Supporting Information

Functionalised Bicyclic Tetramates Derived from Cysteine as Antibacterial Agents

Tharindi D. Panduwawala,[†] Sarosh Iqbal, ^{†#} Amber L. Thompson, [†] Miro Genov,[‡] Alexander Pretsch,[‡] Dagmar Pretsch,[‡] Shuang Liu,[§] Richard H. Ebright,[§] Alison Howells,[¥] Anthony Maxwell& and Mark G. Moloney^{*},[†]

[†]Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, UK.

[‡]Oxford Antibiotic Group, The Oxford Science Park, Magdalen Centre, Oxford OX4 4GA, UK. [§]Waksman Institute and Department of Chemistry, Rutgers University, Piscataway, NJ 08854, USA.

[&] Dept. Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK.
[¥]Inspiralis Limited, Innovation Centre, Norwich Research Park, Colney Lane, Norwich NR4 7GJ, UK.

e-mail: mark.moloney@chem.ox.ac.uk

Contents	PAGE
Experimental Procedures	S-3
Table 1 (SI)	S-62
Table 2 (SI)	S-63
Biological and Biochemical Assays	S-64
Table 3 (SI)	S-65
Table 4 (SI)	S-66
Table 5 (SI)	S-67
Table 6 (SI)	S-68
Table 7 (SI)	S-69
Table 8 (SI)	S-69
Table 9 (SI)	S-70
Table 10 (SI)	S-71
Table 11 (SI)	S-75
Table 12 (SI)	S-76
¹ H and ¹³ C Spectra	S-80
References	S-250

General procedure: Esterification of L-serine and DL-cysteine¹

To a suspension of the amino acid (1.0 eq) in MeOH (2 mL/mmol) at 0° C, SOCl₂ (1.2 eq) was added drop-wise under continuous stirring and warmed to rt, then heated at reflux for 1-3 h. The reaction mixture was concentrated *in vacuo* to obtain the respective amino ester.

General procedure: Synthesis of *N*-acylated thiazolidines 6,7a-g¹

Step 1: To L-cysteine methyl ester hydrochloride (1.0 eq) in petrol (25 mL/1 g), Et₃N (1.2 eq) and aldehyde (1.2 eq) were added. The mixture was heated at reflux, with continuous removal of water using a Dean-Stark apparatus, for 19 h. It was then filtered and washed with Et₂O. The combined filtrates were concentrated *in vacuo* and residue was purified by silica gel flash column chromatography (eluent: EtOAc/petrol) to give the required thiazolidines as an inseparable mixture of diastereomers.

Step 2: A solution of ethyl hydrogen malonate (1.2 eq) in CH_2Cl_2 (2.5 mL/mmol) was added to a stirred solution of thiazolidine from step 1(1.0 eq), DCC (1.2 eq) and DMAP (0.1 eq) in CH_2Cl_2 (5 mL/mmol) at 0°C. The mixture was stirred at 0°C for 15 min and then at rt for 15 h. The reaction mixture was filtered to remove dicyclohexylurea and the residue was washed with CH_2Cl_2 . The combined filtrates were concentrated *in vacuo* and purified by silica gel flash column chromatography (eluent: EtOAc/petrol) to give *N*-acylated thiazolidines **6,7a-g**.

General procedure: Synthesis of bicyclic tetramates 8a-g¹

KO'Bu (1.2 eq) was added to a solution of the *N*-acylated thiazolidine in THF and heated at reflux for 3 h. It was then cooled to rt, concentrated *in vacuo* and partitioned between Et₂O and water. The aqueous layer was extracted and acidified with 2M HCl (to pH 1) and extracted with EtOAc. The combined EtOAc extracts were washed with brine, dried over Na₂SO₄, filtered and concentrated *in vacuo*. The residue was purified by flash column chromatography (with 1% Et₃N) to give the desired product. The product was then dissolved in CH₂Cl₂ and washed with 5% citric acid. The organic fractions were dried over Na₂SO₄, filtered and concentrated *in vacuo* to yield the desired bicyclic tetramates **9a-g**.

General procedure: Synthesis of carboxamide tetramates 9a-g'

To tetramic acid (1.0 eq) dissolved in THF/toluene or DMSO/toluene (1:9, 10 mL/mmol), amine (1.5 eq) was added. The solution was heated at reflux for 16 h, cooled to rt and concentrated *in vacuo*. The residue was purified by silica gel flash column chromatography (eluent: EtOAc/MeOH/1 % Et₃N). The product was dissolved in CH₂Cl₂ and washed with 5% citric acid. The organic fractions were dried over Na₂SO₄, filtered and concentrated *in vacuo* to yield the

bicyclic carboxamide tetramate. Where the major and minor tautomeric forms have distinct chemical shift values, they have been specified as either AB (major tautomeric form) or CD (minor tautomeric form) in compound characterisation.

(-)-(2*S*,5*R*)-*N*-(Adamantan-1-yl)-2-phenyl-6-hydroxy-8-oxo-5,8-dihydro-1*H*,3*H*-pyrrolo[1,2*c*]thiazole-7-carboxamide 9a

Yield (0.19 g, 38 %); yellow solid, mp 94-96 °C; 2.7:1 AB:CD tautomers; $R_f = 0.78$ (EtOAc/MeOH 20:1); $[\alpha]_D^{25} = -132.0$ (c = 0.20, CHCl₃); v_{max}/cm^{-1} (neat) 1623 (C=C), 1649 (C=O), 1691 (C=O), 3313 (N-H/O-H); δ_H (400 MHz, CDCl₃): 1.60 (6H, Adamantyl-CH₂), 1.95 (6H, Adamantyl-CH₂), 2.04 (3H, Adamantyl-CH), 2.84 -

