09; found, %: C 76.83, H 3.25.

A3b. 1H NMR (500 MHz, DMSO-d$_6$, acetone-d$_6$, CS$_2$; δ, ppm): 2.39 – 2.76 (m, 20H), 3.46 – 3.64 (m, 5H), 5.49 (s, 1H), 7.07 – 7.25 (m, 8H), 7.30 (d, 4H, J = 8.3 Hz), 7.46 (d, 4H, J = 8.3 Hz), 7.71 (d, 4H, J = 8.3 Hz).

13C NMR (126 MHz, DMSO-d$_6$, acetone-d$_6$, CS$_2$; δ, ppm): 37.69 (CH), 37.97 (CH), 38.08 (CH), 58.72 (C$_{sp3}$ fullerene cage), 58.79 (C$_{sp3}$ fullerene cage), 60.88 (C$_{sp3}$ fullerene cage), 62.72 (C$_{sp3}$ fullerene cage-H), 127.71, 128.17, 128.23, 128.30, 128.43, 128.54, 128.64, 129.25, 137.19, 137.71, 143.09, 143.27, 143.30, 143.60, 143.81, 143.98, 144.01, 144.07, 144.20, 144.30, 144.83, 145.73, 145.90, 146.09, 146.75, 146.89, 147.08, 147.21, 147.71, 148.00, 148.21, 148.34, 148.36, 148.58, 148.64, 152.35, 152.73, 152.86, 156.72, 173.16 (COOH), 173.18 (COOH). * signals of the CH$_2$ groups are overlapped with DMSO-d$_6$ signals.

Elemental analysis: C$_{115}$H$_{56}$O$_{20}$ (M$_a$=1757.69): calcd., %: C 78.58, H 3.21; found, %: C 78.30, H 3.44.

A3d. 1H NMR (500 MHz, DMSO-d$_6$, acetone-d$_6$, CS$_2$; δ, ppm): 0.77 (t, 3H, J = 6.9 Hz), 1.44 – 1.53 (m, 2H), 2.35 – 2.79 (m, 20H), 3.43 – 3.59 (m, 5H), 7.00 – 7.20 (m, 6H), 7.25 (d, 4H, J = 8.0 Hz), 7.29 (d, 4H, J = 8.0 Hz), 7.54 (d, 6H, J = 7.6 Hz).

13C NMR (126 MHz, DMSO-d$_6$, δ, ppm): 9.66 (CH$_2$CH$_3$), 33.95 (CH$_2$CH$_3$), 37.60 (CH), 38.05 (CH), 38.29 (CH), 58.53 (C$_{sp3}$ fullerene cage), 61.12 (C$_{sp3}$ fullerene cage), 63.34 (C$_{sp3}$ fullerene cage), 65.33 (C$_{sp3}$ fullerene cage), 127.75, 127.86, 128.46, 128.72, 130.56, 136.26, 137.79, 140.85, 142.55, 143.13, 143.84, 143.89, 143.92, 143.97, 144.09, 144.29, 144.56, 144.74, 145.44, 145.82, 147.04, 147.32, 147.85, 147.91, 148.07, 148.24, 148.45, 148.65, 148.78, 151.63, 154.00, 155.75, 157.39, 173.31 (COOH). * signals of the CH$_2$ groups are overlapped with DMSO-d$_6$ signals.

Elemental analysis: C$_{115}$H$_{60}$O$_{20}$ (M$_a$=1785.75): calcd., %: C 78.69, H 3.39; found, %: C 78.46, H 3.51.

A4a. 1H NMR (500 MHz, DMSO-d$_6$, δ, ppm): 1.18 – 1.51 (m, 15H), 3.51 – 3.91 (m, 5H), 6.97 – 7.21 (m, 4H), 7.22 – 7.43 (m, 8H), 7.55 – 7.71 (m, 4H), 7.75 – 7.94 (m, 4H).

13C NMR (126 MHz, DMSO-d$_6$, δ, ppm): 18.80 (CH$_3$), 18.84 (CH$_3$), 19.01 (CH$_3$), 44.42 (CH), 44.69 (CH), 44.72 (CH), 57.81 (C$_{sp3}$ fullerene cage), 60.56 (C$_{sp3}$ fullerene cage), 63.16 (C$_{sp3}$ fullerene cage), 76.29 (C$_{sp3}$ fullerene cage-Cl), 128.43, 128.55, 128.65, 140.95, 141.12, 141.69, 142.03, 142.02, 143.51, 143.78, 144.10, 144.45, 145.47, 147.24, 147.35, 147.82, 148.12, 148.19, 148.42, 148.60, 148.67, 148.76, 150.60, 156.85, 174.48 (COOH), 174.57 (COOH), 175.47 (COOH), 175.63 (COOH).

