Organic photoredox catalysis enabled cross-coupling of arenediazonium and sulfinate salts: synthesis of (un)symmetrical diaryl/alkyl aryl sulfones

Ruchi Chawla and Lal Dhar S. Yadav*
Green Synthesis Lab, Department of Chemistry, University of Allahabad, Allahabad 211002, India
Tel.: (+91)-532-2500652; fax: (+91)-532-2460533; e-mail: ldsyadav@hotmail.com

General Information: Reagents were obtained from commercial suppliers, and used without further purification unless otherwise specified by a reference. All reactions were performed under a nitrogen atmosphere. Organic solutions were concentrated using a Buchi rotary evaporator. Column chromatography was carried out over silica gel (Merck 100–200 mesh) and TLC was performed using silica gel GF254 (Merck) plates. 1H NMR spectra were recorded on a Bruker AVII 400 spectrometer in CDCl$_3$ using TMS as internal reference with chemical shift value being reported in ppm. All coupling constants (J) are reported in Hertz (Hz). 13C NMR spectra were recorded on the same instrument at 100 MHz in CDCl$_3$ and TMS was used as internal reference. Mass (EI) spectra were recorded on a JEOL D-300 mass spectrometer.

Typical procedure for VLPC enabled arylation of sulfinate salts
A solution of arenediazonium salt 1 (1.0 mmol), sulfinate salt 2 (1.3 mmol) and eosin Y (1 mol%) in CH$_3$CN/H$_2$O (10:1, 5 mL) was irradiated with visible-light (green light emitting diodes (LEDs), $\lambda_{\text{max}} = 535$ nm, 2.5 W) under a nitrogen atmosphere with stirring at rt for 8-18 h (Table 2 and 3). After completion of the reaction (monitored by TLC), water (5 mL) was added and the mixture was extracted with ethyl acetate (3 × 5 mL). The combined organic phase was dried over anhydrous Na$_2$SO$_4$, filtered, and concentrated under reduced pressure. The resulting crude product was purified by silica gel chromatography using a mixture of hexane/ethyl acetate (9:1) as eluent to afford an analytically pure sample of product 3/4.
Typical procedure for one-pot VLPC enabled sulfonylation of anilines
To solution containing 1.0 mmol of aniline derivative 5 and 1 mol% of eosin Y in CH$_3$CN/H$_2$O 10:1 (5 mL) was successively added 0.2 mmol of methanesulfonic acid, 1.5 mmol of tert-butyl nitrite and 1.3 mmol of sulfinate salt 2a under irradiation with visible-light (green light emitting diodes (LEDs), λ_{max} = 535 nm, 2.5 W) and nitrogen atmosphere with stirring at rt for 10-13 h (Table 4). After completion of the reaction (monitored by TLC), water (5 mL) was added and the mixture was extracted with ethyl acetate (3 × 5 mL). The combined organic phase was dried over anhydrous Na$_2$SO$_4$, filtered, and concentrated under reduced pressure. The resulting crude product was purified by silica gel chromatography using a mixture of hexane/ethyl acetate (9:1) as eluent to afford an analytically pure sample of product 3.

Light turn-ON/OFF experiment
The model reaction was alternatively irradiated with green LED (λ_{max} = 535 nm, 2.50 W) and kept in the dark in two-hour intervals. The yield was determined by flash chromatography. The result has been shown in Fig. 1.

![Light turn-ON/OFF experiment](image)

Fig. 1. Light turn-ON/OFF experiment.
Radical trapping experiment

1,1-Diphenylethylene (0.4 mmol, 2.0 equiv.) was added to the model reaction. The crude mixture of the reaction was detected by GC-MS. Products 3j, 7 and 8 were detected, as shown in Fig. 2 and Fig. 3.

![Diagram with chemical structures and GC traces]

Fig. 2. GC of products 3j, 7 and 8.
Fig. 3. MS (EI) of products 7 and 8.