2.98 (1H, m, H4_A), 3.10 - 3.20 (1H, m, H4_B), 4.35 (1H, app t, J = 7.8 Hz, H5 CD), 4.58 (1H, app t, J = 7.7 Hz, H5 AB), 6.17 (1H, s, H2 AB), 6.26 (1H, s, H2 CD), 7.15 - 7.21 (1H, m, H4'), 7.22 - 7.29 (2H, m, H3'), 7.31 - 7.41 (2H, m, H2'), 7.85 (1H, br. s., NH/OH CD), 12.19 (1H, br. s., NH/OH AB); δ_{C} (100.6 MHz, CDCl₃): 29.2 (Adamantyl-CH), 32.4 (C4 AB), 32.6 (C4 CD), 35.7 (Adamantyl-CH₂ CD), 35.9 (Adamantyl-CH₂ AB), 41.4 (Adamantyl-CH₂), 52.9 (Adamantyl-C AB), 54.3 (Adamantyl-C CD), 61.9 (C2 AB), 62.4 (C2 CD), 67.2 (C5 AB), 70.5 (C5 CD), 85.3 (C7 CD), 94.9 (C7 AB), 126.1 (C2' CD), 126.2 (C2' AB), 127.8 (C4' CD), 127.9 (C4' AB), 128.4 (C3' CD), 128.5 (C3' AB), 140.2 (C1' AB), 140.5 (C1' CD), 165.8 (C9 AB), 166.4 (C9 CD), 172.2 (C8 AB), 178.0 (C8 CD), 187.8 (C6 AB), 191.1 (C6 CD); *m*/*z* (ESI⁻) 409 ([M-H]⁻, 100%); HRMS (ESI⁻); C₂₃H₂₅N₂O₃S [M-H]⁻; found 409.1574, requires 409.1591.

(-)-(2*S*,5*R*)-*N*-(Adamantan-1-yl)-2-(4-bromophenyl)-6-hydroxy-8-oxo-5,8-dihydro-1*H*,3*H*-pyrrolo[1,2-*c*]thiazole-7-carboxamide 9b

Yield (2.80 g, 70 %); brown foam, 2.6:1 AB:CD tautomers, mp 108-110 °C; $R_f = 0.72$ (EtOAc/MeOH 9:1); $[\alpha]_D^{25} = -159.5$ (c = 0.25, CHCl₃); v_{max} /cm⁻¹ (neat) 1625 (C=C), 1648 (C=O), 1688 (C=O), 3317 (O-H/N-H); δ_H (400 MHz, CDCl₃): 1.69 (6H, Adamantyl-CH₂), 2.05 (6H, Adamantyl-CH₂), 2.11 (3H, Adamantyl-CH), 2.96 -3.06 (1H, m, H4_A), 3.20 - 3.27 (1H, m, H4_B), 4.39 (1H, app t, J =

7.8 Hz, H5 CD), 4.63 (1H, app t, J = 7.7 Hz, H5 AB), 6.18 (1H, s, H2 AB), 6.27 (1H, s, H2 CD), 7.31- 7.36 (2H, m, Ar-CH), 7.40 (1H, br. s., NH AB), 7.46 (2H, d, J = 8.3 Hz, Ar-CH), 7.94 (1H, br. s., NH CD), 10.78 (1H, br. s., OH); $\delta_{\rm C}$ (100.6 MHz, CDCl₃): 29.2 (Adamantyl-CH), 32.5 (C4 AB), 32.8 (C4 CD), 35.8 (Adamantyl-CH₂ CD), 36.0 (Adamantyl-CH₂ AB), 41.5 (Adamantyl-CH₂ AB), 41.5 (Adamantyl-CH₂ CD), 53.1 (Adamantyl-C AB), 54.5 (Adamantyl-C CD), 61.5 (C2 AB), 62.1 (C2 CD), 67.3 (C5 AB), 70.5 (C5 CD), 85.3 (C7 CD), 94.5 (C7 AB), 121.9 (C4' CD), 122.0 (C4' AB), 128.1 (C2' CD), 128.2 (C2' AB), 131.57 (C3' CD), 131.62 (C3' AB), 139.4 (C1' AB), 139.6 (C1' CD), 165.9 (C9 AB), 166.4 (C9 CD), 172.4 (C8 AB), 178.2 (C8 CD), 188.4 (C6 AB), 191.1 (C6 CD); *m/z* (ESI⁻) 487, 489 ([M-H]⁻, 100 %); HRMS (ESI⁻); C₂₃H₂₄N₂O₃BrS [M-H]⁻; found 487.07009 and 489.06794, requires 487.06965 and 489.06760.

(-)-(2*S*,5*R*)-*N*-(Adamantan-1-yl)-2-(3-bromophenyl)-6-hydroxy-8-oxo-5,8-dihydro-1*H*,3*H*pyrrolo[1,2-*c*]thiazole-7-carboxamide 9c

Yield (38%); $R_f = 0.71$ (EtOAc), $[\alpha]_D^{25} = -166.0$ (*c* 0.15, MeOH), δ_H (400 MHz, CD₂Cl₂): 1.60 (s, 6H, 2xC2",6",10" major and minor), 1.96 (s, 6H, 2xC4",7",9" major and minor), 2.00 (s, 3H, C3",5",8" major and minor), 2.88 (dd, 1H J_1 12.0 Hz, J_2 8.0 Hz, H4 major and minor), 3.12 (dd, 1H 12.0 Hz, J_2 8.0 Hz, H4a major

and minor), 4.56 (t, 1H, *J* 8.0 Hz, H5 minor), 4.56 (t, 1H, *J* 8.0 Hz, H5 major), 6.09 (s, 1H, H2 major), 6.18 (s, 1H, H2 minor), 7.12 (t, 1H, *J* 8.0 Hz, H5' major and minor), 7.28 (d, 1H, *J* 8.0 Hz, H4' major and minor), 7.32 (d, 1H, *J* 8.0 Hz, H6' major and minor), 7.52 (s, 1H, H2' major), 7.85 (s, 1H, H2' minor), 11.18 (s, 1H, N<u>H</u>), $\delta_{\rm C}$ (100.6 MHz, CD₂Cl₂): 29.50 (C3",5",8" major and minor), 32.62 (C4 major), 32.93 (C4 minor), 35.84 (2xC2",6",10" minor), 36.07 (2xC2",6",10" major), 41.54 (2xC4",7",9" major and minor), 61.34 (C2 major), 62.16 (C2 minor), 67.34 (C5 major), 70.74 (C5 minor), 95.08 (C7 major and minor), 122.54 (C3' major and minor), 125.21 (C6' major and minor), 129.32 (C2' major and minor), 130.22 (C5' major and minor), 131.03 (C4' major and minor), 143.21 (C1' major), 143.45 (C1' minor), 165.98 (C9 major), 166.13 (C9 minor), 170.84 (C8 minor), 172.38 (C8 major), 188.08 (C6 major), 190.98 (C6 minor), *m/z* (ESI⁻) 487 ([M-H]⁻, 100%); HRMS (ESI⁻); calculated for C₂₃H₂₄BrN₂O₃S; 487.0696; found; 487.0707.