Elemental analysis: C$_{115}$H$_{64}$ClO$_{10}$ (M$_a$=1501.96): calcd., %: C 83.97, H 3.02; found, %: C 83.86, H 3.23.

A4c. 1H NMR (500 MHz, DMSO-d$_6$, δ, ppm): 1.26 (d, 3H, J = 7.2 Hz), 1.41 – 1.33 (m, 12H), 1.54 (s, 3H), 3.54 – 3.62 (m, 1H), 3.67 – 3.78 (m, 4H), 6.99 – 7.16 (m, 4H), 7.23 – 7.39 (m, 8H), 7.69 – 7.84 (m, 8H).

13C NMR (126 MHz, DMSO-d$_6$, δ, ppm): 18.63 (CH$_3$), 18.79 (CH$_3$), 18.83 (CH$_3$), 18.95 (CH$_3$), 19.12 (CH$_3$), 34.54 (CH$_3$, cage-bonded), 44.43 (CH), 44.65 (CH), 44.73 (CH), 57.79 (C$_{sp3}$ fullerene cage), 60.92 (C$_{sp3}$ fullerene cage), 62.24 (C$_{sp3}$ fullerene cage), 62.33 (C$_{sp3}$ fullerene cage), 128.28, 128.32, 128.53, 128.67, 128.73, 136.02, 137.59, 140.68, 141.10, 141.67, 142.64, 143.91, 143.97, 144.97, 144.09, 144.15, 144.28, 144.67, 144.80, 145.70,
Elemental analysis: C\textsubscript{106}H\textsubscript{48}O\textsubscript{10} (M\textsubscript{w}=1481.54): calcd., %: C 85.94, H 3.27; found, %: C 85.90, H 3.45.

\textbf{A4d.} 1H NMR (500 MHz, DMSO-\textit{d}_6, \delta, ppm): 0.93 (t, 3H, \textit{J} = 7.0 Hz), 1.28 (d, 3H, \textit{J} = 7.1 Hz), 1.35 – 1.44 (m, 12H), 1.45 – 1.57 (m, 2H), 3.57 – 3.66 (m, 1H), 3.68 – 3.82 (m, 4H), 7.01 – 7.20 (m, 4H), 7.20 – 7.36 (m, 8H), 7.55 – 7.69 (m, 4H), 7.70 – 7.80 (m, 4H).

13C NMR (126 MHz, DMSO-\textit{d}_6, \delta, ppm): 9.79 (CH\textsubscript{3}CH\textsubscript{3}), 18.67 (CH\textsubscript{3}), 18.89 (CH\textsubscript{3}), 18.92 (CH\textsubscript{3}), 18.99 (CH\textsubscript{3}), 19.09 (CH\textsubscript{3}), 34.20 (CH\textsubscript{2}CH\textsubscript{3}), 44.47 (CH), 44.62 (CH), 44.69 (CH), 58.39 (C\textsubscript{sp3 fullerene cage}), 61.06 (C\textsubscript{sp3 fullerene cage}), 63.28 (C\textsubscript{sp3 fullerene cage}), 65.57 (C\textsubscript{sp3 fullerene cage), 128.02, 128.04, 128.40, 128.63, 128.68, 128.73, 129.37, 136.91, 137.82, 138.61, 138.71, 140.71, 141.75, 141.85, 141.89, 142.58, 143.95, 144.08, 144.31, 144.70, 145.74, 147.06, 147.31, 147.34, 147.85, 148.05, 148.10, 148.25, 148.43, 148.48, 148.67, 148.79, 151.70, 157.16, 175.51 (COOH), 175.67 (COOH).

Elemental analysis: C\textsubscript{107}H\textsubscript{50}O\textsubscript{10} (M\textsubscript{w}=1495.57): calcd., %: C 85.93, H 3.37; found, %: C 85.68, H 3.52.

\textbf{DFT study of the mechanism of the inversed Arbuzov reaction}

To understand the mechanism of the reversed Arbuzov reaction the fullerene derivative C\textsubscript{60}Ph\textsubscript{5}Cl, which does not contain any substituents on the phenyl groups (Fig. T1), and the trialkyl phosphite P(OMe)\textsubscript{3} were used. Quantum-chemical calculations using density functional theory PBE (J.P. Perdew \textit{et al}, Phys. Rev. Lett., \textbf{1996}, 77, 3865) were carried out using the extended basis H: (5s1p) / [3s1p], C, O, P, Cl: (5s5p2d) / [3s3p2d] for SBK pseudopotential (W.J. Stevens, \textit{et al}., J. Chem. Phys., \textbf{1984}, 81, 6026). Calculations were performed using the "PRIRODA" program package (D.N. Laikov, Chem. Phys. Lett., \textbf{1997}, 281, 151) at the Joint Supercomputer Center of the Russian Academy of Sciences. The relative energies were calculated taking into account zero point energy (ZPE) at zero temperature. The states transition had only one vibration with imaginary frequency. Electronic density distribution was analyzed in terms of Hirshfeld's atomic charges (F. L. Hirshfeld, \textit{Theor. Chim. Acta}, \textbf{1977}, 44, 129).

