Supporting Information for

Total Synthesis and Stereochemical Revision of Relgro and 10'-Oxorelgro

Janardhan Gaddam,a,c G. Sudhakar Reddy,a,c Kanakaraju Marumudi,b Ajit C. Kunwar,b Jhillu S. Yadav,d Debendra K. Mohapatra*a,c

aDepartment of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
bCentre for NMR and Structural Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
cAcademy of Scientific and Innovative Research (AcSIR), Mathura Road, New Delhi 110025, India
dSchool of Science, Indrashil University, Kadi, Gujarat 382740, India
Table of Contents

<table>
<thead>
<tr>
<th>S. No</th>
<th>Description</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Table 2. 1H NMR data of natural product, synthetic products 1, $1a$, 2, and $2a$ (400 MHz) in CDCl$_3$</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>Table 3. 13C NMR data of natural product, synthetic products 1, $1a$, 2, and $2a$ (400 MHz) in CDCl$_3$</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>1H and 13C NMR Copy of 9</td>
<td>6, 7</td>
</tr>
<tr>
<td>4</td>
<td>1H and 13C NMR Copy of 10</td>
<td>8, 9</td>
</tr>
<tr>
<td>5</td>
<td>1H and 13C NMR Copy of 11</td>
<td>10, 11</td>
</tr>
<tr>
<td>6</td>
<td>1H and 13C NMR Copy of 12</td>
<td>12, 13</td>
</tr>
<tr>
<td>7</td>
<td>1H and 13C NMR Copy of 5</td>
<td>14, 15</td>
</tr>
<tr>
<td>8</td>
<td>1H and 13C NMR Copy of 13</td>
<td>16, 17</td>
</tr>
<tr>
<td>9</td>
<td>1H and 13C NMR Copy of 14</td>
<td>18, 19</td>
</tr>
<tr>
<td>10</td>
<td>1H and 13C NMR Copy of 15</td>
<td>20, 21</td>
</tr>
<tr>
<td>11</td>
<td>1H and 13C NMR Copy of 6</td>
<td>22, 23</td>
</tr>
<tr>
<td>12</td>
<td>1H and 13C NMR Copy of 4</td>
<td>24, 25</td>
</tr>
<tr>
<td>13</td>
<td>1H and 13C NMR Copy of 16</td>
<td>26, 27</td>
</tr>
<tr>
<td>14</td>
<td>1H and 13C NMR Copy of 17</td>
<td>28, 29</td>
</tr>
<tr>
<td>15</td>
<td>1H and 13C NMR Copy of 1</td>
<td>30, 31</td>
</tr>
<tr>
<td>16</td>
<td>DQF-COSY Spectrum of compound 1</td>
<td>32</td>
</tr>
<tr>
<td>17</td>
<td>NOESY Spectrum of compound 1</td>
<td>33</td>
</tr>
<tr>
<td>18</td>
<td>HMBC Spectrum of compound 1</td>
<td>34</td>
</tr>
<tr>
<td>19</td>
<td>1H and 13C NMR Copy of $13a$</td>
<td>35, 36</td>
</tr>
<tr>
<td>20</td>
<td>1H and 13C NMR Copy of $14a$</td>
<td>37, 38</td>
</tr>
<tr>
<td>21</td>
<td>1H and 13C NMR Copy of $15a$</td>
<td>39, 40</td>
</tr>
<tr>
<td>22</td>
<td>1H and 13C NMR Copy of $6a$</td>
<td>41, 42</td>
</tr>
<tr>
<td>23</td>
<td>1H and 13C NMR Copy of 18</td>
<td>43, 44</td>
</tr>
<tr>
<td>24</td>
<td>1H and 13C NMR Copy of 19</td>
<td>45, 46</td>
</tr>
<tr>
<td>25</td>
<td>1H and 13C NMR Copy of 20</td>