(-)-(2*S*,5*R*)-*N*-(Adamantan-1-yl)-2-(4-fluorophenyl)--6-hydroxy-8-oxo-5,8-dihydro-1*H*,3*H*-pyrrolo[1,2-*c*]thiazole-7-carboxamide 9d

Yield (0.19 g, 56 %); brown oil; 2.7:1 AB:CD tautomers; $R_f = 0.76$ (EtOAc/MeOH 20:1); $[\alpha]_D^{25} = -177.5$, (c = 0.20, CHCl₃); v_{max}/cm^{-1} (neat) 1229 (C-F), 1625 (C=C), 1649 (C=O), 1690 (C=O), 3313 (N-H/O-H); δ_H (400 MHz, CDCl₃): 1.70 (6H, Adamantyl-CH₂), 2.05 ^{3'} (6H, Adamantyl-CH₂), 2.12 (3H, Adamantyl-CH), 2.96 - 3.05 (1H, m, H4_A), 3.26 (1H, dd, J = 11.3, 7.1 Hz, H4_B), 4.42 (1H, app t, J =

7.6 Hz, H5 CD), 4.66 (1H, app t, *J* = 7.8 Hz, H5 AB), 6.22 (1H, s, H2 AB), 6.31 (1H, s, H2 CD), 7.04 (2H, app t, *J* = 7.8 Hz, H3'), 7.38 - 7.51 (2H, m, H2'), 7.95 (1H, br. s., NH/OH CD), 11.34 (1H,

br. s., NH/OH AB); δ_{C} (100.6 MHz, CDCl₃): 29.2 (Adamantyl-CH), 32.5 (C4 AB), 32.8 (C4 CD), 35.8 (Adamantyl-CH₂ CD), 36.0 (Adamantyl-CH₂ AB), 41.50 (Adamantyl-CH₂ AB), 41.54 (Adamantyl-CH₂ CD), 53.1 (Adamantyl-C AB), 54.5 (Adamantyl-C CD), 61.5 (C2 AB), 62.0 (C2 CD), 67.4 (C5 AB), 70.5 (C5 CD), 94.7 (C7), 115.38 (d, J = 21.5 Hz, C3' CD), 115.43 (d, J = 21.5 Hz, C3' AB), 128.1 (d, J = 8.0 Hz, C2' CD), 128.2 (d, J = 8.0 Hz, C2' AB), 136.1 (d, J = 3.2 Hz, C1' AB), 136.3 (d, J = 3.2 Hz, C1' CD), 162.3 (d, J = 246.4 Hz, C4' CD), 162.4 (d, J = 247.2 Hz, C4' AB), 166.0 (C9 AB), 166.5 (C9 CD), 172.4 (C8 AB), 178.1 (C8 CD), 188.3 (C6 AB), 191.1 (C6 CD); m/z (ESI⁻) 427 ([M-H]⁻, 100%); HRMS (ESI⁻); C₂₃H₂₄FN₂O₃S [M-H]⁻; found 427.1502, requires 427.1497.

(-)-(2*S*,5*R*)-*N*-(Adamantan-1-yl)-2-(4-nitrophenyl)--6-hydroxy-8-oxo-5,8-dihydro-1*H*,3*H*-pyrrolo[1,2-*c*]thiazole-7-carboxamide 9e

Yield (0.53 g, 35 %); brown oil; 2.4:1 AB:CD tautomers; $R_f = 0.76$ (EtOAc/MeOH 20:1); $[\alpha]_D^{25} = -93.8$, (c = 0.50, CHCl₃); v_{max}/cm^{-1} (neat) 1347 (sym ArNO₂), 1522 (asym ArNO₂), 1643 (C=O, br with shoulder towards lower wavenumber), 1682 (C=O), 3333 (N-H/O-H); δ_H (400 MHz, CDCl₃): 1.68 (6H, Adamantyl-CH₂), 2.00 - 2.08 NO₂ (6H, m, Adamantyl-CH₂), 2.08 - 2.16 (3H, m, Adamantyl-CH), 2.99

- 3.09 (1H, m, H4_A), 3.21 - 3.30 (1H, m, H4_B), 4.40 (1H, app t, *J* = 7.8 Hz, H5 CD), 4.64 (1H, app t, *J* = 7.3 Hz, H5 AB), 6.27 (1H, s, H2 AB), 6.36 (1H, s, H2 CD), 7.55 - 7.65 (2H, m, H2'), 8.15 - 8.21 (2H, m, H3'), 7.38 (1H, br. s., NH AB), 7.97 (1H, br. s., NH CD), 10.82 (1H, br. s., OH); δc (100.6 MHz, CDCl₃): 29.2 (Adamantyl-CH), 32.7 (C4 AB), 32.9 (C4 CD), 35.7 (Adamantyl-CH₂ CD), 35.9 (Adamantyl-CH₂ AB), 41.4 (Adamantyl-CH₂ AB), 41.5 (Adamantyl-CH₂ CD), 53.3 (Adamantyl-C AB), 54.6 (Adamantyl-C CD), 61.3 (C2 AB), 61.8 (C2 CD), 67.6 (C5 AB), 70.6 (C5 CD), 85.1 (C7 CD), 93.7 (C7 AB), 123.77 (C3' CD), 123.79 (C3' AB), 127.2 (C2' CD), 127.3 (C2' AB), 147.4 (C1' CD), 147.5 (C1' AB), 147.6 (C4' AB), 147.8 (C4' CD), 166.0 (C9 AB), 166.4 (C9 CD), 172.6 (C8 AB), 178.3 (C8 CD), 189.1 (C6 AB), 190.8 (C6 CD); *m/z* (ESI⁻) 454 ([M-H]⁻, 12%); HRMS (ESI⁻); C₂₃H₂₄N₃O₅S [M-H]⁻; found 454.1438, requires 454.1442.