Spectroscopic and analytical data for compounds 3

\[
\text{O} \quad \text{O} \\
\text{MeO} \\
\text{O} \quad \text{O} \\
\text{MeO}
\]

1-methyl-4-(phenylsulfonyl)benzene,1,3 3a, yield 85%

1H NMR (400 MHz, CDCl\textsubscript{3}) δ 7.99 – 7.86 (m, 2H), 7.80 (d, J = 8.3 Hz, 2H), 7.59 – 7.43 (m, 3H), 7.31 (d, J = 8.0 Hz, 2H), 2.39 (s, 3H). 13C NMR (100 MHz, CDCl\textsubscript{3}) δ 144.1, 142.0, 138.5, 132.9, 130.0, 129.1, 127.7, 127.5, 21.5. HRMS (EI); Mass calcd for C\textsubscript{13}H\textsubscript{12}O\textsubscript{2}S [M]+: 232.0558; found 232.0562.

\[
\text{O} \quad \text{O} \\
\text{MeO} \\
\text{O} \quad \text{O} \\
\text{MeO}
\]

1-methoxy-4-tosylbenzene,1,3,5 3b, yield 72%

1H NMR (400 MHz, CDCl\textsubscript{3}) δ 7.87 – 7.85 (d, J = 8.8 Hz, 2H), 7.80 – 7.78 (d, J = 8.2 Hz, 2H), 7.28 – 7.26 (d, J = 7.9 Hz, 2H), 6.96 – 6.94 (d, J = 8.8 Hz, 2H), 3.83 (s, 3H), 2.38 (s, 3H). 13C NMR (100 MHz, CDCl\textsubscript{3}) δ 163.2, 143.7, 139.3, 133.5, 129.7, 129.6, 127.3, 114.4, 55.6, 21.4. HRMS (EI); Mass calcd for C\textsubscript{14}H\textsubscript{14}O\textsubscript{3}S [M]+: 262.0664; found 262.0662.
1-methoxy-3-tosylbenzene, 1 3c, yield 74%

1H NMR (400 MHz, CDCl$_3$) δ 7.82 (d, J = 8.2 Hz, 2H), 7.50-7.28 (m, 5H), 7.04 (m, 1H), 3.82 (s, 3H), 2.39 (s, 3H). 13C NMR (100 MHz, CDCl$_3$): δ 159.9, 144.2, 143.0, 138.5, 130.3, 130.0, 127.7, 119.7, 119.3, 112.1, 55.6, 21.5. HRMS (EI); Mass calcd for C$_{14}$H$_{14}$O$_3$S [M]$^+$: 262.0664; found 262.0661.

1-methyl-4-tosylbenzene,1,5 3d, yield 75%

1H NMR (400 MHz, CDCl$_3$) δ 7.80 (d, J = 8.3 Hz, 4H), 7.25 (d, J = 8.3 Hz, 4H), 2.39 (s, 6H). 13C NMR (100 MHz, CDCl$_3$) δ 144.0, 139.0, 129.8, 127.5, 21.6. HRMS (EI); Mass calcd for C$_{14}$H$_{14}$O$_2$S [M]$^+$: 246.0715; found 246.0713.

4-tosylphenol,2 3e, yield 73%

1H NMR (400 MHz, CDCl$_3$) δ 7.77 (d, J = 8.2 Hz, 4H), 7.23 (d, J = 9.0 Hz, 2H), 6.85 (d, J = 8.4 Hz, 2H), 6.53 (s, 1H), 2.38 (s, 3H). 13C NMR (100 MHz, CDCl$_3$) δ 160.1, 143.9, 139.2, 133.1, 130.0, 129.8, 127.3, 116.2, 21.5. HRMS (EI); Mass calcd for C$_{13}$H$_{12}$O$_3$S [M]$^+$: 248.0507; found 248.0508.

1-Fluoro-4-tosylbenzene,4,5 3f, yield 91%

1H NMR (400 MHz, CDCl$_3$) δ 7.99 – 7.93 (m, 2H), 7.82 – 7.79 (m, 2H), 7.31 – 7.29 (m, 2H), 7.21 – 7.14 (m, 2H), 2.38 (s, 3H). 13C NMR (100 MHz, CDCl$_3$) δ 165.2 (d, J_{CF} = 255.5 Hz), 144.3,
138.6, 138.0, 130.2 (d, \(J_{CF} = 9.4 \) Hz), 130.0, 127.7, 116.4 (d, \(J_{CF} = 22.6 \) Hz), 21.6. HRMS (EI); Mass calcd for \(\text{C}_{13}\text{H}_{11}\text{FO}_2\text{S} \) [M]+: 250.0464; found 250.0469.

