Synthesis of Pyrazolylvinyl Ketones from Furan Derivatives

Nattawut Sawengngen, Petrakis N. Chalikidi, Sara Araby, Frank Hampel, Peter Gmeiner and Olga V. Serdyuk*

olga@serdyuk.de

Supporting information

General remarks	S2
Procedures and compounds characterization data	S 3
¹ H and ¹³ C NMR spectra	S12
¹ H- ¹³ C HMBC, ¹ H- ¹³ C HSQC, ¹ H- ¹ H COSY, and NOESY spectra	S75
LC-MS data	S84
X-Ray data	S87
References	S92

General remarks

All commercial products and solvents were used without further purification. All reactions were run under the air unless noted otherwise.

The reactions under microwave irradiation were conducted in Microwave Synthesis Reactor «Biotage® Robot Eight» using sealed microwave reaction vessels. TLC analyses were performed on Merck 60 F254 aluminum plates in combination with UV detection (254 nm). Flash chromatography was performed on silica gel 200-300 mesh using mixture EtOAc/*i*-hexane as eluents. Melting points were determined on a Mel-Temp II Laboratory Devices apparatus; the values are uncorrected. NMR spectra were recorded on a Bruker AV-600 (¹H NMR at 600 MHz and ¹³C NMR at 151 MHz) and Bruker AV-400 (¹H NMR at 400 MHz and ¹³C NMR at 101 MHz) spectrometers. Proton chemical shifts (δ) are reported in parts per million (ppm) relative to tetramethylsilane (TMS) with the solvent resonance employed as the internal standard (CDCl₁ δ = 7.26 ppm). Data are reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, dd = doublet of doublets, dt = doublet of triplets), coupling constants (*J*) and integration. Coupling constants (*J*) are reported in Hertz (Hz). Carbon chemical shifts are reported in ppm from tetramethylsilane (TMS) with the solvent resonance as the internal standard (CDCl₁ δ = 77.16 ppm).

IR spectra were measured on PerkinElmer Spectrum BX spectrophotometer (KBr and NaCl plates). HRMS-ESI spectra were recorded at the Chair of Organic Chemistry, Friedrich Alexander University of Erlangen-Nuremberg. LC-MS data were obtained on a BRUKER ESQUIRE 2000 using electrospray ionization (ESI), DAD detector, and a Kinetex C8 analytical column (2.1 mm x 75 mm, 2.6 μ m). Single crystals of C₂₂H₂₁FN₂O (**3h**) were crystalized from CDCl₃. A suitable crystal was selected and mounted on a loop on a SuperNova, Dual, Cu at zero, Atlas diffractometer. The crystal was kept at 152(1) K during data collection. Using Olex2¹, the structure was solved with the ShelXT² structure solution program using Intrinsic Phasing and refined with the ShelXL³ refinement package using Least Squares minimisation.

General procedure for the synthesis of xanthates S1

NaI (1.5 g, 10 mmol) was added to a stirred solution of commercially available phenacyl bromide (10 mmol) in dry acetone (15 mL) at 20°C, and the mixture was stirred for 10 min. Then the potassium xanthogenate (12 mmol) was added in small portions over a period of 5 min. The resulting mixture was stirred at 20 C for approximately 20 min (the reaction completion was followed by TLC). Acetone was evaporated and the residue was extracted with dichloromethane (3×30 mL), washed with brine, and the solution was dried over Na₂SO₄. Dichloromethane was evaporated under reduced pressure to give products **S1** in good yields.

O-Ethyl S-(2-oxo-2-phenylethyl) carbonodithioate (S1a). Yield 2.28 g (95%). White solid. M. p. 30–32 °C (lit. 31–32 °C).⁴ ¹H NMR (400 MHz, CDCl₃): $\delta = 8.03-8.00$ (m, 2H), 7.63–7.58 (m, 1H), 7.51–7.47 (m, 2H), 4.59 (s, 2H), 4.63–4.58 (q, J = 7.1 Hz, 2H), 1.37 (t, J = 7.1 Hz, 3H) ppm. ¹³C NMR (101 MHz, CDCl₃): $\delta = 213.3$, 192.3, 135.9, 133.8, 128.8, 128.5, 70.7, 43.6, 13.7 ppm. HRMS (ESI) calcd. for C₁₁H₁₂O₂S₂ [M+Na]⁺: 263.0176; found: 263.0172.

S-(2-(4-Bromophenyl)-2-oxoethyl) O-ethyl carbonodithioate (S1b). Yield 3.07 g (97 %). White solid. M. p. 83–84 °C (lit. 84–86 °).⁴ ¹H NMR (400 MHz, CDCl₃): 7.90–7.85 (m, 2H), 7.66–7.63 (m, 2H), 4.64 (q, J = 7.1 Hz, 2H), 4.61 (s, 2H), 1.40 (t, J = 7.1 Hz, 3H) ppm. ¹³C NMR (101 MHz, CDCl₃): $\delta = 213.3$, 191.6, 134.7, 132.3, 130.1, 129.2, 71.0, 43.5, 13.9 ppm.

O-Ethyl S-(2-(4-fluorophenyl)-2-oxoethyl) carbonodithioate (S1c). Yield 2.48 g (96%). White solid. M. p. 60–62 °C (lit. 58–61 °C).²⁴ ¹H NMR (600 MHz, CDCl₃): δ = 8.08–8.05 (m, 2H), 7.20–7.16 (m, 2H), 4.66–4.63 (m, 4H), 1.40 (t, *J* = 7.1 Hz, 3H) ppm. ¹³C NMR (151 MHz, CDCl₃): δ = 213.2, 190.9, 167.0, 165.3, 131.2, 131.2, 116.0, 115.9, 70.8, 43.4, 13.7 ppm. HRMS (ESI): *m/z* calcd. for C₁₁H₁₁FO₂S₂ [M+H]⁺: 259.0263, found: 259.0252.

O-Ethyl S-(2-(4-methoxyphenyl)-2-oxoethyl) carbonodithioate (S1d). Yield 2.65 g (98%). White solid. M. p. 67–68 °C (lit. 68–69 °C).^{5 1}H NMR (400 MHz, CDCl₃): $\delta = 8.03-8.00$ (m, 2H), 6.98–6.96 (m, 2H), 4.67–4.61 (m, 4H), 3.89 (s, 3H), 1.40 (t, J = 7.1 Hz, 3H) ppm. ¹³C NMR (101 MHz, CDCl₃): $\delta = 213.5$, 190.8, 164.0, 131.0, 128.8, 114.0, 70.6, 55.6, 43.4, 13.8 ppm. HRMS (**ESI**): m/z calcd. for C₁₂H₁₄O₃S₂ [M+Na]⁺: 293.0282, found: 293.0277.

O-Ethyl S-(2-oxo-2-(*p***-tolyl)ethyl) carbonodithioate (S1e).** Yield 2.5 g (100%). White solid. M. p. 85–86 °C (lit. 88–89 °C).⁶ ¹H NMR (600 MHz, CDCl₃): $\delta = 7.95-7.94$ (m, 2H), 7.33–7.31 (m,

2H), 4.68–4.65 (m, 4H), 2.46 (s, 3H), 1.42 (t, J = 7.1 Hz, 3H) ppm.¹³C NMR (151 MHz, CDCl₃): $\delta = 213.1, 191.6, 144.4, 133.0, 129.2, 128.3, 70.3, 43.2, 21.4, 13.4$ ppm. HRMS (ESI): m/z calcd. for C₁₂H₁₄O₂S₂ [M+H]⁺: 255.0513, found: 255.0507.

General procedure for the synthesis of furfuryl ketones 1

A solution of xanthogenate **S1** (12.5 mmol) and furan (80 mmol for 2-methylfuran and 2ethylfuran; 13 mmol for 2-butylfuran and 2-phenylfuran) in DMSO (30 ml) was cooled (5–10°C) and treated with FeSO₄·7H₂O (6.25 mmol). Then 34% aqueous H₂O₂ (2.5 ml, 25 mmol) was dropwise added. After adding H₂O₂, the reaction mixture was stirred for 30 min at 5–10°C, then for 2-3 h at room temperature (TLC control). The mixture was poured into water (300 ml), extracted with ethyl acetate (4×50 ml), the combined extracts were washed with saturated aqueous NaCl solution, dried over anhydrous Na₂SO₄, and evaporated to dryness. The residue was purified by flash chromatography using EtOAc/*i*-Hex as eluent.