<td>47, 48</td>
</tr>
<tr>
<td>26</td>
<td>1H and 13C NMR Copy of 1a</td>
<td>49, 50</td>
</tr>
<tr>
<td>27</td>
<td>1H and 13C NMR Copy of 2</td>
<td>51, 52</td>
</tr>
<tr>
<td>28</td>
<td>1H and 13C NMR Copy of 13b</td>
<td>53, 54</td>
</tr>
<tr>
<td>29</td>
<td>1H and 13C NMR Copy of 14b</td>
<td>55, 56</td>
</tr>
<tr>
<td>30</td>
<td>1H and 13C NMR Copy of 15b</td>
<td>57, 58</td>
</tr>
<tr>
<td>31</td>
<td>1H and 13C NMR Copy of 6b</td>
<td>59, 60</td>
</tr>
<tr>
<td>32</td>
<td>LC-LCMS Chromatogram of 6b</td>
<td>61, 62</td>
</tr>
<tr>
<td>33</td>
<td>1H and 13C NMR Copy of 18a</td>
<td>63, 64</td>
</tr>
<tr>
<td>34</td>
<td>1H and 13C NMR Copy of 19a</td>
<td>65, 66</td>
</tr>
<tr>
<td>35</td>
<td>1H and 13C NMR Copy of 20a</td>
<td>67, 68</td>
</tr>
<tr>
<td>36</td>
<td>1H and 13C NMR Copy of 1b</td>
<td>69, 70</td>
</tr>
<tr>
<td>37</td>
<td>DQF-COSY Spectrum of compound 1b</td>
<td>71</td>
</tr>
<tr>
<td>38</td>
<td>NOESY Spectrum of compound 1b</td>
<td>72</td>
</tr>
<tr>
<td>39</td>
<td>HMBC Spectrum of compound 1b</td>
<td>73</td>
</tr>
<tr>
<td>40</td>
<td>HSQC Spectrum of compound 1b</td>
<td>74</td>
</tr>
<tr>
<td>41</td>
<td>1H and 13C NMR Copy of 2a</td>
<td>75, 76</td>
</tr>
<tr>
<td>42</td>
<td>DQF-COSY Spectrum of compound 2a</td>
<td>77</td>
</tr>
<tr>
<td>43</td>
<td>NOESY Spectrum of compound 2a</td>
<td>78</td>
</tr>
<tr>
<td>44</td>
<td>HMBC Spectrum of compound 2a</td>
<td>79</td>
</tr>
<tr>
<td>45</td>
<td>HSQC Spectrum of compound 2a</td>
<td>80</td>
</tr>
</tbody>
</table>
Table 2. 1H chemical shifts* and coupling constants (J_{H-H}) for Natural product, Synthetic compounds 1, 1b, 2, and 2a (400 MHz) in CDCl$_3$

<table>
<thead>
<tr>
<th>Position</th>
<th>10'-Oxorelgro</th>
<th>10'-Oxorelgro</th>
<th>10'-Oxorelgro</th>
<th>(6'R,10'S)-Relgro</th>
<th>(6'S,10'S)-Relgro</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Natural product</td>
<td>Proposed (2)</td>
<td>Revised (2a)</td>
<td>Proposed (1)</td>
<td>Revised (1b)</td>
</tr>
<tr>
<td>2 -OH</td>
<td>11.50, s</td>
<td>11.47, s</td>
<td>11.46, s</td>
<td>11.52, s</td>
<td>11.50, s</td>
</tr>
<tr>
<td>3</td>
<td>6.27 (d, $J = 2.5$)</td>
<td>6.27 (d, $J = 2.7$)</td>
<td>6.26 (d, $J = 2.7$)</td>
<td>6.26 (d, $J = 2.5$)</td>
<td>6.26 (d, $J = 2.5$)</td>
</tr>
<tr>
<td>4 -OH</td>
<td>5.42, br s</td>
<td>5.58, br s</td>
<td>5.36, br s</td>
<td>6.39, br s</td>
<td>5.87, br s</td>
</tr>
<tr>
<td>5</td>
<td>6.23 (d, $J = 2.5$)</td>
<td>6.23 (d, $J = 2.7$)</td>
<td>6.22 (d, $J = 2.7$)</td>
<td>6.22 (d, $J = 2.5$)</td>
<td>6.22 (d, $J = 2.5$)</td>
</tr>
<tr>
<td>1'-Ha</td>
<td>3.41 (t, $J = 12.5$)</td>