![Structure](image)

1-(4-chlorophenylsulfonyl)-4-methylbenzene,\(^1\) \(^2\) 3g, yield 88%

\(^1\text{H NMR}\) (400 MHz, CDCl\(_3\)) \(\delta \) 7.85 (d, \(J = 8.5 \) Hz, 2H), 7.79 (d, \(J = 8.1 \) Hz, 2H), 7.41 (d, \(J = 8.5 \) Hz, 2H), 7.29 (d, \(J = 8.0 \) Hz, 2H), 2.39 (s, 3H). \(^{13}\text{C NMR}\) (100 MHz, CDCl\(_3\)) \(\delta \) 144.5, 140.4, 139.6, 138.1, 130.2, 129.5, 128.9, 127.7, 21.6. HRMS (EI); Mass calcd for \(\text{C}_{13}\text{H}_{11}\text{ClO}_2\text{S} \) [M]+: 266.0168; found 266.0170.

![Structure](image)

1-(3-chlorophenylsulfonyl)-4-methylbenzene,\(^1\) 3h, yield 86%

\(^1\text{H NMR}\) (400 MHz, CDCl\(_3\)) \(\delta \) 7.91-7.80 (m, 2H), 7.43-7.29 (m, 6H), 2.39 (s, 3H). \(^{13}\text{C NMR}\) (100 MHz, CDCl\(_3\)) \(\delta \) 144.7, 143.6, 137.8, 135.4, 133.2, 130.6, 130.2, 127.8, 127.5, 125.4, 21.6. HRMS (EI); Mass calcd for \(\text{C}_{13}\text{H}_{11}\text{ClO}_2\text{S} \) [M]+: 266.0168; found 266.0171.

![Structure](image)

1-Methyl-4-((4-nitrophenyl)sulfonyl)benzene,\(^3\) 3i, yield 94%

\(^1\text{H NMR}\) (400 MHz, CDCl\(_3\)) \(\delta \) 8.35 (d, \(J = 8.7 \) Hz, 2H), 8.12 (d, \(J = 8.7 \) Hz, 2H), 7.85 (d, \(J = 8.3 \) Hz, 2H), 7.34 (d, \(J = 8.1 \) Hz, 2H), 2.43 (s, 3H). \(^{13}\text{C NMR}\) (100 MHz, CDCl\(_3\)) \(\delta \) 150.2, 147.8, 145.5, 137.0, 130.3, 128.7, 128.1, 124.3, 21.6. HRMS (EI); Mass calcd for \(\text{C}_{13}\text{H}_{11}\text{NO}_4\text{S} \) [M]+: 277.0409; found 277.0406.

![Structure](image)

4-tosylbenzonitrile,\(^2\) \(^5\) 3j, yield 93%
\[\text{\textit{H} NMR (400 MHz, CDCl}_3) \ \delta \ 8.04 \ (d, J = 8.4 \text{ Hz}, 2H), \ 7.83 \ (d, J = 8.2 \text{ Hz}, 2H), \ 7.78 \ (d, J = 8.3 \text{ Hz}, 2H), \ 7.33 \ (d, J = 8.1 \text{ Hz}, 2H), \ 2.43 \ (s, 3H). \]

\[\text{\textit{C} NMR (100 MHz, CDCl}_3) \ \delta \ 146.2, 145.2, 137.2, 133.0, 130.3, 128.2, 128.0, 117.2, 116.7, 21.6. \]

HRMS (EI); Mass calcd for C\textsubscript{14}H\textsubscript{11}NO\textsubscript{2}S [M]^+: 257.0510; found 257.0513.

\[\text{3-tosylbenzonitrile,}^{2,5} \text{ 3k, yield 87\%} \]

\[\text{\textit{H} NMR (400 MHz, CDCl}_3) \ \delta \ 8.23–8.08 \ (m, 2H), \ 7.88–7.76 \ (m, 3H), \ 7.65 \ (t, J = 7.9 \text{ Hz}, 1H), \ 7.33 \ (d, J = 8.0 \text{ Hz}, 2H), \ 2.41 \ (s, 3H). \]

\[\text{\textit{C} NMR (100 MHz, CDCl}_3) \ \delta \ 145.2, 143.9, 137.1, 136.0, 131.3, 131.2, 130.3, 128.0, 117.0, 113.8, 21.6. \]