![Fig. T1. The calculated structure of C\textsubscript{60}Ph\textsubscript{5}Cl](image-url)
Prereactional Van der Waals complex (Fig. T2) is formed between the reagents with a small energy gain of 1.4 kcal/mol. In this adduct with Cl-P distance equal to 3.40 Å, a partial transfer of the electron density occurs and the fragment P(OMe)₃ acquires a charge +0.044. Dipole moment of the adduct (5.0 Debye) is much less than the sum of the coaxial dipole moments of the C₆₀Ph₅Cl and P(OMe)₃, equal to 6.1 and 1.6 Debye, respectively.

![Fig. T2. The calculated structure of the adduct of C₆₀Ph₅Cl and P(OMe)₃](image)

The electron affinity of the C₆₀Ph₅Cl at fixed geometry is 2.5 eV. However, the radical anion C₆₀Ph₅Cl⁻ is unstable due to the elimination of the Cl⁻ ion. In this case, a weakly bound complex is formed, in which Cl⁻ ion located approximately above the center of the five-membered cycle of the radical C₆₀Ph₅⁻ with C-Cl distances of 3.75 ± 0.08 Å (Fig. T3).

![Fig. T3. The calculated structure of the complex of C₆₀Ph₅⁻ and Cl⁻](image)

The charge on the Cl atom and the spin density are equal to -0.44 and 0.14, respectively. Therefore, the total electron transfer in the adduct C₆₀Ph₅Cl...P(OMe)₃ is associated with the elimination of the Cl⁻ ion and attaching of this particle to the radical cation P(OMe)₃⁺. Finally, the radical pair C₆₀Ph₅⁺ ClP(OMe)₃⁻ is formed. Its structure in the triplet state is shown in Fig. T4. The distances C-P and C-Cl are equal to ~
6.5 and 5.6 Å, respectively. These distances significantly exceed the sum of Van der Waals radii of the atoms. Due to the weak overlap of the electron shells, each of the ions has a spin density of \(\sim 1 \). Formation of a radical pair leads to an increase in the energy of the system by 7.5 kcal/mol with respect to the initial adduct.

Fig. T4. The calculated structure of the radical pair \(\text{C}_{60}\text{Ph}_5^\cdot \ldots \text{ClP(OMe)}_3^\cdot \).

The affinity to the electron of \(\text{C}_{60}\text{Ph}_5^\cdot \) (3.2 eV) and the ionization potential of \(\text{ClP(OMe)}_3^\cdot \) (5.7 eV) is more favorable for electron transfer than the affinity to the electron of \(\text{C}_{60}\text{Ph}_5\text{Cl} \) (2.4 eV) and the ionization potential of \(\text{P(OMe)}_3 \) (7.9 eV). At the second electron transfer, ion pair \(\text{C}_{60}\text{Ph}_5^\cdot \text{ClP(OMe)}_3^+ \) is formed with an energy increase of 4.8 kcal/mol. Structure of this ion pair is shown in **Fig. T5.** The distance P-C (5.21 Å) is practically the same as in the initial adduct. The \(\text{ClP(OMe)}_3 \) fragment has a charge of +0.72. Taking into account the dipole moment of the ion pair (24.8 Debye), it is possible to estimate the dipole length of 8.2 Å, which is comparable to the distance between the center of the fullerene framework and the P atom (7.5 Å).

Fig. T5 The calculated structure of the ion pair \(\text{C}_{60}\text{Ph}_5^\cdot \ldots \text{ClP(OMe)}_3^+ \).
In the ion pair, the methyl group is close to the fullerene framework (the distance C-C is 3.26Å), and has a charge of +0.16. This facilitates the transfer of Me\(^{+}\) carbocation to the C\(_{60}\)Ph\(_{5}\) anion to form the product of the reversed Arbuzov reaction with quite insignificant energy barrier (1.3 kcal / mol). The structure of the transition state is shown in Fig. T6. The transition state has a dipole moment of 20.4 Debye, and the charge on the methyl group decreases slightly to +0.12.

![Fig. T6. The calculated structure of the transition state of methyl transfer](image)

The transition state is very early, the distance C(Me)-C (2.68 Å) is much longer than the length of a single C-C bond. The energy gain (55.5 kcal/mol) of the ion pair transformation into the post-reaction complex C\(_{60}\)Ph\(_{5}\)Me…OPCl(OMe)\(_{2}\) is large (Fig. T7). The binding energy of C\(_{60}\)Ph\(_{5}\)Me and OPCI(OMe)\(_{2}\) is equal to 5.1 kcal / mol.