<td>3.40 (dt, $J = 2.6, 9.6$)</td>
<td>3.41 (dt, $J = 2.6, 9.5$)</td>
<td>3.40 (ddd, $J = 2.4, 9.8, 12.5$)</td>
<td>3.41 (ddd, $J = 2.6, 9.6, 12.5$)</td>
</tr>
<tr>
<td>1'-Hb</td>
<td>2.27 (dt, $J = 12.5, 9.0$)</td>
<td>2.26 (ddd, $J = 8.6, 9.6, 12.8$)</td>
<td>2.26 (ddd, $J = 8.5, 9.5, 12.9$)</td>
<td>2.25 (dt, $J = 9.0, 12.7$)</td>
<td>2.25 (dt, $J = 8.6, 12.5$)</td>
</tr>
<tr>
<td>2'- Ha</td>
<td>1.33-1.45, m</td>
<td>1.33-1.45, m</td>
<td>1.32-1.43, m</td>
<td>1.33-1.44, m</td>
<td>1.35-1.46, m</td>
</tr>
<tr>
<td>2'- Hb</td>
<td>1.33-1.45, m</td>
<td>1.33-1.45, m</td>
<td>1.32-1.43, m</td>
<td>1.33-1.44, m</td>
<td>1.35-1.46, m</td>
</tr>
<tr>
<td>3'-Ha</td>
<td>1.47-1.58, m</td>
<td>1.52, m</td>
<td>1.53, m</td>
<td>1.52, m</td>
<td>1.52, m</td>
</tr>
<tr>
<td>3'-Hb</td>
<td>1.38-1.43, m</td>
<td>1.40, m</td>
<td>1.40, m</td>
<td>1.40, m</td>
<td>1.40, m</td>
</tr>
<tr>
<td>4'-Ha</td>
<td>1.73-1.83, m</td>
<td>1.77, m</td>
<td>1.77, m</td>
<td>1.80, m</td>
<td>1.80, m</td>
</tr>
<tr>
<td>4'-Hb</td>
<td>1.66-1.70, m</td>
<td>1.70, m</td>
<td>1.70, m</td>
<td>1.67, m</td>
<td>1.67, m</td>
</tr>
<tr>
<td>5'-Ha</td>
<td>1.75-1.81, m</td>
<td>1.80, m</td>
<td>1.79, m</td>
<td>1.74, m</td>
<td>1.73, m</td>
</tr>
<tr>
<td>5'-Hb</td>
<td>1.66-1.72, m</td>
<td>1.66, m</td>
<td>1.66, m</td>
<td>1.73, m</td>
<td>1.73, m</td>
</tr>
<tr>
<td>6'</td>
<td>5.25-5.28, m</td>
<td>5.25, m</td>
<td>5.25, m</td>
<td>5.26, m</td>
<td>5.26, m</td>
</tr>
<tr>
<td>7'-Ha</td>
<td>1.81-1.84, m</td>
<td>1.81, m</td>
<td>1.81, m</td>
<td>1.84, m</td>
<td>1.84, m</td>
</tr>
<tr>
<td>7'-Hb</td>
<td>1.60-1.68, m</td>
<td>1.62, m</td>
<td>1.62, m</td>
<td>1.58, m</td>
<td>1.58, m</td>
</tr>
<tr>
<td>8'-Ha</td>
<td>1.58-1.65, m</td>
<td>1.63, m</td>
<td>1.63, m</td>
<td>1.47, m</td>
<td>1.47, m</td>
</tr>
<tr>
<td>8'-Hb</td>
<td>0.81-0.85, m</td>
<td>0.84, m</td>
<td>0.83, m</td>
<td>1.39, m</td>
<td>1.39, m</td>
</tr>
<tr>
<td>9'</td>
<td>2.45-2.54, m</td>
<td>2.50, m</td>
<td>2.50, m</td>
<td>1.50, m</td>
<td>1.50, m</td>
</tr>
<tr>
<td>10'</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3.84, m</td>
<td>3.82, m</td>
</tr>
<tr>
<td>11'</td>
<td>2.14, s</td>
<td>2.14, s</td>
<td>2.14, s</td>
<td>1.20 (d, $J = 6.1$)</td>
<td>1.20 (d, $J = 6.2$)</td>
</tr>
</tbody>
</table>
Multiplicities: s = singlet, br s = broad singlet, d = doublet, dd = doublet of a doublet, ddd = doublet of doublets of doublets, dt = doublet of triplets, t = triplet, m = multiplet. *The chemical shifts are in δ values (ppm) with reference to TMS. †couplings have been obtained with the help of extensive decoupling experiments.