HRMS (EI); Mass calcd for C\textsubscript{14}H\textsubscript{11}NO\textsubscript{2}S [M]^+: 257.0510; found 257.0512.

\[\text{2-Tosylbenzonitrile,} \text{ 3l, yield 88\%} \]

\[\text{\textit{H} NMR (400 MHz, CDCl}_3) \ \delta \ 8.35–8.27 \ (m, 1H), \ 7.97 \ (d, J = 8.2 \text{ Hz}, 2H), \ 7.86–7.77 \ (m, 2H), \ 7.72–7.62 \ (m, 1H), \ 7.33 \ (d, J = 8.1 \text{ Hz}, 2H), \ 2.43 \ (s, 3H). \]

\[\text{\textit{C} NMR (100 MHz, CDCl}_3) \ \delta \ 145.3, 144.1, 136.5, 135.6, 133.2, 133.0, 130.1, 129.6, 128.7, 115.6, 111.2, 21.6. \]

HRMS (EI); Mass calcd for C\textsubscript{14}H\textsubscript{11}NO\textsubscript{2}S [M]^+: 257.0510; found 257.0509.

\[\text{2-tosynaphthalene,} \text{ 3m, yield 78\%} \]

\[\text{\textit{H} NMR (400 MHz, CDCl}_3) \ \delta \ 8.58 \ (s, 1H), \ 8.01 – 7.79 \ (m, 6H), \ 7.67 – 7.53 \ (m, 2H), \ 7.29 \ (d, J = 8.4 \text{ Hz}, 2H), \ 2.37 \ (s, 3H). \]

\[\text{\textit{C} NMR (100 MHz, CDCl}_3) \ \delta \ 144.1, 138.8, 138.7, 134.9, 129.8, 129.6, 129.4, 129.1, 128.8, 127.9, 127.7, 127.5, 122.5, 21.5. \]

HRMS (EI); Mass calcd for C\textsubscript{17}H\textsubscript{14}O\textsubscript{2}S [M]^+: 282.0715; found 282.0718.
1,2-dichloro-4-tosylbenzene, \(^1\) 3n, yield 92%

\(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 8.01 - 7.74 (m, 3H), 7.57 - 7.53 (d, \(J = 8.8\) Hz, 2H), 7.32 - 7.29 (d, \(J = 7.6\) Hz, 2H), 2.40 (s, 3H). \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 144.9, 141.8, 138.0, 137.6, 131.4, 130.9, 130.1, 129.4, 128.6, 127.8, 21.5. \(\text{HRMS (EI)}\); Mass calcd for C\(_{13}\)H\(_{10}\)Cl\(_2\)O\(_2\)S [M]\(^+\): 299.9779; found 299.9776.

1,3-dichloro-5-tosylbenzene, \(^1\) 3o, yield 91%

\(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.79 - 7.75 (m, 3H), 7.49 - 7.30 (m, 4H), 2.41 (s, 3H). \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 145.2, 144.8, 137.1, 136.2, 133.0, 130.3, 128.0, 125.8, 21.6. \(\text{HRMS (EI)}\); Mass calcd for C\(_{13}\)H\(_{10}\)Cl\(_2\)O\(_2\)S [M]\(^+\): 299.9779; found 299.9777.

Sulfonyldibenzene, \(^3,4\) 4a, yield 92%

\(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.98 - 7.93 (m, 2H), 7.59 - 7.56 (m, 2H), 7.53 - 7.45 (m, 4H). \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 141.7, 133.2, 129.4, 127.7. \(\text{HRMS (EI)}\); Mass calcd for C\(_{12}\)H\(_{10}\)O\(_2\)S [M]\(^+\): 218.0402; found 218.0401.