(-)-(2*S*,5*R*)-*N*-(Adamantan-1-yl)-2-(2-chloro-4-fluorophenyl)--6-hydroxy-8-oxo-5,8-dihydro-1*H*,3*H*-pyrrolo[1,2-*c*]thiazole-7-carboxamide 9f

Yield (0.15 g, 60 %); yellow solid, mp 120°C; 2.5:1 AB:CD tautomers; $R_f = 0.78$ (EtOAc/MeOH 20:1); $[\alpha]_D^{25} = -147.5$, ($c = 2^{\circ}$, Cl 0.20, CHCl₃); v_{max} /cm⁻¹ (neat) 1234 (C-F), 1626 (C=C), 1649 (C=O), 1692 (s, C=O), 3318 (N-H/O-H); δ_H (400 MHz, CDCl₃):

1.63 - 1.75 (6H, Adamantyl-CH₂), 2.00 - 2.09 (6H, Adamantyl-CH₂), 2.09 - 2.18 (3H, Adamantyl-CH), 2.96 - 3.04 (1H, m, H4_A), 3.20 - 3.28 (1H, m, H4_B), 4.57 (1H, dd, J = 8.6, 7.6 Hz, H5 CD), 4.79 (1H, dd, J = 8.8, 6.9 Hz, H5 AB), 6.42 (1H, s, H2 AB), 6.49 (1H, s, H2 CD), 6.98 (1H, app td, J = 8.3, 2.3 Hz, H5'), 7.13 (1H, dd, J = 8.3, 2.3 Hz, H3'), 7.36 - 7.44 (1H, m, H6'), 7.97 (1H, br. s., NH/OH CD), 11.69 (1H, br. s., NH/OH AB); $\delta_{\rm C}$ (100.6 MHz, CDCl₃): 29.2 (Adamantyl-CH), 32.2 (C4 AB), 32.3 (C4 CD), 35.8 (Adamantyl-CH₂ CD), 36.0 (Adamantyl-CH₂ AB), 41.48 (Adamantyl-CH₂ AB), 41.54 (Adamantyl-CH₂ CD), 53.3 (Adamantyl-C AB), 54.6 (Adamantyl-C CD), 59.1 (C2 AB), 59.7 (C2 CD), 68.4 (C5 AB), 71.5 (C5 CD), 85.0 (C7 CD), 94.0 (C7 AB), 114.2 (d, J = 21.5 Hz, C5' CD), 114.3 (d, J = 21.5 Hz, C5' AB), 117.29 (d, J = 25.4 Hz, C3' AB), 117.31 (d, J = 25.4 Hz, C3' CD), 127.2 (d, J = 9.5 Hz, C6' CD), 127.4 (d, J = 8.7 Hz, C6' AB), 133.0 (d, J = 10.3 Hz, C2' CD), 133.1 (d, J = 10.3 Hz, C2' AB), 134.6 (d, J = 4.0 Hz, C1' AB), 166.0 (C9 AB), 166.5 (C9 CD), 172.0 (C8 AB), 177.8 (C8 CD), 188.7 (C6 AB), 191.0 (C6 CD); m/z (ESI⁻) 461 ([M-H]⁻, 15%); HRMS (ESI⁻); C₂₃H₂₃CIFN₂O₃S [M-H]⁻; found 461.1108, requires 461.1107.

(-)-(2*S*,5*R*)-*N*-(Adamantan-1-yl)-2-(2-furanyl)--6-hydroxy-8-oxo-5,8-dihydro-1*H*,3*H*pyrrolo[1,2-*c*]thiazole-7-carboxamide 9g

Yield (0.28 g, 92 %); brown soild, mp 88-90 °C; 3:1 AB:CD tautomers; $R_f = 0.76$ (EtOAc/MeOH 20:1); $[\alpha]_D^{25} = -141.7$ (c = 0.06, CHCl₃); v_{max}/cm^{-1} (neat) 1627 (C=C), 1649 (C=O), 1692 (C=O), 3318 (N-H/O-H); δ_H (500 MHz, CD₂Cl₂): 1.70 (6H, Adamantyl-CH₂), 2.06 (6H, Adamantyl-CH₂), 2.10 (3H, Adamantyl-CH), 3.06 (1H, dd, J = 11.0, 7.1 Hz, H4_A), 3.41 (1H, dd, J = 11.0, 8.1 Hz,

H4_B), 4.42 (1H, app t, J = 7.4 Hz, H5 CD), 4.69 (1H, app t, J = 7.5 Hz, H5 AB), 6.26 (1H, s, H2 AB), 6.32 - 6.35 (3H, m, H2 CD + H3' + H4'), 7.35 (1H, br. s., NH/OH AB), 7.39 - 7.44 (1H, m, H5'), 7.94 (1H, br. s., NH/OH CD); δ_{C} (125.8 MHz, CD₂Cl₂): 30.0 (Adamantyl-CH), 32.6 (C4 AB), 33.1 (C4 CD), 36.4 (Adamantyl-CH₂, CD), 36.6 (Adamantyl-CH₂, AB), 42.07 (Adamantyl-CH₂ AB), 42.13 (Adamantyl-CH₂ CD), 53.6 (Adamantyl-C, obscured by CD₂Cl₂ signal but HMBC corrleation seen with adamantyl-CH₂), 56.1 (C2 AB), 56.6 (C2 CD), 67.2 (C5 AB), 70.5 (C5 CD), 85.4 (C7 CD), 95.0 (C7 AB), 107.4 (C3'), 110.9 (C4'), 143.4 (C5'), 153.5 (C2' AB), 153.7 (C2' CD), 166.6 (C9 AB), 167.1 (C9 CD), 172.8 (C8 AB), 178.7 (C8 CD), 189.5 (C6 AB), 192.0 (C6 CD); m/z (ESI⁻) 399 ([M-H]⁻, 62 %); HRMS (ESI⁻); C₂1H₂₃N₂O₄S [M-H]⁻; found 399.13827, requires 399.13840.