Table 3. 13C chemical shifts* for Natural product, Synthetic compounds 1, 1b, 2, and 2a (400 MHz) in CDCl$_3$

<table>
<thead>
<tr>
<th>Position</th>
<th>10'-Oxorelgro</th>
<th>10'-Oxorelgro</th>
<th>10'-Oxorelgro</th>
<th>(6'R,10'S)-Relgro</th>
<th>(6'S,10'S)-Relgro</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Natural product</td>
<td>Proposed (2)</td>
<td>Revised (2a)</td>
<td>Proposed (1)</td>
<td>Revised (1b)</td>
</tr>
<tr>
<td>1</td>
<td>105.8</td>
<td>105.8</td>
<td>105.8</td>
<td>105.4</td>
<td>105.5</td>
</tr>
<tr>
<td>2</td>
<td>165.6</td>
<td>165.5</td>
<td>165.6</td>
<td>165.2</td>
<td>165.3</td>
</tr>
<tr>
<td>3</td>
<td>101.6</td>
<td>101.6</td>
<td>101.6</td>
<td>101.3</td>
<td>101.3</td>
</tr>
<tr>
<td>4</td>
<td>160.4</td>
<td>160.6</td>
<td>160.5</td>
<td>160.7</td>
<td>160.5</td>
</tr>
<tr>
<td>5</td>
<td>111.0</td>
<td>111.1</td>
<td>111.1</td>
<td>111.0</td>
<td>111.0</td>
</tr>
<tr>
<td>6</td>
<td>149.9</td>
<td>149.9</td>
<td>149.9</td>
<td>149.6</td>
<td>149.7</td>
</tr>
<tr>
<td>1'</td>
<td>34.8</td>
<td>34.7</td>
<td>34.7</td>
<td>34.5</td>
<td>34.5</td>
</tr>
<tr>
<td>2'</td>
<td>29.5</td>
<td>29.4</td>
<td>29.4</td>
<td>29.2</td>
<td>29.2</td>
</tr>
<tr>
<td>3'</td>
<td>27.8</td>
<td>27.8</td>
<td>27.8</td>
<td>27.6</td>
<td>27.6</td>
</tr>
<tr>
<td>4'</td>
<td>19.4</td>
<td>19.3</td>
<td>19.3</td>
<td>19.0</td>
<td>19.0</td>
</tr>
<tr>
<td>5'</td>
<td>30.5</td>
<td>30.5</td>
<td>30.5</td>
<td>30.3</td>
<td>30.3</td>
</tr>
<tr>
<td>6'</td>
<td>74.9</td>
<td>74.9</td>
<td>74.9</td>
<td>75.0</td>
<td>75.1</td>
</tr>
<tr>
<td>7'</td>
<td>33.2</td>
<td>33.2</td>
<td>33.2</td>
<td>33.6</td>
<td>33.6</td>
</tr>
<tr>
<td>8'</td>
<td>20.0</td>
<td>20.0</td>
<td>20.0</td>
<td>21.8</td>
<td>21.9</td>
</tr>
<tr>
<td>9'</td>
<td>43.3</td>
<td>43.3</td>
<td>43.3</td>
<td>38.8</td>
<td>38.9</td>
</tr>
<tr>
<td>10'</td>
<td>208.5</td>
<td>209.0</td>
<td>208.8</td>
<td>68.2</td>
<td>68.1</td>
</tr>
<tr>
<td>11'</td>
<td>30.1</td>
<td>30.2</td>
<td>30.2</td>
<td>23.4</td>
<td>23.5</td>
</tr>
<tr>
<td>12'</td>
<td>171.1</td>
<td>171.1</td>
<td>171.1</td>
<td>171.0</td>
<td>171.0</td>
</tr>
</tbody>
</table>

*The chemical shifts are in δ values (ppm)
\(^1\)H NMR spectrum of 9 (500 MHz, DMSO-\(d_6\))
13C NMR spectrum of 9 (125 MHz, DMSO-d_6)
1H NMR spectrum of 10 (300 MHz, CDCl$_3$)
13C NMR spectrum of 10 (125 MHz, CDCl$_3$)
1H NMR spectrum of 11 (300 MHz, CDCl$_3$)
13C NMR spectrum of 11 (125 MHz, CDCl$_3$)
\(^1\text{H} \text{NMR spectrum of 12 (400 MHz, CDCl}_3\text{)}\)
13C NMR spectrum of 12 (100 MHz, CDCl$_3$)
1H NMR spectrum of 5 (500 MHz, CDCl$_3$)
13C NMR spectrum of 5 (100 MHz, CDCl$_3$)
1H NMR spectrum of 13 (400 MHz, CDCl$_3$)
13C NMR spectrum of 13 (100 MHz, CDCl$_3$)