1-Methoxy-4-(phenylsulfonyl)benzene, \(^3,4\) 4b, yield 88%

\(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.93 - 7.90 (m, 2H), 7.89 - 7.86 (m, 2H), 7.58 - 7.43 (m, 3H), 6.98 - 6.95 (m, 2H), 3.84 (s, 3H). \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 164.4, 142.4, 133.3, 133.0, 130.1,
129.2, 127.3, 114.6, 55.7. HRMS (EI); Mass calcd for C_{13}H_{12}O_{3}S [M]^+: 248.0507; found 248.0509.

![Structure](image)

1-Fluoro-4-(phenylsulfonyl)benzene,3,4 4c, yield 95%

1H NMR (400 MHz, CDCl\textsubscript{3}) \(\delta\) 8.00 – 7.91 (m, 4H), 7.61 – 7.54 (m, 1H), 7.55 – 7.50 (m, 2H), 7.21 – 7.14 (m, 2H). 13C NMR (100 MHz, CDCl\textsubscript{3}) \(\delta\) 165.4 (d, \(J_{CF} = 256.0\) Hz), 141.6, 137.8, 133.4, 130.5 (d, \(J_{CF} = 9.6\) Hz), 129.3, 127.6, 116.7 (d, \(J_{CF} = 23.2\) Hz). HRMS (EI); Mass calcd for C_{12}H_{9}FO_{2}S [M]^+: 236.0307; found 236.0305.

![Structure](image)

4-(phenylsulfonyl)benzonitrile,3 4d, yield 93%

1H NMR (400 MHz, CDCl\textsubscript{3}) \(\delta\) 8.07 – 8.00 (m, 2H), 7.97 – 7.91 (m, 2H), 7.83 – 7.76 (m, 2H), 7.65 – 7.50 (m, 3H). 13C NMR (100 MHz, CDCl\textsubscript{3}) \(\delta\) 146.0, 140.3, 134.1, 133.2, 129.8, 128.4, 128.1, 117.3, 117.0. HRMS (EI); Mass calcd for C_{13}H_{9}NO_{2}S [M]^+: 243.0354; found 243.0355.

![Structure](image)

1-(4-methoxyphenylsulfonyl)-4-methoxybenzene,3 4e, yield 78%

1H NMR (400 MHz, CDCl\textsubscript{3}) \(\delta\) 7.89 – 7.79 (m, 4H), 7.03 – 6.92 (m, 4H), 3.85 (s, 6H). 13C NMR (100 MHz, CDCl\textsubscript{3}) \(\delta\) 163.3, 134.2, 129.7, 114.7, 55.7. HRMS (EI); Mass calcd for C_{14}H_{14}O_{4}S [M]^+: 278.0613; found 278.0615.
1-Fluoro-4-((4-methoxyphenyl)sulfonyl)benzene,\(^4\) 4f, yield 84%

\(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta \) 7.96 – 7.91 (m, 2H), 7.88 – 7.83 (m, 2H), 7.17 – 7.12 (m, 2H), 7.00 – 6.93 (m, 2H), 3.84 (s, 3H). \(^13\)C NMR (100 MHz, CDCl\(_3\)) \(\delta \) 165.2 (d, \(J_{CF} = 255.4 \) Hz), 163.4, 138.5 (d, \(J_{CF} = 3.2 \) Hz), 132.9, 130.1 (d, \(J_{CF} = 9.5 \) Hz), 129.9, 116.4 (d, \(J_{CF} = 22.8 \) Hz), 114.7, 55.7. HRMS (EI); Mass calcd for C\(_{13}\)H\(_{11}\)FO\(_3\)S [M\(^+\)]: 266.0413; found 266.0411.

\[\text{MeO} \quad \text{SO}_2 \quad \text{Cl} \]

1-Chloro-4-((4-methoxyphenyl)sulfonyl)benzene,\(^4\) 4g, yield 80%

\(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta \) 7.88 – 7.83 (m, 4H), 7.45 – 7.41 (m, 2H), 6.98 – 6.93 (m, 2H), 3.83 (s, 3H). \(^13\)C NMR (100 MHz, CDCl\(_3\)) \(\delta \) 163.5, 141.0, 139.3, 132.6, 129.9, 129.4, 128.6, 114.7, 55.5. HRMS (EI); Mass calcd for C\(_{13}\)H\(_{11}\)ClO\(_3\)S [M\(^+\)]: 282.0117; found 282.0118.