![Fig. T7. The calculated structure of the post-reaction complex C\(_{60}\)Ph\(_{5}\)Me…OPCl(OMe)\(_{2}\)](image)
The radical pair in the singlet state is unstable due to the possibility of recombination with the formation of an intermediate product with a P-C bond (Fig. T8). Product with a P-C bond has higher energy (by 4.7 kcal/mol) than the energy of triplet radical pair. This energy ratio is caused by a decrease of the energy of the triplet state in the presence of open shells due to the exchange interactions. Cleavage of MeCl and formation of the reaction product of Arbuzov reaction C_{60}Ph_5PO(OMe)_2 is energetically favorable.

Fig. T8. The calculated structure of intermediate product C_{60}Ph_5-PCl(OMe)_3

However, the direct cleavage of MeCl from C_{60}Ph_5-PO(OMe)_2 occurs with formation of a four-term transition state and therefore has a high activation energy. The model calculation for the simplified RPCI(OMe)_3 system, where the fullerene derivative residue replaced with the R=Me group, yields a value of 32.2 kcal/mol for the activation energy. The structure of the transition state is shown in Fig. T9.

On the other hand, heterolytic cleavage of the P-Cl bond resulting in the formation of contact ion pair RP(OMe)_3^+ Cl^- (See Fig. T10) with P-Cl distance equal to 3.76 Å requires a small energy expenses of 3.9 kcal/mol. Closeness of the Cl^- ion and a positively charged methyl group creates conditions for nucleophilic attack and formation of the final product of the Arbuzov reaction.

The activation barrier along this reaction path is considerably less and equal to 19.4 kcal/mol. The structure of the transition state is shown in Fig. T11. For the favorable orientation of the ion Cl^- the P-Cl distance increases to 4.9 Å. In the transition state the charges of the Cl atom and CH_3 fragment are equal to -0.56 and +0.10, what leads to the appearance of notable dipole moment of 12.3 Debye. If there are no steric hindrances for solvate interactions in the solution, a decrease in the energy barrier is expected.

In the intermediate product C_{60}Ph_5-PCl(OMe)_3 short Van der Waals contacts of the Cl atom with H and C atoms (2.7 and 3.9 Å) create prohibition for a significant increase in the P-Cl distance required for heterolytic cleavage of the P-Cl bond. Thus, steric hindrances from the phenyl substituents surrounding the chlorine atom induce a nonclassical course of the Arbuzov reaction.
Fig. T9. The calculated structure of a four-term transition state of CH_3^+ transfer to Cl^-

Fig. T10. The calculated structure of the contact ion pair RP(OMe)_3^+ Cl^-

Fig. T11. The calculated structure of the transition state of CH_3^+ transfer

The total energy scheme of the transformations considered is shown in Fig. T12
Fig. T12. The total energy scheme of the reaction between C₆₀Ph₂Cl and P(OMe)₃
Biological assays

Antiviral activity assays

Activity of the fullerene derivatives against two herpes viruses (Herpes Simplex virus type 1 (HSV1) and human cytomegalovirus (HCMV)) was investigated using standard *in vitro* assays. HSV-sensitive Vero cells and CMV-sensitive human embryo lung fibroblasts (HELF) were used to evaluate the cytotoxicity of the compounds. Antiviral activity was evaluated by monitoring the ability of the compound to inhibit a plaque formation (plaque reduction test) in the cells infected with corresponding viruses. Selectivity indices (SI) were calculated as CC_{50}/EC_{50} (CC_{50} - concentration of the compound reducing the viability of the cells by 50% within 1 (HSV1) or 3 (HCMV) days after its addition to the culture medium, EC_{50} - concentration of compound providing the 50% inhibition of the plaque-forming activity). A detailed description of the general experimental procedures (cytotoxicity and antiviral assays) is provided in the previous publication (N. E. Fedorova, R.R. Klimova, Yu. A. Tulenev, E.V. Chichev, A. B. Kornev, P. A. Troshin and A.A. Kushch, *Mendeleev Commun.*, 2012, 22, 254–256).

Activity of the fullerene derivatives against influenza viruses (Influenza A/H1N1 A/Ned/378/05, Influenza A/H3N2 A/HK/7/87, and Influenza B B/Ned/537/05) was investigated using standard *in vitro* assays. MDCK (Madin Darby canine kidney cells) were used to evaluate the cytotoxicity and antiviral activity of the compounds. Details were reported previously (A. B. Kornev, A. S. Peregudov, V. M. Martynenko, J. Balzarini, B. Hoorelbeke, P. A. Troshin, *Chem. Commun.*, 2011, 47, 8298–8300).