1H NMR spectrum of 14 (400 MHz, CDCl$_3$)
13C NMR spectrum of 14 (125 MHz, CDCl$_3$)
1H NMR spectrum of 15 (400 MHz, CDCl$_3$)
13C NMR spectrum of 15 (125 MHz, CDCl$_3$)
$\text{H NMR spectrum of 6 (400 MHz, CDCl}_3\text{)}$
13C NMR spectrum of 6 (125 MHz, CDCl$_3$)
1H NMR spectrum of 4 (400 MHz, CDCl$_3$)
13C NMR spectrum of 4 (100 MHz, CDCl$_3$)
1H NMR spectrum of 16 (500 MHz, CDCl$_3$)
$\text{\(^{13}\)C NMR spectrum of 16 (100 MHz, CDCl}_3\)$
1H NMR spectrum of 17 (400 MHz, CDCl$_3$)
13C NMR spectrum of 17 (100 MHz, CDCl$_3$)
\(^1\)H NMR spectrum of 1 (400 MHz, CDCl\(_3\))
13C NMR spectrum of 1 (100 MHz, CDCl$_3$)
DQFCOSY spectrum of 1 (CDCl₃, 295 K, 400 MHz)
NOESY spectrum of 1 (CDCl$_3$, 295 K, 400 MHz)
HMBC spectrum of 1 (CDCl₃, 295 K, 400 MHz)
1H NMR spectrum of 13a (400 MHz, CDCl$_3$)
13C NMR spectrum of 13a (100 MHz, CDCl$_3$)
1H NMR spectrum of 14a (500 MHz, CDCl$_3$)
13C NMR spectrum of 14a (125 MHz, CDCl$_3$)
1H NMR spectrum of 15a (500 MHz, CDCl$_3$)
13C NMR spectrum of 15a (125 MHz, CDCl$_3$)
1H NMR spectrum of 6a (400 MHz, CDCl$_3$)
13C NMR spectrum of 6a (100 MHz, CDCl$_3$)
1H NMR spectrum of 18 (400 MHz, CDCl$_3$)
13C NMR spectrum of 18 (100 MHz, CDCl$_3$)
1H NMR spectrum of 19 (500 MHz, CDCl$_3$)
1H NMR spectrum of 19 (100 MHz, CDCl$_3$)
1H NMR spectrum of 20 (500 MHz, CDCl$_3$)
13C NMR spectrum of 20 (100 MHz, CDCl$_3$)
1H NMR spectrum of 1a (500 MHz, CDCl$_3$)
13C NMR spectrum of 1a (125 MHz, CDCl$_3$)
1H NMR spectrum of 2 (400 MHz, CDCl$_3$)
13C NMR spectrum of 2 (100 MHz, CDCl$_3$)
1H NMR spectrum of 13b (400 MHz, CDCl$_3$)
13C NMR spectrum of 13b (100 MHz, CDCl$_3$)
1H NMR spectrum of 14b (400 MHz, CDCl$_3$)
13C NMR spectrum of 14b (100 MHz, CDCl$_3$)
\(^1\)H NMR spectrum of 15b (500 MHz, CDCl\(_3\))
13C NMR spectrum of 15b (100 MHz, CDCl$_3$)
1H NMR spectrum of 6b (400 MHz, CDCl$_3$)
13C NMR spectrum of 6b (100 MHz, CDCl$_3$)
LC-LCMS Chromatogram of 6b
LC-LCMS Chromatogram of 6b
1H NMR spectrum of 18a (500 MHz, CDCl$_3$)
1C NMR spectrum of 18a (100 MHz, CDCl$_3$)
1H NMR spectrum of 19a (500 MHz, CDCl$_3$)
13C NMR spectrum of 19a (100 MHz, CDCl$_3$)
1H NMR spectrum of 20a (500 MHz, CDCl$_3$)
13C NMR spectrum of 20a (100 MHz, CDCl$_3$)
1H NMR spectrum of 1b (400 MHz, CDCl$_3$)
13C NMR spectrum of 1b (400 MHz, CDCl$_3$)
DQFCOSY spectrum of 1b (CDCl$_3$, 295 K, 400 MHz)
NOESY spectrum of 1b (CDCl₃, 295 K, 400 MHz)
HMBC spectrum of 1b (CDCl₃, 295 K, 400 MHz)
HSQC spectrum of 1b (CDCl₃, 295 K, 400 MHz)
\(\text{\(^1\)H NMR spectrum of 2a (400 MHz, CDCl}_3\)\)
13C NMR spectrum of 2a (100 MHz, CDCl$_3$)
DQFCOSY spectrum of 2a (CDCl₃, 295 K, 400 MHz)
NOESY spectrum of 2a (CDCl₃, 295 K, 400 MHz)
HMBC spectrum of 2a (CDCl$_3$, 295 K, 400 MHz)
HSQC spectrum of 2a (CDCl$_3$, 295 K, 400 MHz)