(-)-(2*S*,5*R*)-2-Phenyl-*N*-(4-cyclohexylphenyl)-6-hydroxy-8-oxo-5,8-dihydro-1*H*,3*H*-pyrrolo[1,2*c*]thiazole-7-carboxamide 9h

Yield (0.41 g, 54 %); yellow foam, mp 88 °C; 15:1 AB:CD tautomers; R_f = 0.73 (EtOAc/MeOH 20:1); $[\alpha]_D^{25}$ = -159.0 (*c* = 0.20, CHCl₃); v_{max} /cm⁻¹ (neat) 1630 (C=C), 1651 (C=O), 1692 (C=O), 3281 (N-H/O-H); δ_H (400 MHz, CD₂Cl₂): 1.20 - 1.33 (1H, m, Cy-CH₂), 1.34 - 1.46 (4H, m, Cy-CH₂), 1.70 -

1.79 (1H, m, Cy-CH₂), 1.80 - 1.92 (4H, m, Cy-CH₂), 2.41 - 2.59 (1H, m, Cy-CH), 3.04 (1H, dd, J = 11.2, 8.7 Hz, H4_A), 3.32 (1H, dd, J = 11.2, 6.9 Hz, H4_B), 4.56 (1H, app t, J = 7.8 Hz, H5 CD), 4.89 (1H, app t, J = 7.7 Hz, H5 CD), 6.26 (1H, s, H2 AB), 6.35 (1H, s, H2 CD), 7.20 (2H, d, J = 8.6 Hz, H3"), 7.29 - 7.35 (1H, m, H4'), 7.36 - 7.42 (2H, m, H3'), 7.46 - 7.53 (4H, m, H2' and H2"), 7.98 (1H, br. s., OH), 9.28 (1H, br. s., NH); δ_{C} (125.8 MHz, CD₂Cl₂): 26.7 (Cy-CH₂), 27.4 (Cy-CH₂), 33.0 (C4), 35.0 (Cy-CH₂), 44.6 (Cy-CH), 62.2 (C2 AB), 63.1 (C2 CD), 67.2 (C5 AB), 71.8 (C5 CD), 99.3 (C7), 121.0 (C2"), 126.9 (C2'), 127.9 (C3"), 128.7 (C4'), 129.2 (C3'), 134.8 (C1"), 140.9 (C1'), 145.8 (C4"), 164.4 (C9 AB), 165.4 (C9 CD), 172.1 (C8 AB), 178.6 (C8 CD), 184.9 (C6 AB), 191.7 (C6 CD); m/z (ESI⁻) 433 ([M-H]⁻, 34%); HRMS (ESI⁻); C₂₅H₂₅N₂O₃S [M-H]⁻; found 433.1598, requires 433.1591.

(-)-(2*S*,5*R*)-2--(4-Fluorophenyl)--*N*-(4-cyclohexylphenyl)-6-hydroxy-8-oxo-5,8-dihydro-1*H*,3*H*-pyrrolo[1,2-*c*]thiazole-7-carboxamide 9i

Yield (0.17 g, 45 %); brown oil; 13:1 AB:CD tautomers; R_f = 0.66 (EtOAc 100 %); $[\alpha]_D^{25}$ = -220.5 (*c* = 0.20, CHCl₃); v_{max}/cm^{-1} (neat) 1228 (C-F), 1636 (C=C), 1648 (C=O), 1689 (C=O), 3290, 3307 (N-H/O-H); δ_H (400 MHz, CD₂Cl₂): 1.21 - 1.32 (1H, m, Cy-CH₂), 1.33 - 1.48 (4H, m, Cy-CH₂), 1.70 -1.79 (1H, m, Cy-CH₂), 1.80 - 1.91 (4H, m, Cy-CH₂), 2.45 -

2.56 (1H, m, Cy-C*H*), 3.04 (1H, dd, J = 11.2, 8.7 Hz, H4_A), 3.32 (1H, dd, J = 11.2, 6.9 Hz, H4_B), 4.53 (1H, app t, J = 7.8 Hz, H5 CD), 4.87 (1H, app t, J = 7.7 Hz, H5 AB), 6.23 (1H, s, H2 AB), 6.33 (1H, s, H2 CD), 7.08 (2H, app t, J = 8.6 Hz, H3'), 7.20 (2H, d, J = 8.3 Hz, H3"), 7.43 - 7.52 (4H, m, H2' and H2"), 9.26 (1H, s, NH), 9.45 (1H, br. s., OH); $\delta_{\rm C}$ (100.6 MHz, CD₂Cl₂): 26.7 (Cy-CH₂), 27.4 (Cy-CH₂), 33.0 (C4), 35.0 (Cy-CH₂), 44.6 (Cy-CH), 61.7 (C2), 67.1 (C5), 99.3 (C7), 116.0 (d, J = 21.5 Hz, C3'), 121.0 (C2"), 127.9 (C3"), 128.9 (d, J = 8.0 Hz, C2'), 134.7 (C1"), 136.7 (d, J = 3.2 Hz, C1'), 145.8 (C4"), 163.1 (d, J = 246.4 Hz, C4'), 164.3 (C9), 172.2 (C8), 185.0 (C6); m/z (ESI⁻) 451 ([M-H]⁻, 5%); HRMS (ESI⁻); C₂₅H₂₄FN₂O₃S [M-H]⁻; found 451.1501, requires 451.1497.