Activity of the fullerene derivatives against HIV-1 (NL4.3WT and BaL) viruses was investigated using standard *in vitro* assays. TZM-bl cell line was used to evaluate the cytotoxicity and antiviral activity of the compounds (O. A. Troshina, P. A. Troshin, A. S. Peregudov, V. I. Kozlovskiy, J. Balzarini and R. N. Lyubovskaya, *Org. Biomol. Chem.*, 2007, 5, 2783).

Table S1. Cytotoxicity of the fullerene derivatives in HELF cell line

<table>
<thead>
<tr>
<th>Compound</th>
<th>Cytotoxicity</th>
<th>Acute cytotoxicity (AC50), µg/mL</th>
<th>Chronic cytotoxicity (CC50), µg/mL</th>
<th>Maximal tolerated dose (MTD), µg/mL</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1a</td>
<td></td>
<td>269</td>
<td>248</td>
<td>5</td>
</tr>
<tr>
<td>A1b</td>
<td></td>
<td>259</td>
<td>206</td>
<td>5</td>
</tr>
<tr>
<td>A1c</td>
<td></td>
<td>256</td>
<td>242</td>
<td>5</td>
</tr>
<tr>
<td>A1d</td>
<td></td>
<td>256</td>
<td>192</td>
<td>5</td>
</tr>
<tr>
<td>A1e</td>
<td></td>
<td>258</td>
<td>141</td>
<td>5</td>
</tr>
<tr>
<td>A1f</td>
<td></td>
<td>260</td>
<td>225</td>
<td>5</td>
</tr>
<tr>
<td>A2a</td>
<td>Precipitated in culture media</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A2b</td>
<td></td>
<td>46</td>
<td>34</td>
<td>1</td>
</tr>
<tr>
<td>A2c</td>
<td>Precipitated in culture media</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A2d</td>
<td>Precipitated in culture media</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A2f</td>
<td>Precipitated in culture media</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A3a</td>
<td></td>
<td>1329</td>
<td>1331</td>
<td>25</td>
</tr>
<tr>
<td>A3b</td>
<td></td>
<td>1575</td>
<td>1306</td>
<td>25</td>
</tr>
<tr>
<td>A3d</td>
<td></td>
<td>1288</td>
<td>1288</td>
<td>25</td>
</tr>
<tr>
<td>A4a</td>
<td>Precipitated in culture media</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A4c</td>
<td></td>
<td>861</td>
<td>846</td>
<td>25</td>
</tr>
<tr>
<td>A4d</td>
<td></td>
<td>863</td>
<td>846</td>
<td>25</td>
</tr>
</tbody>
</table>
Table S2. Cytotoxicity of the fullerene derivatives to the Vero cell culture

<table>
<thead>
<tr>
<th>Compound</th>
<th>Cytotoxicity</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Acute cytotoxicity (AC\textsubscript{50}), µg/mL</td>
<td>Chronic cytotoxicity (CC\textsubscript{50}), µg/mL</td>
<td>Maximal tolerated dose (MTD), µg/mL</td>
</tr>
<tr>
<td>A1a</td>
<td>393</td>
<td>300</td>
<td>50</td>
</tr>
<tr>
<td>A1b</td>
<td>536</td>
<td>500</td>
<td>100</td>
</tr>
<tr>
<td>A1c</td>
<td>388</td>
<td>200</td>
<td>10</td>
</tr>
<tr>
<td>A1d</td>
<td>300</td>
<td>200</td>
<td>10</td>
</tr>
<tr>
<td>A1e</td>
<td>200</td>
<td>100</td>
<td>10</td>
</tr>
<tr>
<td>A1f</td>
<td>125</td>
<td>100</td>
<td>10</td>
</tr>
<tr>
<td>A2a</td>
<td>Precipitated in culture media</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A2b</td>
<td>>100</td>
<td>100</td>
<td>10</td>
</tr>
<tr>
<td>A2c</td>
<td>Precipitated in culture media</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A2d</td>
<td>Precipitated in culture media</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A2f</td>
<td>Precipitated in culture media</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A3a</td>
<td>1270</td>
<td>400</td>
<td>100</td>
</tr>
<tr>
<td>A3b</td>
<td>>2000</td>
<td>2100</td>
<td>1000</td>
</tr>
<tr>
<td>A3d</td>
<td>690</td>
<td>658</td>
<td>125</td>
</tr>
<tr>
<td>A4a</td>
<td>Precipitated in culture media</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A4c</td>
<td><250</td>
<td><125</td>
<td><125</td>
</tr>
<tr>
<td>A4d</td>
<td><250</td>
<td><125</td>
<td><125</td>
</tr>
</tbody>
</table>
Table S3. Antiviral activity of the water-soluble fullerene derivatives against human cytomegalovirus (HCMV)