\[\text{MeO} \quad \text{SO}_2 \]

1-methoxy-4-(methylsulfonyl)benzene,\(^3\) 4h, yield 48%

\(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta \) 7.92–7.81 (m, 2H), 7.07–6.95 (m, 2H), 3.90 (s, 3H), 3.05 (s, 3H). \(^13\)C NMR (100 MHz, CDCl\(_3\)) \(\delta \) 163.9, 132.4, 129.5, 114.6, 55.8, 45.1. HRMS (EI); Mass calcd for C\(_8\)H\(_7\)NO\(_2\)S [M\(^+\)]: 186.0351; found 186.0349.

\[\text{NC} \quad \text{SO}_2 \]

4-(Methylsulfonyl)benzonitrile,\(^5\) 4i, yield 60%

\(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta \) 8.08 (d, \(J = 8.5 \) Hz, 2H), 7.92 (d, \(J = 8.5 \) Hz, 2H), 3.08 (s, 3H). \(^13\)C NMR (100 MHz, CDCl\(_3\)) \(\delta \) 144.5, 133.2, 128.3, 117.6, 117.1, 44.1. HRMS (EI); Mass calcd for C\(_8\)H\(_7\)NO\(_2\)S [M\(^+\)]: 181.0192; found 181.0194.
4-(Ethylsulfonyl)benzonitrile,5 4j, yield 62%

1H NMR (400 MHz, CDCl\textsubscript{3}) \(\delta \) 8.03 (d, \(J = 8.4 \) Hz, 2H), 7.90 (d, \(J = 8.4 \) Hz, 2H), 3.13 (q, \(J = 7.2 \) Hz, 2H), 1.32 (t, \(J = 7.2 \) Hz, 3H). 13C NMR (100 MHz, CDCl\textsubscript{3}) \(\delta \) 142.7, 133.1, 129.1, 117.5, 117.0, 50.5, 7.2. HRMS (EI); Mass calcd for C\textsubscript{9}H\textsubscript{9}NO\textsubscript{2}S [M]+: 195.0349; found 195.0347.

4-(Cyclopropylsulfonyl)benzonitrile,5 4k, yield 58%

1H NMR (400 MHz, CDCl\textsubscript{3}) \(\delta \) 8.01 (d, \(J = 8.3 \) Hz, 2H), 7.87 (d, \(J = 8.3 \) Hz, 2H), 2.44–2.55 (m, 1H), 1.50–1.37 (m, 2H), 1.19–1.07 (m, 2H). 13C NMR (100 MHz, CDCl\textsubscript{3}) \(\delta \) 144.8, 132.9, 128.3, 117.1, 116.1, 32.6, 6.4. HRMS (EI); Mass calcd for C\textsubscript{10}H\textsubscript{9}NO\textsubscript{2}S [M]+: 207.0349; found: 207.0351.

References

\textit{Copies of 1H and 13C-NMR spectra of compounds 3a-o ad 4a-k.}
13C-NMR Spectrum

1H-NMR Spectrum
\[^1H\text{-NMR Spectrum} \]

\[^{13}C\text{-NMR Spectrum} \]
H-NMR Spectrum

C-NMR Spectrum
1H-NMR Spectrum

13C-NMR Spectrum
^{1}H-NMR Spectrum

13C-NMR Spectrum
^{1}H-NMR Spectrum

^{13}C-NMR Spectrum
^{1}H-NMR Spectrum

^{13}C-NMR Spectrum
1H-NMR Spectrum

13C-NMR Spectrum
1H-NMR Spectrum

13C-NMR Spectrum
^{1}H-NMR Spectrum

^{13}C-NMR Spectrum
1H-NMR Spectrum
13C-NMR Spectrum

^{1}H-NMR Spectrum
H-NMR Spectrum

13C-NMR Spectrum
1H-NMR Spectrum

13C-NMR Spectrum
1H-NMR Spectrum

13C-NMR Spectrum
1H-NMR Spectrum

13C-NMR Spectrum
^{1}H-NMR Spectrum

^{13}C-NMR Spectrum
^{1}H-NMR Spectrum

^{13}C-NMR Spectrum
1H-NMR Spectrum

13C-NMR Spectrum