(-)-(2*S*,5*R*)-2--(4-Nitrophenyl)--*N*-(4-cyclohexylphenyl)-6-hydroxy-8-oxo-5,8-dihydro-1*H*,3*H*-pyrrolo[1,2-*c*]thiazole-7-carboxamide 9j

Yield (0.076 g, 59 %); brown solid, mp 108-110 °C; 12.5:1 AB:CD tautomers; $R_f = 0.46$ (EtOAc 100 %); $[\alpha]_D^{25} = -89.5$ (c = 0.20, CHCl₃); v_{max}/cm^{-1} (neat) 1347 (sym ArNO₂), 1522 (asym ArNO₂), 1630 (C=C), 1651 (C=O), 1695 (C=O), 3323 (N-H/O-H); δ_H (400 MHz, CD₂Cl₂): 1.18 - 1.32 (1H, m, Cy-CH₂), 1.33 - 1.48 (4H, m, Cy-CH₂), 1.69 - 1.78 (1H,

m, Cy-CH₂), 1.78 - 1.90 (4H, m, Cy-CH₂), 2.46- 2.54 (1H, m, Cy-CH), 3.10 (1H, dd, J = 11.3, 8.6 Hz, H4_A), 3.34 (1H, dd, J = 11.3, 7.1 Hz, H4_B), 4.53 (1H, app t, J = 7.8 Hz, H5 CD), 4.87 (1H, dd, J = 8.3, 7.1 Hz, H5 AB), 6.32 (1H, s, H2 AB), 6.42 (1H, s, H2 CD), 7.21 (2H, d, J = 8.3, H3"), 7.47 (2H, d, J = 8.3 Hz, H2"), 7.66 (2H, d, J = 8.6 Hz, H2'), 7.89 (1H, br. s., OH), 8.22 (2H, d, J = 8.8 Hz, H3'), 9.20 (1H, br. s., NH); δ_{C} (125.8 MHz, CD₂Cl₂): 26.7 (Cy-CH₂), 27.4 (Cy-CH₂), 33.2 (C4 AB), 33.6 (C4 CD), 35.0 (Cy-CH₂), 44.6 (Cy-CH), 61.6 (C2 AB), 62.5 (C2 CD), 67.2 (C5 AB), 71.6 (C5 CD), 86.3 (C7 CD), 99.0 (C7 AB), 121.0 (C2"), 124.4 (C3'), 127.9 (C2'), 127.9 (C3"), 134.6 (C1"), 146.0 (C4"), 148.0 (C1'), 148.3 (C4'), 164.3 (C9 AB), 165.3 (C9 CD), 172.4 (C8 AB), 178.7 (C8 CD), 185.4 (C6 AB), 191.5 (C6 CD); *m*/*z* (ESI⁻) 478 ([M-H]⁻, 12%); HRMS (ESI⁻); C₂₅H₂₄N₃O₅S [M-H]⁻; found 478.1437, requires 478.1442.

(-)-(2*S*,5*R*)-2-(2-Chloro-4-fluorophenyl)-*N*-(4-cyclohexylphenyl)-6-hydroxy-8-oxo-5,8-dihydro-1*H*,3*H*-pyrrolo[1,2-*c*]thiazole-7-carboxamide 9k

Yield (0.41 g, 73 %); yellow foam, mp 100-102 °C; 15:1 AB:CD tautomers; $R_f = 0.57$ (EtOAc 100 %); $[\alpha]_D^{25} = -184.8$ (*c* = 0.40, CHCl₃); v_{max} /cm⁻¹ (neat) 1234 (C-F), 1654 (C=O), 1694 (C=O); δ_H (400 MHz, CD₂Cl₂): 1.18 - 1.32 (1H, m, Cy-CH₂), 1.33 - 1.48 (4H, m, Cy-CH₂), 1.68 - 1.77 (1H, m, Cy-CH₂), 1.78 - 1.91 (4H, m, Cy-CH₂), 2.41 - 2.57 (1H, m,

Cy-CH), 3.05 (1H, dd, J = 11.0, 9.1 Hz, H4_A), 3.32 (1H, dd, J = 11.0, 6.9 Hz, H4_B), 4.67 (1H, app t , J = 7.5 Hz, H5 CD), 5.00 (1H, dd, J = 9.1, 6.9 Hz, H5 AB), 6.43 (1H, s, H2 AB), 6.43 (1H, s, H2 CD), 7.05 (1H, app td, J = 8.3, 2.7 Hz, H5'), 7.16 - 7.23 (3H, m, H3' and H3''), 7.44 - 7.51 (3H, m, H6' and H2''), 9.22 (1H, br. s., NH), 10.04 (1H, br. s., OH); δ_{C} (125.8 MHz, CD₂Cl₂): 26.7 (Cy-CH₂), 27.4 (Cy-CH₂), 32.8 (C4), 35.0 (Cy-CH₂), 44.6 (Cy-CH), 59.3 (C2 AB), 60.3 (C2 CD), 67.8 (C5 AB), 72.4 (C5 CD), 86.2 (C7 CD), 98.9 (C7 AB), 115.0 (d, J = 20.7 Hz, C5'), 117.8 (d, J = 25.4 Hz, C3'), 121.0 (C2''), 127.9 (C3''), 128.2 (d, J = 9.5 Hz, C6'), 133.5 (d, J = 10.3 Hz, C2'),

134.7 (C1"), 135.1 (d, *J* = 2.4 Hz, C1'), 145.9 (C4"), 162.6 (d, *J* = 249.9 Hz, C4'), 164.3 (C9 AB), 165.4 (C9 CD), 171.7 (C8 AB), 178.2 (C8 CD), 185.2 (C6 AB), 191.5 (C6 CD); *m/z* (ESI⁻) 485 ([M-H]⁻, 100%); HRMS (ESI⁻); C₂₅H₂₃ClFN₂O₃S [M-H]⁻; found 485.1125, requires 485.1107.