<table>
<thead>
<tr>
<th>Compound</th>
<th>CC₅₀, µg/mL</th>
<th>Exposure scheme</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Microbicidalᵃ</td>
</tr>
<tr>
<td></td>
<td>EC₅₀, µg/mL</td>
<td>SI</td>
</tr>
<tr>
<td>A1ᵃ</td>
<td>248</td>
<td>3</td>
</tr>
<tr>
<td>A1ᵇ</td>
<td>206</td>
<td>-</td>
</tr>
<tr>
<td>A1ᶜ</td>
<td>242</td>
<td>2</td>
</tr>
<tr>
<td>A1ᵈ</td>
<td>192</td>
<td>3.5</td>
</tr>
<tr>
<td>A1ᵉ</td>
<td>141</td>
<td>1.9</td>
</tr>
<tr>
<td>A1ᶠ</td>
<td>225</td>
<td>2.6</td>
</tr>
<tr>
<td>A2ᵇ</td>
<td>34</td>
<td>-</td>
</tr>
<tr>
<td>A3ᵃ</td>
<td>1331</td>
<td>8</td>
</tr>
<tr>
<td>A3ᵇ</td>
<td>1306</td>
<td>11</td>
</tr>
<tr>
<td>A3ᵈ</td>
<td>1288</td>
<td>-</td>
</tr>
<tr>
<td>A4ᶜ</td>
<td>846</td>
<td>-</td>
</tr>
<tr>
<td>A4ᵈ</td>
<td>846</td>
<td>60</td>
</tr>
</tbody>
</table>

ᵃ cells were incubated for 1 h with the compounds and then were infected with virus

ᵇ cells were incubated for 48 h with the compounds and then were infected with virus

ᶜ the mixture of virus and compounds was introduced into the cell culture for 1 hour, then washed and fresh culture medium was added

ᵈ cells were infected with the virus and after 1 hour the compounds were introduced
Table S4. Antiviral activity of the water-soluble fullerene derivatives against herpes simplex virus type 1 (HSV1)

<table>
<thead>
<tr>
<th>Compound</th>
<th>CC₅₀, µg/mL</th>
<th>Exposure scheme</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Microbicidal</td>
<td>Prophylactic</td>
</tr>
<tr>
<td></td>
<td>EC₅₀, µg/mL</td>
<td>SI</td>
</tr>
<tr>
<td>A1a</td>
<td>300</td>
<td>3.4</td>
</tr>
<tr>
<td>A1b</td>
<td>500</td>
<td>4</td>
</tr>
<tr>
<td>A1c</td>
<td>200</td>
<td>-</td>
</tr>
<tr>
<td>A1d</td>
<td>200</td>
<td>-</td>
</tr>
<tr>
<td>A1e</td>
<td>100</td>
<td>5</td>
</tr>
<tr>
<td>A1f</td>
<td>100</td>
<td>-</td>
</tr>
<tr>
<td>A2b</td>
<td>100</td>
<td>9</td>
</tr>
<tr>
<td>A3a</td>
<td>400</td>
<td>4.4</td>
</tr>
<tr>
<td>A3b</td>
<td>2100</td>
<td>5.5</td>
</tr>
<tr>
<td>A3c</td>
<td>658</td>
<td>13.1</td>
</tr>
<tr>
<td>A4c</td>
<td><125</td>
<td>3.2</td>
</tr>
<tr>
<td>A4d</td>
<td><125</td>
<td>5.3</td>
</tr>
</tbody>
</table>

a, b, c, d - as in the Table S3
Table S5. Antiviral activity of the water-soluble fullerene derivatives against influenza viruses

<table>
<thead>
<tr>
<th>Compound</th>
<th>Cytotoxicity, µM</th>
<th>Antiviral activity EC<sub>50</sub>, µM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CC<sub>50</sub><sup>a</sup></td>
<td>MCC<sup>b</sup></td>
</tr>
<tr>
<td></td>
<td>visual CPE score</td>
<td>MTS</td>
</tr>
<tr>
<td>A1a</td>
<td>17.4</td>
<td>20</td>
</tr>
<tr>
<td>A1b</td>
<td>1.5</td>
<td>20</td>
</tr>
<tr>
<td>A1c</td>
<td>44</td>
<td>≥20</td>
</tr>
<tr>
<td>A1d</td>
<td>41.3</td>
<td>≥20</td>
</tr>
<tr>
<td>A2a</td>
<td>90.1</td>
<td>100</td>
</tr>
<tr>
<td>A2b</td>
<td>6.6</td>
<td>100</td>
</tr>
<tr>
<td>A2c</td>
<td>1</td>
<td>20</td>
</tr>
<tr>
<td>A2d</td>
<td>1.5</td>
<td>20</td>
</tr>
<tr>
<td>Zanamivir</td>
<td>>100</td>
<td>>100</td>
</tr>
<tr>
<td>Amandatin</td>
<td>>100</td>
<td>>100</td>
</tr>
</tbody>
</table>