2-(5-Methylfuran-2-yl)-1-phenylethan-1-one (1a). Yield 1.6 g (64%). Pale yellow oil.⁷ ¹H NMR (600 MHz, CDCl₃): $\delta = 8.04-8.03$ (m, 2H), 7.60–7.57 (m, 1H), 7.50–7.47 (m, 2H), 6.12 (d, J = 3.0 Hz, 1H), 5.93 (dd, J = 3.0, 0.9 Hz, 1H), 4.27 (s, 2H), 2.28 (br. s, 3H) ppm. ¹³C NMR (101 MHz, CDCl₃): $\delta = 195.4$, 151.7, 146.3, 136.3, 133.3, 128.7, 128.7, 109.1, 106.6, 38.6, 13.6 ppm. IR (NaCl): 1693 (C=O), 1597, 1220, 1021, 784 cm⁻¹. HRMS (ESI): m/z calcd. for C₁₃H₁₂O₂ [M+H]⁺: 201.0916; found: 201.0901.

1-(4-Bromophenyl)-2-(5-methylfuran-2-yl)ethan-1-one (1b). Yield 2.12 g (61%). Pale beige solid. M. p. 58–59 °C (lit. 58–59 °C).^{5 1}H NMR (400 MHz, CDCl₃): δ = 7.87–7.85 (m, 2H), 7.61–7.59 (m, 2H), 6.08 (d, *J* = 2.9 Hz, 1H), 5.90 (m, 1H), 4.20 (s, 2H), 2.25 (s, 3H) ppm. ¹³C NMR (101 MHz, CDCl₃): δ = 194.2, 151.8, 145.8, 135.0, 131.9, 130.1, 128.5, 109.1, 106. 6, 38.6, 13.5 ppm. IR (KBr): 1682 (C=O), 1582, 1220, 1070, 1022, 785 cm⁻¹.

1-(4-Fluorophenyl)-2-(5-methylfuran-2-yl)ethan-1-one (1c). Yield 1.63 g (60%). Brownish oil. ¹H NMR (400 MHz, CDCl₃): $\delta = 8.09-8.04$ (m, 2H), 7.18–7.12 (m, 2H), 6.11 (d, J = 3.0 Hz, 1H), 5.94–5.93 (m, 1H), 4.24 (s, 2H), 2.28 (br. s, 3H) ppm. ¹³C NMR (101 MHz, CDCl₃): $\delta = 193.8$, 167.1, 164.6, 151.8, 146.1, 131.4, 131.3, 115.9, 115.7, 109.1, 106.6, 38.6, 13.6 ppm. IR (NaCl): 1697 (C=O), 1601, 1235, 1158, 847 cm⁻¹. HRMS (ESI): m/z calcd. for C₁₃H₁₁FO₂ [M]⁺: 218.0743; found: 218.0737.

1-(4-Methoxyphenyl)-2-(5-methylfuran-2-yl)ethanone (1d). Yield 1.67 g (58%). Pale beige solid. M. p. 68–69 °C (lit. 69-70 °C).^{5 1}H NMR (400 MHz, CDCl₃): δ = 7.99 (m, 2H), 6.93 (m, 2H), 6.07 (d, *J* = 2.8 Hz, 1H), 5.89 (m, 1H), 4.18 (s, 2H), 3.87 (s, 3H), 2.25 (s, 3H).¹³C NMR (101 MHz, CDCl₃): δ = 193.9, 163.9, 151.7, 147.0, 131.1, 129.8, 114.0, 108.9, 106.7, 55.6, 38.6, 13.6 ppm. IR (KBr): 1682 (C=O), 1602, 1509, 1333, 1267, 1226, 1184, 1020, 830 cm⁻¹.

2-(5-Ethylfuran-2-yl)-1-phenylethan-1-one (1e). Yield 1.87 g (70%). Brownish oil.⁷ ¹H NMR (600 MHz, CDCl₃): $\delta = 8.02-8.00$ (m, 2H), 7.57–7.54 (m, 1H), 7.47–7.45 (m, 2H), 6.10 (d, J = 3.1 Hz, 1H), 5.91 (m, 1H), 4.25 (s, 2H), 2.60 (q, J = 7.5 Hz, 2H), 1.19 (t, J = 7.6 Hz, 3H) ppm. ¹³C NMR (151 MHz, CDCl₃): $\delta = 195.1$, 157.2, 146.0, 136.2, 133.1, 128.4, 128.4, 108.6, 38.4, 21.2, 11.9 ppm. IR (NaCl): 1686 (C=O), 1597, 1219, 1181, 1013, 779 cm⁻¹. HRMS (ESI): *m/z* calcd. for C₁₄H₁₄O₂ [M+H]⁺: 215.1072; found: 215.1065.

2-(5-Ethylfuran-2-yl)-1-(*p***-tolyl)ethan-1-one (1f).** Yield 1.42 g (50%). White solid. M. p. 42–44 °C. ¹H NMR (600 MHz, CDCl₃): δ = 7.92–7.90 (m, 2H), 7.26–7.25 (m, 2H), 6.09 (d, *J* = 3.0 Hz, 1H), 5.90 (m, 1H), 4.22 (s, 2H), 2.60 (q, *J* = 7.5 Hz, 2H), 2.40 (s, 3H), 1.19 (t, *J* = 7.6 Hz, 3H) ppm. ¹³C NMR (101 MHz, CDCl₃): δ = 195.0, 157.4, 146.4, 144.2, 133.8, 129.3, 128.8, 108.7, 104.9, 38.6, 21.7, 21.4, 12.1 ppm. IR (NaCl): 1684 (C=O), 1606, 1223, 1181, 776 cm⁻¹. HRMS (ESI): *m/z* calcd. for C₁₅H₁₆O₂ [M+H]⁺: 229.1229; found: 229.1220.

2-(5-Ethylfuran-2-yl)-1-(4-fluorophenyl)ethan-1-one (1g). Yield 1.3 g (45%). Brownish oil. ¹H NMR (600 MHz, CDCl₃): $\delta = 8.06-8.02$ (m, 2H), 7.15–7.11 (m, 2H), 6.10 (d, J = 3.1 Hz, 1H), 5.91 (d, J = 3.1 Hz, 1H), 4.22 (s, 2H), 2.60 (q, J = 7.5 Hz, 2H), 1.19 (t, J = 7.6 Hz, 3H) ppm. ¹³C NMR (151 MHz, CDCl₃): $\delta = 193.7$, 166.7, 165.0, 157.5, 145.9, 131.4, 131.3, 115.8, 115.7, 108.9, 105.0, 38.7, 21.3, 12.1 ppm. IR (NaCl): 1693 (C=O), 1599, 1233, 1158, 845 cm⁻¹. HRMS (ESI): m/z calcd. for C₁₄H₁₃FO₂ [M]⁺: 232.0900; found: 232.0892.

2-(5-Butylfuran-2-yl)-1-(4-fluorophenyl)ethan-1-one (1h). Yield 1.33 g (41%). Yellow oil. ¹H NMR (400 MHz, CDCl₃): $\delta = 8.06-8.01$ (m, 2H), 7.14–7.08 (m, 2H), 6.09 (d, J = 3.1 Hz, 1H), 5.91 (d, J = 3.1 Hz, 1H), 4.22 (s, 2H), 2.56 (t, J = 7.6 Hz, 2H), 1.61–1.50 (m, 2H), 1.32 (m, 2H), 0.89 (t, J = 7.3 Hz, 3H) ppm. ¹³C NMR (101 MHz, CDCl₃): $\delta = 193.8$, 167.1, 164.5, 156.3, 145.9, 131.4, 131.3, 115.8, 115.6, 108.8, 105.7, 38.7, 30.1, 27.7, 22.2, 13.8 ppm. MS (ESI): *m/z* calcd. for C₁₆H₁₇FO₂ [M]⁺: 260.1213; found: 260.91.