(-)-(2*S*,5*R*)-2-(Phenyl)--*N*-(4-chloro-2-methylphenyl)-6-hydroxy-8-oxo-5,8-dihydro-1*H*,3*H*-pyrrolo[1,2-*c*]thiazole-7-carboxamide 9l

Yield (0.13 g, 40 %); yellow solid, mp 88 °C; $R_f = 0.63$ (EtOAc/MeOH 12:1); $[\alpha]_D^{25} = -145.0$ (c = 0.20, CHCl₃); v_{max}/cm^{-1} (neat) 1636 (C=C), 1691 (C=O), 3210, 3266 (N-H/O-H); δ_H (400 MHz, CDCl₃): 2.34 (3H, s, CH₃), 3.06 (1H, dd, J = 11.1, 8.4 Hz, H4_A), 3.34 (1H, dd, J = 11.1, 7.0 Hz, H4_B), 4.50 (1H, br.

s., OH), 4.90 (1H, dd, *J* = 8.3, 7.0 Hz, H5), 6.31 (1H, s, H2), 7.17 - 7.23 (2H, m, H3" + H5"), 7.29 - 7.35 (1H, m, H4'), 7.36 - 7.42 (2H, m, H3'), 7.47 - 7.52 (2H, m, H2'), 8.04 (1H, d, *J* = 9.4 Hz, H6"), 9.39 (1H, br. s., NH); δ_C (100.6 MHz, CD₂Cl₂): 17.9 (*C*H₃), 32.9 (C4), 62.1 (C2), 67.2 (C5), 99.8 (C7), 123.0 (C6"), 126.8 (C2'), 127.0 (C5"), 128.8 (C4'), 129.2 (C3'), 130.1 (C1"), 130.8 (C3" + C4"), 134.4 (C2"), 140.2 (C1'), 164.1 (C9), 172.1 (C8), 184.3 (C6); *m/z* (ESI⁻) 399 ([M-H]⁻, 100%); HRMS (ESI⁻); C₂₀H₁₆ClN₂O₃S [M-H]⁻; found 399.0576, requires 399.0576.

(-)-(2*S*,5*R*)-2-(4-Fluorophenyl)-*N*-(4-chloro-2-methylphenyl)-6-hydroxy-8-oxo-5,8-dihydro-1*H*,3*H*-pyrrolo[1,2-*c*]thiazole-7-carboxamide 9m

Yield (0.082 g, 40 %); brown solid, mp 126 °C; $R_f = 0.57$ (EtOAc/MeOH 12:1); $[\alpha]_D^{25} = -165.14$ (c = 0.39, CHCl₃); v_{max}/cm^{-1} (neat) 1226 (C-F), 1631 (C=C), 1655 (C=O), 1690 (C=O); δ_H (400 MHz, CD₂Cl₂): 2.31 (3H, s, CH₃), 3.05 (1H, dd, J = 10.9, 8.9 Hz, H4_A), 3.33 (1H, dd, J = 11.0, 6.9 Hz, H4_B), 4.83 - 4.92 (1H, m, H5), 6.23 (1H, s, H2), 7.09 (2H, app t, J =

8.4 Hz, H3'), 7.16 - 7.24 (2H, m, H3" + H5"), 7.49 (2H, dd, J = 8.3, 5.3 Hz, H2'), 8.04 (1H, d, J = 9.3 Hz, H6"), 9.39 (1H, br. s., NH), 11.00 (1H, br. s., OH); $\delta_{\rm C}$ (125.8 MHz, CDCl₃): 17.6 (*C*H₃), 32.4 (C4), 61.1 (C2), 66.4 (C5), 99.2 (C7), 115.7 (d, J = 21.9 Hz, C3'), 122.7 (C6"), 126.7 (C5"), 128.3 (d, J = 8.6 Hz, C2'), 130.0 (C1"), 130.1 (C4"), 130.4 (C3"), 133.4 (C2"), 135.5 (d, J = 3.8 Hz, C1'), 162.6 (d, J = 248.0 Hz, C4'), 163.6 (C9), 171.7 (C8), 184.1 (C6); *m/z* (ESI⁻) 417 ([M-H]⁻, 76%); HRMS (ESI⁻); C₂₀H₁₅ClFN₂O₃S [M-H]⁻; found 417.0484, requires 417.0481.

(-)-(2*S*,5*R*)-2-(4-Nitrophenyl)-*N*-(4-chloro-2-methylphenyl)-6-hydroxy-8-oxo-5,8-dihydro-1*H*,3*H*-pyrrolo[1,2-*c*]thiazole-7-carboxamide 9n

Yield (0.056 g, 37 %); brown solid, mp 190 °C; $R_f = 0.62$ (EtOAc/MeOH 12:1); $[\alpha]_D^{25} = -94.0$ (c = 0.20, CHCl₃); v_{max}/cm^{-1} (neat) 1347 (sym ArNO₂), 1522 (asym ArNO₂), 1634 (C=C), 1693 (C=O); δ_H (400 MHz, CD₂Cl₂): 2.32 (3H, s, CH₃), 3.11 (1H, dd, J = 11.2, 8.6 Hz, H4_A), 3.36 (1H, dd, J = 11.2, 7.0 Hz, H4_B), 4.92 (1H, dd, J = 8.4, 7.0 Hz, H5), 5.02 (1H, br. s., OH),

6.32 (1H, s, H2), 7.18 - 7.24 (2H, m, H3" + H5"), 7.67 (2H, d, J = 8.6 Hz, H2'), 8.03 (1H, d, J = 8.6 Hz, H6"), 8.23 (2H, d, J = 8.8 Hz, H3'), 9.32 (1H, br. s., NH); $\delta_{\rm C}$ (125.8 MHz, CD₂Cl₂): 17.9 (CH₃), 33.2 (C4), 61.5 (C2), 67.2 (C5), 99.7 (C7), 123.3 (C6"), 124.5 (C3'), 127.1 (C5"), 127.9 (C2'), 130.5 (C1"), 130.9 (C3"), 131.0 (C4"), 134.2 (C2"), 147.9 (C1'), 148.3 (C4'), 164.2 (C9), 172.4 (C8), 184.9 (C6); m/z (ESI⁻) 444 ([M-H]⁻, 69%); HRMS (ESI⁻); C₂₀H₁₅ClN₃O₅S [M-H]⁻; found 444.0426, requires 444.0426.