^aCC₅₀ - 50% cytotoxic concentration, as determined by measuring the cell viability with the colorimetric formazan-based MTS assay. ^bMCC - minimum compound concentration that causes a microscopically detectable alteration of normal cell morphology. ^cEC₅₀ - 50% effective concentration, or concentration producing 50% inhibition of virus-induced cytopathic effect, as determined by visual scoring of the CPE, or by measuring the cell viability with the colorimetric formazan-based MTS assay.
<table>
<thead>
<tr>
<th>Compound</th>
<th>Cytotoxicity</th>
<th>Antiviral activity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CC<sub>50</sub><sup>a</sup>, µM</td>
<td>EC<sub>50</sub><sup>b</sup>, µM</td>
</tr>
<tr>
<td></td>
<td>TZM-bl</td>
<td>HIV-1 NL4.3</td>
</tr>
<tr>
<td>A1<sub>a</sub></td>
<td>35.9</td>
<td>2.81</td>
</tr>
<tr>
<td>A1<sub>b</sub></td>
<td>43.0</td>
<td>3.02</td>
</tr>
<tr>
<td>A1<sub>c</sub></td>
<td>40.6</td>
<td>3.18</td>
</tr>
<tr>
<td>A1<sub>d</sub></td>
<td>40.9</td>
<td>4.20</td>
</tr>
<tr>
<td>A2<sub>a</sub></td>
<td>51.0</td>
<td>0.99</td>
</tr>
<tr>
<td>A2<sub>b</sub></td>
<td>> 100</td>
<td>0.35</td>
</tr>
<tr>
<td>A2<sub>c</sub></td>
<td>> 100</td>
<td>0.15</td>
</tr>
<tr>
<td>A2<sub>d</sub></td>
<td>> 100</td>
<td>0.16</td>
</tr>
</tbody>
</table>

^aCC₅₀ - 50% cytotoxic concentration in TZM-bl cell cultures.
^bEC₅₀ - 50% effective concentration or compound concentration required to inhibit HIV- induced cytopathogenic effect in TZM-bl cell cultures.
Fig. S1 HPLC profile of the reaction mixture of the alkylation reaction of 1a with P(OBu)$_3$, resulting in formation of 1f (C18 Cosmosil column, elution with toluene/acetonitrile mixtures 20%/80% v/v, 30°C, flow rate 1 mL/min).

Fig. S2. HPLC profile of the reaction mixture of the alkylation reaction of 3a with P(OEt)$_3$, resulting in formation of 3d (C18 Cosmosil column, elution with toluene/acetonitrile mixtures 20%/80% v/v, 30°C, flow rate 1 mL/min).
Fig. S3 1H NMR spectrum of compound 1c

Fig. S4 13C NMR spectrum of compound 1c
Fig. S5 1H-1H COSY NMR spectrum of compound 1c

Fig. S6 1H-13C HSQC NMR spectrum of compound 1c
Fig. S7 1H-1C HMBC NMR spectrum of compound 1c

Fig. S8 1H NMR spectrum of compound 1d
Fig. S9 13C NMR spectrum of compound 1d

Fig. S10 1H-1H COSY NMR spectrum of compound 1d
Fig. S11 1H-13C HSQC NMR spectrum of compound 1d

Fig. S12 1H-13C HMBC NMR spectrum of compound 1d
Fig. S13 1H NMR spectrum of compound $1e$

Fig. S14 13C NMR spectrum of compound $1e$
Fig. S15 1H-1H COSY NMR spectrum of compound 1e

Fig. S16 1H-13C HSQC NMR spectrum of compound 1e
Fig. S17 1H-1C HMBC NMR spectrum of compound 1e

Fig. S18 1H NMR spectrum of compound 1f (* denotes impurity of P(OBu)$_3$)
Fig. S19 13C NMR spectrum of compound 1f (* denotes impurity of P(BOu)$_3$)

Fig. S20 1H-1H COSY NMR spectrum of compound 1f
Fig. S21 1H-13C HSQC NMR spectrum of compound 1f

Fig. S22 1H-13C HMBC NMR spectrum of compound 1f
Fig. S23 1H NMR spectrum of compound 2a

Fig. S24 13C NMR spectrum of compound 2a
Fig. S25 1H-1H COSY NMR spectrum of compound 2a

Fig. S26 1H-13C HSQC NMR spectrum of compound 2a
Fig. S27 1H-13C HMBC NMR spectrum of compound 2a