1-(4-Fluorophenyl)-2-(5-phenylfuran-2-yl)ethan-1-one (1i). Yield 1.75 g (50%). Pale yellow solid. M. p. 84-86 °C. ¹H NMR (400 MHz, CDCl₃): $\delta = 8.04-7.99$ (m, 2H), 7.55–7.52 (m, 2H), 7.30–7.26 (m, 2H), 7.19–7.06 (m, 3H), 6.53 (d, J = 3.3 Hz, 1H), 6.25 (dd, J = 2.6, 0.7 Hz, 1H), 4.28 (s, 2H) ppm. ¹³C NMR (151 MHz, CDCl₃): $\delta = 193.3$, 166.8, 165.1, 153.6, 147.6, 131.4, 131.4, 130.7, 128.6, 127.2, 123.6, 115.9, 115.8, 110.5, 106.1, 38.8 ppm. IR (NaCl): 1693 (C=O), 1598, 1505, 1229, 1157, 1022, 843, 760 cm⁻¹. HRMS (ESI): m/z calcd. for C₁₈H₁₃FO₂ [M+H]⁺: 281.0978; found: 281.0971.

General procedure for the synthesis of pyrazoles 3

Hydrazine hydrochloride (2 mmol) and anhydrous NaOAc (4 mmol) were added to a solution of furfuryl ketone **1** (2 mmol) in ethanol (5 mL), and the mixture was stirred for 24 hours at 80 °C (TLC and LC-MS control). Then, the reaction mixture was poured into H₂O (100 mL) and extracted with EtOAc (4 × 25 mL). The combined organic phases were washed with brine, dried over anhydrous Na₂SO₄, filtered, and evaporated under reduced pressure. The resulting crude product was purified by flash chromatography using EtOAc/*i*-Hex as eluents to give a mixture of (*E*,*Z*)-isomers which was isomerized to give (*E*)-**3**.

Isomerization (E,Z)-3 \rightarrow (E)-3

Microwave reaction vessel was charged with (E,Z)-**3** (0.2 mmol), I₂ (0.0034 g, 0.013 mmol) and toluene (5 mL). The reaction mixture was stirred at 140 °C in a microwave reactor for 2-6 hours.* After completion of the reaction, toluene and iodine were removed under reduced pressure to afford pure (*E*)-**3**.

*For compounds with R^1 = Me the isomerization might be achieved by heating of the reaction mixture with iodine at 80 °C

(*E*)-(4-(1,3-Diphenyl-1*H*-pyrazol-5-yl)but-3-en-2-one ((*E*)-3a). Yield 0.29 g (50%). Yellow solid. M. p. 110–112 °C. ¹H NMR (400 MHz, CDCl₃): $\delta = 7.92-7.91$ (m, 2H), 7.58–7.35 (m, 9H), 7.09 (s, 1H), 6.74 (dd, *J* = 16.1, 1.4 Hz, 1H), 2.32 (d, *J* = 1.4 Hz, 3H) ppm. ¹³C NMR (101 MHz, CDCl₃): $\delta = 196.9$, 151.9, 139.3, 138.4, 131.9, 129.0, 128.5, 128.3, 128.3, 128.2, 127.9, 125.3, 125.1, 103.1, 27.6 ppm. IR (NaCl): 1691 (C=O), 1608, 1502, 1348, 1241, 943 cm⁻¹. HRMS (ESI): *m/z* calcd. for C₁₉H₁₆N₂O [M+H]⁺: 289.1341; found: 289.1335.

(**Z**)-(4-(1,3-Diphenyl-1*H*-pyrazol-5-yl)but-3-en-2-one ((**Z**)-3a). ¹H NMR (400 MHz, CDCl₃): δ = 7.99– 7.91 (m, 2H), 7.69 (m, 1H), 7.52–7.40 (m, 8H), 6.54 (d, *J* = 12.7, 1H), 6.23 (d, *J* = 12.7 Hz, 1H), 2.34 (s, 3H) ppm. (*E*)-4-(3-(4-Bromophenyl)-1-phenyl-1*H*-pyrazol-5-yl)but-3-en-2-one ((*E*)-3b). Yield 0.38 g (53%). Yellow solid. M. p. 108–110 °C. ¹H NMR (400 MHz, CDCl₃): $\delta = 7.69-7.65$ (m, 2H), 7.48–7.40 (m, 7H), 7.25 (d, *J* = 16.1 Hz, 1H), 6.95 (s, 1H), 6.63 (d, *J* = 16.1 Hz, 1H), 2.22 (s, 3H) ppm. ¹³C NMR (101 MHz, CDCl₃): $\delta = 197.4$, 151.3, 140.0, 138.8, 131.9, 131.9, 129.6, 129.0, 128.9, 128.8, 127.4, 125.6, 122.4, 103.5, 28.2 ppm. IR (NaCl): 1736 (C=O), 1604, 1503, 1447, 1349, 1246, 1145, 983 cm⁻¹. HRMS (ESI): m/z calcd. for C₁₉H₁₅BrN₂O [M+H]⁺: 367.0446; found: 367.0441.

(Z)-4-(3-(4-Bromophenyl)-1-phenyl-1*H*-pyrazol-5-yl)but-3-en-2-one ((Z)-3b). ¹H NMR (400 MHz, CDCl₃): $\delta = 7.80-7.78$ (m, 2H), 7.56 (s, 1H), 7.56–7.26 (m, 7H), 6.52 (d, J = 12.7 Hz, 1H), 6.23 (d, J = 12.7 Hz, 1H), 2.33 (s, 3H) ppm.

(*E*)-4-(3-(4-Fluorophenyl)-1-phenyl-1*H*-pyrazol-5-yl)but-3-en-2-one ((*E*)-3c). Yield 0.42 g (68%). Yellow solid. M. p. 145–147 °C. ¹H NMR (400 MHz, CDCl₃): $\delta = 7.79-7.76$ (m, 2H), 7.46–7.38 (m, 5H), 7.26 (d, *J* = 16.1 Hz, 1H), 7.07–7.01 (m, 2H), 6.93 (s, 1H), 6.63 (d, *J* = 16.1 Hz, 1H), 2.22 (s, 3H) ppm. ¹³C NMR (101 MHz, CDCl₃): $\delta = 197.4$, 164.2, 161.7, 151.5, 140.0, 138.8, 129.5, 128.9, 128.9, 127.6, 127.5, 125.6, 115.8, 115.6, 103.4, 28.1 ppm. IR (NaCl): 1741 (C=O), 1622, 1507, 1487, 1377, 1236, 982, 956 cm⁻¹. HRMS (ESI): *m/z* calcd. for C₁₉H₁₅FN₂O [M+H]⁺: 307.1247; found: 307.1241.

(Z)-4-(3-(4-Fluorophenyl)-1-phenyl-1*H*-pyrazol-5-yl)but-3-en-2-one ((Z)-3c). ¹H NMR (400 MHz, CDCl₃): $\delta = 7.82-7.80$ (m, 2H), 7.57 (s, 1H), 7.45–7.42 (m, 5H), 7.04–7.02 (m, 2H), 6.42 (d, J = 12.7 Hz, 1H), 6.14 (d, J = 12.7 Hz, 1H), 2.26 (s, 3H) ppm.

(E)-4-(3-(4-Methoxyphenyl)-1-phenyl-1*H*-pyrazol-5-yl)but-3-en-2-one ((E)-3d)

Yield 0.27 g (42%). Beige solid. M. p. 125–127 °C (EtOAc/Hex = 1:4). ¹H NMR (400 MHz, CDCl₃): δ = 7.85–7.83 (m, 2H), 7.58–7.47 (m, 5H), 7.34 (d, *J* = 16.1 Hz, 1H), 7.02–6.98 (m, 3H), 6.73 (d, *J* = 16.1 Hz, 1H), 3.87 (s, 3H), 2.33 (s, 3H) ppm. ¹³C NMR (101 MHz, CDCl₃): δ = 197.6, 159.8, 152.2, 139.7, 138.9, 129.5, 129.2, 128.7, 128.6, 127.1, 125.6, 125.1, 114.1, 103.1, 55.4, 28.1 ppm. IR (NaCl): 1667 (C=O), 1652, 1613, 15919, 1498, 1452, 1438, 1426, 1361, 1243, 1179. HRMS (ESI): *m/z* calcd. for C₂₀H₁₈N₂O₂ [M+Na] ⁺: 341.1266; found: 341.1255.

