Phosphine-Catalyzed Dearomative (3+2) Annulation of 2-Nitrobenzofurans and Nitrobenzothiophenes with Allenoate

Jian-Qiang Zhao, Lei Yang, Yong You, Zhen-Hua Wang, Ke-Xin Xie, Xiao-Mei Zhang, Xiao-Ying Xu, and Wei-Cheng Yuan

a. Institute for Advanced Study, Chengdu University, Chengdu 610106, China
b. National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, 610041, China.
c. Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China

*E-mail: zhaojianqiang@cdu.edu.cn
*E-mail: yuanwc@cioc.ac.cn

Supporting Information

Table of Contents
1. X-ray crystal structure of compound 3o...S1
2. 1H and 13C NMR for new substrates 4 and 6...S2
3. 1H and 13C NMR for compounds 3, 5, 7, 8 and 9...S10
1. X-ray crystal structure of compound 3o

ORTEP of 3o (at 50% level)

Crystal data and structure refinement for 3o (CCDC-1900800)

Identification code 3o
Empirical formula C₁₅H₁₅NO₆
Formula weight 305.28
Temperature/K 293(2)
Crystal system triclinic
Space group P-1
a/Å 6.9301(3)
b/Å 12.5301(7)
c/Å 17.0571(10)
α/° 85.888(5)
β/° 88.194(4)
γ/° 79.004(4)
Volume/Å³ 1449.97(14)
Z 4
ρ_calc/g/cm³ 1.398
μ/mm⁻¹ 0.926
F(000) 640.0
Crystal size/mm³ 0.2 × 0.14 × 0.1
Radiation CuKα (λ = 1.54184)
2Θ range for data collection/° 7.204 to 134.152
Index ranges -8 ≤ h ≤ 5, -14 ≤ k ≤ 14, -20 ≤ l ≤ 20
Reflections collected 10304
Independent reflections 5176 [R_int = 0.0235, R(sigma) = 0.0373]
Data/restraints/parameters 5176/4/418
Goodness-of-fit on F² 1.039
Final R indexes [I>2σ(I)] R₁ = 0.0496, wR₂ = 0.1333
Final R indexes [all data] R₁ = 0.0633, wR₂ = 0.1480
Largest diff. peak/hole / e Å⁻³ 0.20/-0.20
2. 1H and 13C for new substrates 4 and 6

1H and 13C NMR of 4b
1H and 13C NMR of 4c
1H and 13C NMR of 4d
1H and 13C NMR of 6b
^{1}H and ^{13}C NMR of 6c
1H and 13C NMR of 6d
1H and 13C NMR of 6e
1H and 13C NMR of 6f
3. 1H and 13C for compounds 3, 5, 7 and 8

1H and 13C NMR of 3a
1H and 13C NMR of 3b
1H and 13C NMR of 3c
1H and 13C NMR of 3d
1H and 13C NMR of 3e
1H and 13C NMR of 3f
1H and 13C NMR of 3g
1H and 13C NMR of 3h
1H and 13C NMR of 3i
1H and 13C NMR of 3j
1H and 13C NMR of 3k
\(^1\text{H}\) and \(^{13}\text{C}\) NMR of 3l
1H and 13C NMR of 3m
1H and 13C NMR of 3n
1H and 13C NMR of 3o
1H and 13C NMR of $3p$
1H and 13C NMR of 3q
1H and 13C NMR of 3r
1H and 13C NMR of 3s
1H and 13C NMR of 3t
1H and 13C NMR of 5a
1H and 13C NMR of 5b
1H and 13C NMR of 5c
1H and 13C NMR of 5d
^{1}H and ^{13}C NMR of 5e
1H and 13C NMR of 7a
1H and 13C NMR of 7b
1H and 13C NMR of 7c
1H and 13C NMR of 7d
1H and 13C NMR of 7e
1H and 13C NMR of 7f
1H and 13C NMR of 7g
1H and 13C NMR of 7h
$^1{\text{H}}$ and $^{13}{\text{C}}$ NMR of 8
^{1}H and ^{13}C NMR of 9
HPLC of 3a

Detector A (254nm)

<table>
<thead>
<tr>
<th>Pk #</th>
<th>Retention Time</th>
<th>Height</th>
<th>Height Percent</th>
<th>Area</th>
<th>Area Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7.297</td>
<td>210877</td>
<td>53.71</td>
<td>2813387</td>
<td>49.76</td>
</tr>
<tr>
<td>2</td>
<td>8.550</td>
<td>181773</td>
<td>46.29</td>
<td>2360294</td>
<td>50.24</td>
</tr>
</tbody>
</table>

Totals

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>392650</td>
<td>100.00</td>
<td>5693681</td>
<td>100.00</td>
<td></td>
</tr>
</tbody>
</table>

Detector A (366nm)

<table>
<thead>
<tr>
<th>Pk #</th>
<th>Retention Time</th>
<th>Height</th>
<th>Height Percent</th>
<th>Area</th>
<th>Area Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7.297</td>
<td>74516</td>
<td>48.41</td>
<td>1005196</td>
<td>44.51</td>
</tr>
<tr>
<td>2</td>
<td>8.553</td>
<td>79407</td>
<td>51.59</td>
<td>1235011</td>
<td>55.49</td>
</tr>
</tbody>
</table>

Totals

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>153923</td>
<td>100.00</td>
<td>2258207</td>
<td>100.00</td>
<td></td>
</tr>
</tbody>
</table>