Fig. S28 1H NMR spectrum of compound 2b
Fig. S29 13C NMR spectrum of compound 2b

Fig. S30 1H-1H COSY NMR spectrum of compound 2b
Fig. S31 1H-13C HSQC NMR spectrum of compound 2b

Fig. S32 1H-13C HMBC NMR spectrum of compound 2b
Fig. S33 1H NMR spectrum of compound 2c

Fig. S34 13C NMR spectrum of compound 2c
Fig. S35 1H-1H COSY NMR spectrum of compound 2c

Fig. S36 1H-13C HSQC NMR spectrum of compound 2c
Fig. S37 1H-13C HMBC NMR spectrum of compound 2c

Fig. S38 1H NMR spectrum of compound 2d
Fig. S39 13C NMR spectrum of compound 2d

Fig. S40 1H-1H COSY NMR spectrum of compound 2d
Fig. S41 1H-13C HSQC NMR spectrum of compound 2d

Fig. S42 1H-13C HMBC NMR spectrum of compound 2d
Fig. S43 1H NMR spectrum of compound 2f

Fig. S44 13C NMR spectrum of compound 2f
Fig. S45 1H-1H COSY NMR spectrum of compound 2f

Fig. S46 1H-13C HSQC NMR spectrum of compound 2f
Fig. S47 1H-13C HMBC NMR spectrum of compound 2f

Fig. S48 1H NMR spectrum of compound 3a
Fig. S49 13C NMR spectrum of compound 3a

Fig. S50 ^{1}H-^{1}H COSY NMR spectrum of compound 3a
Fig. S51 1H-13C HSQC NMR spectrum of compound 3a

Fig. S52 1H-13C HMBC NMR spectrum of compound 3a
Fig. S53 1H NMR spectrum of compound 3b

Fig. S54 13C NMR spectrum of compound 3b
Fig. S55 \(^1\text{H}-^1\text{H} \) COSY NMR spectrum of compound 3b

Fig. S56 \(^1\text{H}-^{13}\text{C} \) HSQC NMR spectrum of compound 3b
Fig. S57 1H-13C HMBC NMR spectrum of compound 3b

Fig. S58 1H NMR spectrum of compound 3d
Fig. S59 13C NMR spectrum of compound 3d

Fig. S60 1H-1H COSY NMR spectrum of compound 3d
Fig. S61 1H-13C HSQC NMR spectrum of compound 3d

Fig. S62 1H-13C HMBC NMR spectrum of compound 3d
Fig. S63 1H NMR spectrum of compound 4a

Fig. S64 13C NMR spectrum of compound 4a
Fig. S65 1H-13C HSQC NMR spectrum of compound 4a

Fig. S66 1H-13C HMBC NMR spectrum of compound 4a
Fig. S67 1H NMR spectrum of compound 4c

Fig. S68 13C NMR spectrum of compound 4c
Fig. S69 1H-1H COSY NMR spectrum of compound 4c

Fig. S70 1H-13C HSQC NMR spectrum of compound 4c
Fig. S71 1H-13C HMBC NMR spectrum of compound 4c

Fig. S72 1H NMR spectrum of compound 4d
Fig. S73 13C NMR spectrum of compound 4d

Fig. S74 1H-1H COSY NMR spectrum of compound 4d
Fig. S75 1H-13C HSQC NMR spectrum of compound 4d

Fig. S76 1H-13C HMBC NMR spectrum of compound 4d
Fig. S77. Comparison of the selected area (Csp³ atoms of the fullerene cage) in the 13C NMR spectra of compounds $C_{60}R_5$Me (1), $C_{60}R_5$Et (2), $C_{60}R_5$Pr (3), $C_{60}R_5$Bu (4), (R=C₆H₄CH₂CH₂COOCH₃)

Fig. S78. MS spectra of the reaction mixture of compound 1a with P(oph)₃
Fig. S79. HPLC profile revealing the formation of a complex mixture of products in the reaction of 1a with P(OPh)$_3$ (C18 Cosmosil column, elution with toluene/acetonitrile mixtures 20/80 v/v, 30°C, flow rate 1 mL/min).

Fig. S80. Compound A2a in concentrations of 0.3-30 µg/mL induces DNA damage as reflected by the increased amount of double strand breaks (DSB). A - Flow cytometry detection of DSB in cells exposed to compounds A2a (1) or A2c (2), (☆) - p<0.01. B - Fluorescence microscopy detection of DSB in cells exposed to compounds A2a (1) and compound A2c (2); cells stained with DAPI and anti-γH2AX antibodies, (☆) - p<0.01, nonparametric U test.
Fig. S81. UV-Vis spectra of some of the synthesized fullerene derivatives