(*E*)-1-(1,3-Diphenyl-1*H*-pyrazol-5-yl)pent-1-en-3-one ((*E*)-3e). Yield 0.15 g (50%). Yellow solid. M. p. 98–101 °C. ¹H NMR (600 MHz, CDCl₃): δ = 7.89–7.88 (m, 2H), 7.55–7.35 (m, 9H), 7.07 (s, 1H), 6.76 (d, *J* = 16.0 Hz, 1H), 2.62 (q, *J* = 7.3 Hz, 2H), 1.14 (t, *J* = 7.3 Hz, 3H) ppm. ¹³C NMR (151 MHz, CDCl₃): δ = 200.1, 152.3, 140.0, 139.0, 132.4, 129.5, 128.7, 128.6, 128.6, 128.3, 128.1, 127.8, 125.8, 125.6, 103.4,

34.7, 8.0 ppm. IR (NaCl): 1691 (C=O), 1613, 1498, 765 cm⁻¹. HRMS (ESI): m/z calcd. for C₂₀H₁₈N₂O [M+H]⁺: 303.1497, found: 303.1494.

(Z)-1-(1,3-Diphenyl-1*H*-pyrazol-5-yl)pent-1-en-3-one ((Z)-3e). ¹H NMR (600 MHz, CDCl₃): δ = 7.94–7.92 (m, 2H), 7.73 (s, 1H), 7.54–7.32 (m, 8H), 6.52 (d, *J* = 12.7 Hz, 1H), 6.22 (d, *J* = 12.7 Hz, 1H), 2.64 (q, *J* = 7.3 Hz, 2H), 1.16 (t, *J* = 7.3 Hz, 3H) ppm.

(*E*)-1-(1-Phenyl-3-(*p*-tolyl)-1*H*-pyrazol-5-yl)pent-1-en-3-one ((*E*)-3f). Yield 0.2 g (32%). Yellow solid. M. p. 129–132 °C. ¹H NMR (600 MHz, CDCl₃): $\delta = 7.78-7.77$ (m, 2H), 7.54–7.45 (m, 5H), 7.39 (d, *J* = 16.0 Hz, 1H), 7.26–7.23 (m, 2H), 7.04 (s, 1H), 6.74 (d, *J* = 16.0 Hz, 1H), 2.61 (q, *J* = 7.3 Hz, 2H), 2.39 (s, 3H), 1.14 (t, *J* = 7.3 Hz, 3H) ppm. ¹³C NMR (151 MHz, CDCl₃): $\delta = 204.1$, 156.4, 143.9, 143.0, 142.2, 133.6, 133.4, 133.4, 132.6, 132.1, 131.7, 129.7, 129.6, 107.3, 38.7, 25.3, 12.0 ppm. IR (NaCl): 1691 (C=O), 1611, 1499, 1443, 1352, 1234, 1185, 956 cm⁻¹. HRMS (ESI): *m/z* calcd. for C₂₁H₂₀N₂O [M+H]⁺: 317.1654; found: 317.1657.

(Z)-1-(1-Phenyl-3-(*p*-tolyl)-1*H*-pyrazol-5-yl)pent-1-en-3-one ((Z)-3f). ¹H NMR (400 MHz, CDCl₃): δ = 7.85–7.83 (m, 2H), 7.73 (s, 1H), 7.59–7.48 (m, 5H), 7.31–7.27 (m, 2H), 6.54 (d, *J* = 12.8, 1H), 6.23 (d, *J* = 12.8 Hz, 1H), 2.65 (q, *J* = 7.3 Hz, 2H), 2.41 (s, 3H), 1.18 (t, *J* = 7.3 Hz, 3H) ppm.

(*E*)-1-(3-(4-Fluorophenyl)-1-phenyl-1*H*-pyrazol-5-yl)pent-1-en-3-one ((*E*)-3g). Yield 0.34 g (53%). Yellow solid. M. p. 111–113 °C. ¹H NMR (600 MHz, CDCl₃): $\delta = 7.87-7.84$ (m, 2H), 7.55–7.46 (m, 5H), 7.39 (d, *J* = 16.0 Hz, 1H), 7.14–7.10 (m, 2H), 7.01 (s, 1H), 6.74 (d, *J* = 16.0 Hz, 1H), 2.62 (q, *J* = 7.3 Hz, 2H), 1.14 (t, *J* = 7.3 Hz, 3H) ppm. ¹³C NMR (101 MHz, CDCl₃): $\delta = 200.2$, 164.2, 161.7, 151.4, 140.2, 138.8, 129.6, 128.0, 128.0, 127.6, 127.6, 125.6, 115.8, 115.6, 103.3, 34.8, 8.1 ppm. IR (NaCl): 1669 (C=O), 1609, 1499, 1446, 1231, 1156, 763 cm⁻¹. HRMS (ESI): *m*/*z* calcd. for C₂₀H₁₇FN₂O [M+H]⁺: 321.1403; found: 321.1392.

(*Z*)-1-(3-(4-Fluorophenyl)-1-phenyl-1*H*-pyrazol-5-yl)pent-1-en-3-one ((*Z*)-3g). ¹H NMR (400 MHz, CDCl₃): $\delta = 7.96-7.88$ (m, 2H), 7.75 (s, 1H), 7.52–7.48 (m, 5H), 7.12 (m, 2H), 6.49 (d, *J* = 12.8 Hz, 1H), 6.21 (d, *J* = 12.8 Hz, 1H), 2.64 (q, *J* = 7.3 Hz, 2H), 1.15 (t, *J* = 7.3 Hz, 3H) ppm.

(*E*)-1-(3-(4-Fluorophenyl)-1-phenyl-1*H*-pyrazol-5-yl)hept-1-en-3-one ((*E*)-3h). Yield 0.36 g (52%). White solid. M. p. 121–123 °C. ¹H NMR (400 MHz, CDCl₃): δ = 7.80–7.77 (m, 2H), 7.47–7.41 (m, 5H), 7.30 (d, *J* = 16.0 Hz, 1H), 7.07–7.03 (m, 2H), 6.95 (s, 1H), 6.67 (d, *J* = 16.0 Hz, 1H), 2.51 (t, *J* = 7.4 Hz,

2H), 1.59–1.50 (m, 2H), 1.29–1.25 (m, 2H), 0.85 (t, J = 7.3 Hz, 3H) ppm. ¹³C NMR (151 MHz, CDCl₃): $\delta = 198.8, 162.7, 161.1, 150.4, 139.1, 137.9, 128.5, 127.7, 127.1, 127.0, 126.5, 126.5, 124.6, 114.7, 114.6, 102.2, 40.3, 25.3, 21.4, 12.8$ ppm. IR (NaCl): 1660 (C=O), 1608, 1498, 1447, 1224, 1157, 956 cm⁻¹. HRMS (ESI): m/z calcd. for C₂₂H₂₁FN₂O [M+H]⁺: 349.1716; found: 349.1703.

(*Z*)-1-(3-(4-Fluorophenyl)-1-phenyl-1*H*-pyrazol-5-yl)hept-1-en-3-one ((*Z*)-3h). ¹H NMR (400 MHz, CDCl₃): $\delta = 7.90$ (m, 2H), 7.74 (s, 1H), 7.71–7.44 (m, 5H), 7.13 (m, 2H), 6.52 (d, *J* = 12.8 Hz, 2H), 6.24 (d, *J* = 12.8 Hz, 1H), 2.61 (t, *J* = 7.0 Hz, 1H), 1.75–1.45 (m, 2H), 1.45–1.28 (m, 2H), 0.95 (t, *J* = 7.3, 3H) ppm.

(*E*)-3-(3-(4-Fluorophenyl)-1-phenyl-1*H*-pyrazol-5-yl)-1-phenylprop-2-en-1-one ((*E*)-3i). Yield 0.27 g (37%). Yellow solid. M. p. 149-152 °C. ¹H NMR (400 MHz, CDCl₃): $\delta = \delta$ 7.94–7.92 (m, 2H), 7.84–7.79 (m, 2H), 7.60 (d, *J* = 15.6 Hz, 1H), 7.53–7.39 (m, 9H), 7.09–7.03 (m, 3H) ppm. ¹³C NMR (101 MHz, CDCl₃): $\delta = 188.3$, 163.1, 160.6, 150.4, 139.5, 137.9, 136.6, 132.2, 129.3, 128.5, 127.7, 127.4, 126.6, 126.5, 124.7, 123.0, 114.8, 114.6, 102.4 ppm. IR (NaCl): 1662 (C=O), 1597, 1514, 1447, 1225, 1154, 1013, 956, 840, 769, 701 cm⁻¹. HRMS (ESI): *m*/*z* calcd. for C₂₄H₁₇FN₂O [M+H]⁺: 369.1403; found: 369.1390.

(*Z*)-3-(3-(4-Fluorophenyl)-1-phenyl-1*H*-pyrazol-5-yl)-1-phenylprop-2-en-1-one ((*Z*)-3i). ¹H NMR (400 MHz, CDCl₃): $\delta = 8.08-8.00$ (m, 2H), 7.86 (m, 2H), 7.65–7.48 (m, 7H), 7.46 (s, 1H), 7.10 (m, 3H), 6.84 (d, *J* = 12.9 Hz, 1H), 6.79 (d, *J* = 12.9 Hz, 1H) ppm.

(*E*)-4-(3-(4-Fluorophenyl)-1-(*p*-tolyl)-1*H*-pyrazol-5-yl)but-3-en-2-one ((*E*)-3j). Yield 0.34 g (53%). Yellow solid. M. p. 133–135 °C. ¹H NMR (600 MHz, CDCl₃): δ = 7.86–7.83 (m, 2H), 7.37–7.30 (m, 5H), 7.13–7.10 (m, 2H), 6.99 (s, 1H), 6.70 (d, *J* = 16.1 Hz, 1H), 2.45 (s, 3H), 2.30 (s, 3H) ppm. ¹³C NMR (101 MHz, CDCl₃): δ = 197.6, 164.1, 161.7, 151.3, 139.9, 139.0, 136.3, 130.1, 129.1, 128.7, 127.6, 127.5, 125.5, 115.8, 115.6, 103.1, 28.1, 21.2 ppm. IR (NaCl): 1653 (C=O), 1609, 1515, 1448, 1260, 1156, 800 cm⁻¹. HRMS (ESI): *m*/*z* calcd. for C₂₀H₁₇FN₂O [M]⁺: 320.1325, found: 320.1319.

(*Z*)-4-(3-(4-Fluorophenyl)-1-(*p*-tolyl)-1*H*-pyrazol-5-yl)but-3-en-2-one ((*Z*)-3j). ¹H NMR (400 MHz, CDCl₃): δ = 7.95–7.88 (m, 2H), 7.67 (s, 1H), 7.39 (m, 4H), 7.37–6.99 (m, 2H), 6.52 (d, *J* = 12.7 Hz, 1H), 6.22 (d, *J* = 12.8 Hz, 1H), 2.46 (s, 3H), 2.36 (s, 3H) ppm.

(*E*)-1-(3-(4-Fluorophenyl)-1-*p*-tolyl-1*H*-pyrazol-5-yl)pent-1-en-3-one ((*E*)-3k). Yield 0.35 g (53%). Pale yellow solid. M. p. 163–165 °C. ¹H NMR (600 MHz, CDCl₃): δ = 7.86–7.84 (m, 2H), 7.38–7.32 (m, 5H), 7.13–7.10 (m, 2H), 6.99 (s, 1H), 6.72 (d, *J* = 16.0 Hz, 1H), 2.61 (q, *J* = 7.3 Hz, 2H), 2.45 (s, 3H), 1.14 (t, *J* = 7.3 Hz, 3H) ppm. ¹³C NMR (151 MHz, CDCl₃): δ = 200.1, 163.7, 163.1, 151.2, 140.2, 138.9, 136.4, 130.1, 127.8, 127.8, 125.6, 127.5, 125.5, 115.8, 115.6, 102.9, 34.7, 21.2, 8.1 ppm. IR (NaCl): 1669 (C=O), 1610, 1514, 1447, 1231, 1230, 956 cm⁻¹. HRMS (ESI): *m*/*z* calcd. for C₂₁H₁₉FN₂O [M+H]⁺: 335.1560, found: 335.1558.

(*Z*)-1-(3-(4-Fluorophenyl)-1-*p*-tolyl-1*H*-pyrazol-5-yl)pent-1-en-3-one ((*Z*)-3k). ¹H NMR (400 MHz, CDCl₃): $\delta = 7.85$ (m, 2H), 7.40–7.29 (m, 5H), 7.17–7.07 (m, 2H), 6.51 (d, J = 12.7 Hz, 1H), 6.22 (d, J = 12.8 Hz, 1H), 2.62 (q, J = 7.3 Hz, 2H), 2.46 (s, 3H), 1.14 (t, J = 7.3 Hz, 3H) ppm.

(*E*)-(1-(3-(4-Fluorophenyl)-1-(4-methoxyphenyl)-1*H*-pyrazol-5-yl)pent-1-en-3-one ((*E*)-3l). Yield 0.36 g (52%). Pale yellow solid. M. p. 124–127 °C. ¹H NMR (600 MHz, CDCl₃): δ = 7.86–7.82 (m, 2H), 7.40–7.38 (m, 2H), 7.33 (d, *J* = 16.0 Hz, 1H), 7.13–7.09 (m, 2H), 7.04–7.02 (m, 2H), 6.98 (s, 1H), 6.71 (d, *J* = 16.0 Hz, 1H), 3.88 (s, 3H), 2.61 (q, *J* = 7.3 Hz, 2H), 1.13 (t, *J* = 7.3 Hz, 3H) ppm. ¹³C NMR (101 MHz, CDCl₃): δ = 200.2, 164.1, 161.7, 159.9, 151.1, 140.3, 131.8, 128.1, 127.7, 127.6, 127.5, 127.1, 115.8, 115.6, 114.6, 102.7, 55.7, 34.7, 8.1 ppm. IR (NaCl): 1669 (C=O), 1609, 1514, 1447, 1253, 1156, 837 cm⁻¹. HRMS (ESI): *m/z* calcd. for C₂₁H₁₉FN₂O₂ [M+H]⁺: 351.1509, found: 351.1511.

(*Z*)-(1-(3-(4-Fluorophenyl)-1-(4-methoxyphenyl)-1*H*-pyrazol-5-yl)pent-1-en-3-one ((*Z*)-3l). ¹H NMR (400 MHz, CDCl₃): δ = 7.92 (m, 2H), 7.39–7.11 (m, 5H), 7.03 (m, 2H), 6.48 (d, *J* = 12.8 Hz, 1H), 6.22 (d, *J* = 12.8 Hz, 1H), 3.90 (s, 3H), 2.61 (q, *J* = 7.3 Hz, 2H), 1.13 (t, *J* = 7.3 Hz, 3H) ppm.

(*E*)-3-(3-(4-Fluorophenyl)-1-(4-methoxyphenyl)-1H-pyrazol-5-yl)-1-phenylprop-2-en-1-one ((*E*)-3o). Yield 0.19 g (24%). Yellow solid. M. p. 134–137 °C. ¹H NMR (600 MHz, CDCl₃): $\delta = 8.00-7.99$ (m, 2H), 7.89–7.85 (m, 2H), 7.63–7.59 (m, 2H), 7.52–7.50 (m, 3H), 7.44–7.41 (m, 2H), 7.14–7.10 (m, 3H), 7.05–7.03 (m, 2H), 3.89 (s, 3H) ppm. ¹³C NMR (151 MHz, CDCl₃): $\delta = 189.4$, 163.7, 162.1, 159.9, 151.1, 140.7, 137.7, 133.2, 132.0, 130.4, 128.7, 128.5, 127.6, 127.5, 127.2, 127.0, 123.8, 115.7, 115.6, 114.7, 102.9, 55.7 ppm. IR (NaCl): 1668 (C=O), 1604, 1513, 1448, 1250, 1156, 1024, 958, 751 cm⁻¹. HRMS (ESI): m/z calcd. for C₂₅H₁₉FN₂O₂ [M+H]⁺: 399.1509; found: 399.1497.

(1-(2-Bromophenyl)-2-(2-(5-ethylfuran-2-yl)-1-(4-fluorophenyl)ethylidene)-hydrazine (2n). Yield 0.4 g (50%). Yellow solid. M. p. 76–78 °C (EtOAc/*i*-Hex = 1:7). ¹H NMR (600 MHz, CDCl₃): δ = 8.36 (s,

1H), 7.87–7.84 (m, 2H), 7.62–7.60 (m, 1H), 7.44–7.43 (m, 1H), 7.29–7.26 (m, 1H), 7.11–7.06 (m, 2H), 6.76–6.73 (m, 1H), 6.12 (d, J = 3.1 Hz, 1H), 5.89 (d, J = 3.1 Hz, 1H), 4.07 (s, 2H), 2.61 (q, J = 7.6 Hz, 2H), 1.19 (t, J = 7.6 Hz, 3H) ppm. ¹³C NMR (101 MHz, CDCl₃): $\delta = 164.2$, 161.8, 157.8, 146.3, 142.7, 142.7, 142.2, 132.3, 128.5, 127.8, 127.7, 120.9, 115.5, 115.3, 114.7, 108.0, 104.8, 27.1, 21.5, 12.2 ppm. IR (NaCl): 2974, 1602, 1508, 1232, 1158, 1012, 843 cm⁻¹. HRMS (ESI): m/z calcd. for C₂₀H₁₈BrFN₂O [M+H]⁺: 401.0665; found: 401.0631.

1,2-Bis(2-(5-ethylfuran-2-yl)-1-(4-fluorophenyl)ethylidene)hydrazine (20). Yield 0.22 g (24%). Yellow solid. M. p. 76–78 °C. ¹H NMR (600 MHz, CDCl₃): δ = 7.96–7.94 (m, 2H), 7.09–7.06 (m, 2H), 5.77–5.74 (m, 2H), 4.22 (s, 2H), 2.52 (q, *J* = 7.5 Hz, 2H), 1.13 (t, *J* = 7.6 Hz, 3H) ppm. ¹³C NMR (151 MHz, CDCl₃): δ = 164.7, 163.0, 158.0, 156.5, 148.2, 133.4, 129.4, 129.3, 115.4, 115.2, 107.3, 104.7, 28.3, 21.3, 12.1 ppm. IR (NaCl): 1592, 1504, 1458, 1232, 1153, 1020, 840 cm⁻¹. HRMS (ESI): *m/z* calcd. for C₂₈H₂₆F₂N₂O₂ [M+H]⁺: 461.2041; found: 461.2025.

1-(3-(4-Fluorophenyl)-1-phenyl-1*H*-pyrazol-5-yl)-1-(4-(2-methoxyphenyl)piperazin-1-yl)pentan-3-one (4)

Pyrazolylvinyl ketone **3g** (0.045 g, 0.14 mmol) and 1-(2-methoxyphenyl)piperazine (0.028 mL, 0.16 mmol) were mixed in 4 mL of DCM. Sodium triacetoxyborohydride (0.038 g, 0.18 mmol) was added to the above solution and the mixture was stirred at room temperature under nitrogen for 24 h. The solution was washed with brine, dried over anhydrous Na_2SO_4 , filtered, and evaporated under reduced pressure. The resulting crude product was purified by flash chromatography using EtOAc/*i*-Hex as eluents to give **4**. Yield 0.036 g (50%).

¹H NMR (400 MHz, CDCl₃): δ = 7.84–7.75 (m, 4H), 7.52–7.40 (m, 3H), 7.12– 6.81 (m, 6H), 6.52 (s, 1H), 4.56–5.53 (m, 1H), 3.82 (s, 3H), 3.15–2.91 (m, 6H), 2.56–2.44 (m, 6H), 1.04 (t, *J* = 7.3 Hz, 3H) ppm. ¹³C NMR (101 MHz, CDCl₃): δ = 208.69, 150.13, 142.82, 140.99, 129.03, 128.22, 127.47, 127.39, 126.34, 125.62, 123.06, 120.89, 118.14, 115.59, 115.38, 110.94, 102.74, 55.30, 54.80, 50.89, 48.83, 42.99, 36.70, 7.68 ppm. HRMS (ESI): *m*/*z* calcd. for C₃₁H₃₃FN₄O₂ [M+H]⁺: 513.2666; found: 513.2657.

Figure S1: ¹H NMR spectrum of O-ethyl S-(2-oxo-2-phenylethyl) carbonodithioate S1a (400 MHz, CDCl₃)

Figure S2: ¹³C NMR spectrum of O-ethyl S-(2-oxo-2-phenylethyl) carbonodithioate S1a (101 MHz, CDCl₃)

Figure S3: ¹H NMR spectrum of S-(2-(4-bromophenyl)-2-oxoethyl) O-ethyl carbonodithioate S1b (400 MHz, CDCl₃)

Figure S4: ¹³C NMR spectrum of S-(2-(4-bromophenyl)-2-oxoethyl) O-ethyl carbonodithioate S1b (101 MHz, CDCl₃)

Figure S5: ¹H NMR spectrum of O-ethyl S-(2-(4-fluorophenyl)-2-oxoethyl)carbonodithioate S1c (600 MHz, CDCl₃)

Figure S6: ¹³C NMR spectrum of O-ethyl S-(2-(4-fluorophenyl)-2-oxoethyl)carbonodithioate S1c (151 MHz, CDCl₃)

Figure S7: ¹H NMR spectrum of O-ethyl S-(2-(4-fluorophenyl)-2-oxoethyl)carbonodithioate S1d (400 MHz, CDCl₃)

Figure S8: ¹³C NMR spectrum of O-ethyl S-(2-(4-fluorophenyl)-2-oxoethyl)carbonodithioate S1d (101 MHz, CDCl₃)

Figure S9: ¹H NMR spectrum of O-ethyl S-(2-oxo-2-(*p*-tolyl)ethyl)carbonodithioate S1e (600 MHz, CDCl₃)

Figure S10: ¹³C NMR spectrum of O-ethyl S-(2-oxo-2-(*p*-tolyl)ethyl)carbonodithioate S1e (151 MHz, CDCl₃)

Figure S11:¹H NMR spectrum of compound **1a** (600 MHz, CDCl₃)

Figure S12:¹³C NMR spectrum of compound 1a (101 MHz, CDCl₃)

Figure S13:¹H NMR spectrum of compound **1b** (400 MHz, CDCl₃)

Figure S14: ¹³ C NMR spectrum of compound 1b	(101 MHz, CDCl ₃)
---	-------------------------------

Figure S15:¹H NMR spectrum of compound **1c** (400 MHz, CDCl₃)

Figure S16:¹³C NMR spectrum of compound 1c (101 MHz, CDCl₃)

Figure S18: ¹³C NMR spectrum of compound **1d** (101 MHz, CDCl₃)

Figure S19: ¹H NMR spectrum of compound **1e** (600 MHz, CDCl₃)

Figure S20: ¹³C NMR spectrum of compound **1e** (151 MHz, CDCl₃)

Figure S21: ¹H NMR spectrum of compound **1f** (600 MHz, CDCl₃)

Figure S22: ¹³C NMR spectrum of compound 1f (101 MHz, CDCl₃)

Figure S23: ¹H NMR spectrum of compound **1g** (600 MHz, CDCl₃)

Figure S24: ¹³C NMR spectrum of compound **1g** (151 MHz, CDCl₃)

Figure S25: ¹H NMR spectrum of compound **1h** (400 MHz, CDCl₃)

Figure S26: ¹³C NMR spectrum of compound **1h** (101 MHz, CDCl₃)

Figure S27: ¹H NMR spectrum of compound 1i (400 MHz, CDCl₃)

Figure S28: ¹³C NMR spectrum of compound 1i (151 MHz, CDCl₃)

Figure S29: ¹H NMR spectrum of compound (*E*)-**3a** (400 MHz, CDCl₃)

Figure S30:¹³C NMR spectrum of compound (*E*)-**3a** (101 MHz, CDCl₃)

Figure S31: ¹H NMR spectrum of compound (*E*)-**3b** (400 MHz, CDCl₃)

Figure S32:¹³C NMR spectrum of compound (*E*)-**3b** (101 MHz, CDCl₃)

Figure S33: ¹H NMR spectrum of compound (*E*)-**3c** (400 MHz, CDCl₃)

Figure S34:¹³C NMR spectrum of compound (*E*)-**3c** (101 MHz, CDCl₃)

Figure S35: ¹H NMR spectrum of compound (*E*)-**3d** (400 MHz, CDCl₃)

Figure S36: ¹³C NMR spectrum of compound (*E*)-3d (101 MHz, CDCl₃)

Figure S37: ¹H NMR spectrum of compound (*E*)-**3e** (600 MHz, CDCl₃)

Figure S38: ¹³C NMR spectrum of compound (*E*)-3e (151 MHz, CDCl₃)

Figure S39: ¹H NMR spectrum of compound (*E*)-**3f** (600 MHz, CDCl₃)

Figure S40: ¹³C NMR spectrum of compound (*Z*)-3f (151 MHz, CDCl₃)

Figure S41: ¹H NMR spectrum of compound (*E*)-**3g** (600 MHz, CDCl₃)

Figure S42:¹³C NMR spectrum of compound (*E*)-3g (101 MHz, CDCl₃)

Figure S43: ¹H NMR spectrum of compound (*E*)-**3h** (400 MHz, CDCl₃)

Figure S45: ¹H NMR spectrum of compound (*E*)-**3i** (400 MHz, CDCl₃)

Figure S46: ¹³C NMR spectrum of compound (*E*)-**3i** (101 MHz, CDCl₃)

Figure S47: ¹H NMR spectrum of compound (*E*)-**3j** (600 MHz, CDCl₃)

Figure S48: ¹³C NMR spectrum of compound (*E*)-**3j** (101 MHz, CDCl₃)

Figure S49: ¹H NMR spectrum of compound (*E*)-**3k** (600 MHz, CDCl₃)

Figure S50: ¹³C NMR spectrum of compound (*E*)-3k (151 MHz, CDCl₃)

Figure S51: ¹H NMR spectrum of compound (*E*)-**3**I (600 MHz, CDCl₃)

Figure S52: ¹³C NMR spectrum of compound (*E*)-3l (101 MHz, CDCl₃)

Figure S53: ¹H NMR spectrum of compound **3m** (600 MHz, CDCl₃)

Figure S54: ¹³C NMR spectrum of compound **30** (151 MHz, CDCl₃)

Figure S55: ¹H NMR spectrum of compound **2n** (600 MHz, CDCl₃)

Figure S56: ¹³C NMR spectrum of compound **2n** (101 MHz, CDCl₃)

Figure S57: ¹H NMR spectrum of compound **20** (600 MHz, CDCl₃)

Figure S58: ¹³C NMR spectrum of compound **20** (151 MHz, CDCl₃)

Figure S61: ¹H NMR spectrum of compound (*E*,*Z*)-**3e** (600 MHz, CDCl₃)

Figure S63: ¹³C NMR spectra of compounds (*E*)-**3e** [1] and (*E*,*Z*)-**3e** [2] (151 MHz, CDCl₃)

Figure S64: ¹H-¹³C HMBC spectrum of compound (*E*)-**3e** (CDCl₃)

Figure S65: ¹H-¹³C HSQC spectrum of compound (*E*)-**3e** (CDCl₃)

Figure S66: ¹H-¹H COSY spectrum of compound (*E*)-**3e** (CDCl₃)

Figure S67: NOESY spectrum of compound (*E*)-**3e** (CDCl₃)

Table S1. Cross peaks in HSQC and HMBC correlation spectra of compound (*E*)-3e

¹ Η. δ. ppm	¹³ С, ð , ррт				
, o, pp	HMQC	HMBC			
7.42 (β - H)	128.1	103.5, 200.1 (C=O)			
7.07 (H _{Prz})	103.5	128.1, 140.0			
6.76 (α-H)	127.8	34.7, 140.0, 200.1 (C=O)			
2.62 (CH ₂)	34.7	127.8, 200.1 (C=O)			

Figure S68:¹H-¹³C HMBC spectrum of compound (E,Z)-**3e** (CDCl₃)

Figure S70: ${}^{1}\text{H}{}^{-1}\text{H}$ COSY spectrum of compound (*E*,*Z*)-**3e** (CDCl₃)

Table S2. Cross peaks in HSQC and HMBC correlation spectra of compound (Z)-3e

¹ H, δ, ppm	¹³ C, δ, ppm				
	HMQC	НМВС			
7.76 (H _{Prz})	108.2	138.7, 151.8			
6.53 (β - H)	125.8	108.2, 202.3 (C=O)			
6.24 (a-H)	126.6	138.7, 202.3 (C=O)			

Figure S71: LC-MS control of reaction 1a→2a→3a (1h)

S84

Figure S72: LC-MS control of reaction $1a \rightarrow 2a \rightarrow 3a$ (5h)

Figure S73: LC-MS control of reaction **1a**→**2a**→**3a** (24h)

Table S3. Crystal data and structure refinement for 3h.

Empirical formula	$C_{22}H_{21}FN_2O$
Formula weight	348.41
Temperature/K	152(1)
Crystal system	triclinic
Space group	P-1
a/Å	7.4796(7)
b/Å	8.7825(8)
c/Å	14.3379(14)
$\alpha/^{\circ}$	79.991(8)
β/°	78.903(8)
$\gamma/^{\circ}$	89.752(7)
Volume/Å ³	909.76(15)
Z	2
$\rho_{calc}g/cm^3$	1.272
μ/mm^{-1}	0.690
F(000)	368.0
Crystal size/mm ³	$0.312 \times 0.259 \times 0.226$
Radiation	CuK α (λ = 1.54184)
20 range for data collection/°	10.232 to 129.636

Index ranges	$-8 \le h \le 8, -10 \le k \le 9, -13 \le l \le 16$
Reflections collected	4868
Independent reflections	2931 [$R_{int} = 0.0287, R_{sigma} = 0.0325$]
Data/restraints/parameters	2931/0/236
Goodness-of-fit on F ²	1.036
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0497, wR_2 = 0.1258$
Final R indexes [all data]	$R_1 = 0.0630, wR_2 = 0.1403$
Largest diff. peak/hole / e Å ⁻³	0.19/-0.31

Table S4. Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters(Ų×10³) for **3h.** U_{eq} is defined as 1/3 of of the trace of the orthogonalised U_{IJ} tensor.

Atom	x	у	Z	U(eq)
C1	6274(3)	6801(2)	7761.9(13)	38.3(5)
F1	-4249.5(17)	2196.8(15)	7221.3(9)	60.8(4)
01	7751(2)	6179(2)	10010.4(10)	70.2(6)
C2	6325(3)	6355(3)	8691.8(14)	46.7(5)
C3	7798(3)	6745(2)	9167.6(13)	45.4(5)
C4	9316(3)	7863(2)	8616.5(13)	41.2(5)
C5	10712(3)	8179(2)	9204.1(14)	42.8(5)
C6	12134(3)	9405(3)	8657.5(15)	48.7(5)
C7	13495(3)	9752(3)	9266.1(17)	60.5(7)
N11	4670(2)	6852.5(18)	6388.1(10)	36.2(4)
N12	3158(2)	6255.8(18)	6170.5(11)	37.2(4)
C13	2284(2)	5418(2)	7010.3(13)	35.7(4)
C14	3240(3)	5464(2)	7752.7(13)	38.5(5)
C15	4776(3)	6393(2)	7337.0(13)	37.8(4)
C21	5891(2)	7864(2)	5651.6(13)	35.4(4)
C22	6426(3)	9271(2)	5833.7(14)	39.2(5)
C23	7581(3)	10256(2)	5114.5(14)	44.0(5)
C24	8171(3)	9853(2)	4222.4(15)	47.8(5)
C25	7617(3)	8454(2)	4042.8(14)	46.1(5)
C26	6478(3)	7442(2)	4757.7(13)	40.6(5)
C31	526(3)	4611(2)	7074.8(13)	36.5(4)
C32	-386(3)	4838(2)	6299.6(13)	39.4(5)
C33	-1989(3)	4026(2)	6346.3(14)	42.5(5)
C34	-2681(3)	3011(2)	7176.5(15)	45.3(5)
C35	-1858(3)	2788(2)	7967.1(15)	48.2(5)
C36	-242(3)	3594(2)	7911.3(14)	42.6(5)

		L	L		12]	
Atom	U ₁₁	U_{22}	U ₃₃	U_{23}	U ₁₃	U_{12}
C1	36.4(10)	42.2(11)	35.3(10)	-3.2(8)	-7.4(8)	-3.5(8)
F1	52.7(8)	67.1(9)	60.0(8)	-3.2(6)	-11.6(6)	-26.0(6)
01	70.8(11)	97.9(13)	36.5(9)	15.0(8)	-20.3(8)	-35.5(10)
C2	44.2(12)	58.2(13)	35.2(11)	-0.6(9)	-8.3(9)	-12.9(10)
C3	47.5(12)	54.0(13)	32.3(10)	0.3(9)	-9.1(9)	-7.8(10)
C4	42.1(11)	47.2(12)	32.5(10)	-0.5(8)	-8.9(8)	-4.7(9)
C5	42.5(11)	49.3(12)	36.3(10)	-3.6(9)	-10.0(8)	-3.1(9)
C6	46.4(12)	54.5(13)	43.5(11)	-1.8(10)	-10.4(9)	-10.0(10)
C7	49.4(13)	74.3(17)	57.1(14)	-5.8(12)	-13.8(11)	-19.5(12)
N11	36.8(9)	39.7(9)	31.2(8)	-2.0(6)	-8.3(6)	-5.4(7)
N12	37.8(9)	39.2(9)	34.2(8)	-2.6(7)	-9.7(7)	-5.7(7)
C13	38.8(10)	35.2(10)	32.1(9)	-3.2(8)	-6.7(8)	-0.8(8)
C14	39.1(10)	46.0(11)	28.2(9)	-1.1(8)	-6.0(8)	-4.5(8)
C15	38.8(10)	43.0(11)	31.5(10)	-5.5(8)	-7.6(8)	0.6(8)
C21	30.4(9)	40.3(11)	32.8(9)	2.2(8)	-7.3(7)	-2.9(8)
C22	38.6(11)	42.8(11)	37.0(10)	-2.3(8)	-14.0(8)	-0.9(8)
C23	40.1(11)	41.1(11)	49.5(12)	3.8(9)	-15.5(9)	-6.7(9)
C24	36.9(11)	50.4(13)	48.4(12)	9.2(10)	-5.1(9)	-5.4(9)
C25	46.0(12)	49.3(12)	36.9(11)	1.6(9)	-1.1(9)	4.3(9)
C26	44.4(11)	38.7(11)	36.9(10)	-2.1(8)	-7.5(8)	-0.3(8)
C31	37.4(10)	36.9(10)	34.0(10)	-4.3(8)	-5.6(8)	-3.7(8)
C32	40.8(11)	40.5(11)	35.0(10)	-1.5(8)	-7.6(8)	-3.6(8)
C33	43.0(11)	47.4(12)	38.1(10)	-4.9(9)	-12.2(8)	-3.0(9)
C34	40.5(11)	45.9(12)	49.1(12)	-7.2(9)	-8.5(9)	-12.5(9)
C35	52.3(13)	47.5(12)	39.9(11)	2.3(9)	-5.4(9)	-14.0(10)
C36	46.4(11)	44.8(11)	35.5(10)	-0.7(8)	-10.7(8)	-4.8(9)

Table S5. Anisotropic Displacement Parameters ($Å^2 \times 10^3$) for 3h . The Anisotropic displacement	t factor
exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+]$.	

Table S6. Bond Lengths for 3h.

Atom	Atom	Length/Å	Atom	Atom	Length/Å
C1	C2	1.331(3)	C13	C31	1.476(3)
C1	C15	1.448(3)	C14	C15	1.384(3)
F1	C34	1.362(2)	C21	C22	1.383(3)
01	C3	1.218(2)	C21	C26	1.386(3)
C2	C3	1.473(3)	C22	C23	1.382(3)
C3	C4	1.508(3)	C23	C24	1.376(3)
C4	C5	1.516(3)	C24	C25	1.380(3)

C5	C6	1.517(3)	C25	C26	1.386(3)
C6	C7	1.526(3)	C31	C32	1.398(3)
N11	N12	1.360(2)	C31	C36	1.390(3)
N11	C15	1.368(2)	C32	C33	1.382(3)
N11	C21	1.431(2)	C33	C34	1.370(3)
N12	C13	1.346(2)	C34	C35	1.376(3)
C13	C14	1.398(2)	C35	C36	1.385(3)

Table S7. Bond Angles for 3h.

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
C2	C1	C15	122.91(18)	C22	C21	N11	119.42(17)
C1	C2	C3	125.45(18)	C22	C21	C26	120.90(17)
01	C3	C2	119.29(18)	C26	C21	N11	119.64(17)
01	C3	C4	120.85(17)	C23	C22	C21	119.22(18)
C2	C3	C4	119.84(16)	C24	C23	C22	120.49(19)
C3	C4	C5	113.97(15)	C23	C24	C25	119.97(18)
C4	C5	C6	112.75(16)	C24	C25	C26	120.45(19)
C5	C6	C7	112.36(17)	C21	C26	C25	118.96(19)
N12	N11	C15	112.24(15)	C32	C31	C13	121.01(17)
N12	N11	C21	119.30(14)	C36	C31	C13	120.13(17)
C15	N11	C21	128.45(15)	C36	C31	C32	118.85(18)
C13	N12	N11	104.62(14)	C33	C32	C31	120.81(18)
N12	C13	C14	111.36(16)	C34	C33	C32	118.50(18)
N12	C13	C31	120.97(16)	F1	C34	C33	118.66(18)
C14	C13	C31	127.66(17)	F1	C34	C35	118.77(18)
C15	C14	C13	105.69(16)	C33	C34	C35	122.57(18)
N11	C15	C1	124.30(17)	C34	C35	C36	118.59(18)
N11	C15	C14	106.08(16)	C35	C36	C31	120.63(18)
C14	C15	C1	129.59(17)				

Atom	x	у	z	U(eq)
H1	7242	7402	7368	46
H2	5350	5747	9073	56
H4A	8791	8834	8384	49
H4B	9932	7453	8057	49
H5A	11317	7226	9390	51

H5B	10089	8511	9790	51
H6A	11528	10348	8453	58
H6B	12786	9057	8083	58
H7A	14368	10529	8892	91
H7B	14113	8826	9461	91
H7C	12859	10120	9828	91
H14	2913	4974	8393	46
H22	6014	9551	6433	47
H23	7962	11198	5234	53
H24	8943	10524	3741	57
H25	8010	8188	3438	55
H26	6113	6494	4639	49
H32	92	5545	5746	47
H33	-2583	4164	5826	51
H35	-2375	2110	8527	58
H36	334	3454	8438	51

Crystal structure determination of 3h

Crystal Data for C₂₂H₂₁FN₂O (M = 348.41 g/mol): triclinic, space group P-1 (no. 2), a = 7.4796(7) Å, b = 8.7825(8) Å, c = 14.3379(14) Å, $a = 79.991(8)^{\circ}$, $\beta = 78.903(8)^{\circ}$, $\gamma = 89.752(7)^{\circ}$, V = 909.76(15) Å³, Z = 2, T = 152(1) K, μ (CuK α) = 0.690 mm⁻¹, *Dcalc* = 1.272 g/cm³, 4868 reflections measured (10.232° $\leq 2\Theta \leq 129.636^{\circ}$), 2931 unique ($R_{int} = 0.0287$, $R_{sigma} = 0.0325$) which were used in all calculations. The final R_1 was 0.0497 (I > 2 σ (I)) and wR_2 was 0.1403 (all data).

Refinement model description

Number of restraints - 0, number of constraints - unknown. Details:

1. Fixed Uiso

At 1.2 times of: All C(H) groups, All C(H,H) groups At 1.5 times of: All C(H,H,H) groups 2.a Secondary CH2 refined with riding coordinates: C4(H4A,H4B), C5(H5A,H5B), C6(H6A,H6B) 2.b Aromatic/amide H refined with riding coordinates: C1(H1), C2(H2), C14(H14), C22(H22), C23(H23), C24(H24), C25(H25), C26(H26), C32(H32), C33(H33), C35(H35), C36(H36) 2.c Idealised Me refined as rotating group: C7(H7A,H7B,H7

References

- 1 O. V. Dolomanov, L. J. Bourhis, R. J Gildea, J. A. K. Howard, H. J. Puschmann. Appl. Cryst. 2009, 42, 339.
- 2 G. M. Sheldrick. Acta Cryst. 2015, A71, 3.
- 3 G. M. Sheldrick. Acta Cryst. 2015, C71, 3.
- 4 P. N. Chalikidi, M. G. Uchuskin, I. V. Trushkov, V. T. Abaev, O. V. Serdyuk. *Synlett*, 2018, **29**, 571.
- 5 O. V. Serdyuk, P. N. Chalikidi, A. V. Butin. Chem. Heterocycl. Compd. 2012, 48, 1281
- 6 (a) S. Zard, A. V. Cordero, B. Sire. US2007/185323, 2007, A1. (b) H. Jullien, B. Quiclet-Sire, T. Tétart, S. Z. Zard. Org. Lett. 2014, 16, 302.
- 7 C. W. Ong, C.-M. Chen. J. Org. Chem. 1995, 60, 3135.