(-)-(2*S*,5*R*)-2-(4-Bromophenyl)-*N*-(4-chloro-2-methylphenyl)-6-hydroxy-8-oxo-5,8-dihydro-1*H*,3*H*-pyrrolo[1,2-*c*]thiazole-7-carboxamide 90

Yield (40%); brown solid; $R_f = 0.71$ (EtOAc), $[\alpha]_D^{25} = -148.0$ (c = 0.15, MeOH); δ_H (400 MHz, CD₂Cl₂): 2.23 (s, 3H, C<u>H</u>₃), 2.94 (dd, 1H J_1 12.0 Hz, J_2 8.0 Hz, H4), 3.22 (dd, 1H .0 Hz, J_2 8.0 Hz, H4a), 4.79 (t, 1H, J 8.0 Hz, H5), 6.11 (s, 1H, H2), 7.10 (d, 2H, J 12.0 Hz, H3",5"), 7.28 (d, 2H, J 12.0 Hz, H2',6'), 7.42 (d, 2H, J

12.0 Hz, H3',5'), 7.94 (d, 2H, *J* 8.0 Hz, H6"), 9.28 (s, 1H, N<u>H</u>), $\delta_{\rm C}$ (100.6 MHz, CD₂Cl₂):17.37 (<u>C</u>H₃), 32.45 (C4), 61.17 (C2), 66.60 (C5), 99.28 (C7), 122.11 (C4'), 122.61 (C6"), 126.51 (C5"), 128.22 (C2',6'), 129.01 (C4"), 130.27 (C3"), 131.76 (C3',5'), 133.74 (C1"), 139.32 (C2"), 142.8 (C1'), 163.69 (C9), 171.70 (C8), 184.03 (C6), *m/z* (ESI⁻) 477 ([M-H]⁻); HRMS (ESI⁻); calculated for C₂₀H₁₇N₂SClBrO₃; 476.9681; found; 476.9692.

(-)-(2*S*,5*R*)-2-(3-Bromophenyl)-*N*-(4-chloro-2-methylphenyl)-6-hydroxy-8-oxo-5,8-dihydro-1*H*,3*H*-pyrrolo[1,2-*c*]thiazole-7-carboxamide 9p

Yield (38%, reactant used was impure); brown solid; $R_f = 0.47$ (EtOAc), $[\alpha]_D^{25} = -185.0$ (c = 0.13, MeOH); δ_H (400 MHz, CD₂Cl₂): 2.23 (s, 3H, C<u>H</u>₃), 2.95 (dd, 1H J₁ 12.0 Hz, J₂ 8.0 Hz, H4), 3.23 (dd, 1H 12.0 Hz, J₂ 8.0 Hz, H4a), 4.82 (t, 1H, J 8.0 Hz, H5), 6.12 (s, 1H, H2), 7.10 (d, 2H, J 12.0 Hz, H3",5"), 7.19

(t, 1H, *J* 8.0 Hz, H5'), 7.33 (d, 2H, *J* 8.0 Hz, H4'), 7.37 (d, 2H, *J* 8.0 Hz, H6'), 7.56 (s, 1H, H2'), 7.94 (d, 2H, *J* 8.0 Hz, H6"), 9.29 (s, 1H, N<u>H</u>), δ_C (100.6 MHz, CD₂Cl₂): 17.38 (<u>C</u>H₃), 32.50 (C4),

60.93 (C2), 66.63 (C5), 99.28 (C7), 122.66 (C6"), 125.22 (C4'), 126.51 (C5"), 129.12 (C4"), 129.32 (C2'), 130.27 (C5'), 130.35 (C3"), 131.31 (C6'), 131.12 (C2"), 133.73 (C1"), 142.55 (C1'), 163.69 (C9), 172.70 (C8), 184.03 (C6), *m/z* (ESI⁻) 477 ([M-H]⁻); HRMS (ESI⁻); calculated for C₂₀H₁₇N₂SClBrO₃; 476.9681; found; 476.9675.

(-)-(2*S*,5*R*)-2-(2-Chloro-4-fluorophenyl)-*N*-(4-chloro-2-methylphenyl)-6-hydroxy-8-oxo-5,8dihydro-1*H*,3*H*-pyrrolo[1,2-*c*]thiazole-7-carboxamide 9q

Yield (0.06 g, 35 %); brown solid, mp 108-110 °C; $R_f = 0.63$ (EtOAc/MeOH 12:1); $[\alpha]_D^{25} = -218.0$ (c = 0.20, CHCl₃); v_{max}/cm^{-1} (neat) 1235 (C-F), 1635 (C=C), 1697 (C=O); δ_H (400 MHz, CD₂Cl₂): 2.31 (3H, s, CH₃), 3.06 (1H, dd, J = 11.0, 9.3 Hz, H4_A), 3.34 (1H, dd, J = 11.0, 6.6 Hz, H4_B), 5.04 (1H, dd, J =

9.3, 6.7 Hz, H5), 6.42 (1H, s, H2), 6.54 (1H, br. s., OH), 7.06 (1H, app td, *J* = 8.3, 2.7 Hz, H5'), 7.16 - 7.24 (3H, m, H3' + H3" + H5"), 7.48 (1H, dd, *J* = 8.8, 5.9 Hz, H6'), 8.04 (1H, d, *J* = 8.3 Hz, H6"), 9.35 (1H, br. s., NH); δ_C (125.8 MHz, CD₂Cl₂): 17.9 (CH₃), 32.8 (C4), 59.2 (C2), 67.9 (C5), 99.6 (C7), 115.1 (d, *J* = 21.5 Hz, C5'), 117.8 (d, *J* = 24.6 Hz, C3'), 123.2 (C6"), 127.1 (C5"), 128.1 (d, *J* = 8.7 Hz, C6'), 130.3 (C1"), 130.8 (C3"), 130.9 (C4"), 133.5 (d, *J* = 10.3 Hz, C2'), 134.3 (C2"), 135.0 (d, *J* = 4.0 Hz, C1'), 162.6 (d, *J* = 249.9 Hz, C4'), 164.3 (C9), 171.7 (C8), 184.7 (C6); *m/z* (ESI⁻) 451 ([M-H]⁻, 100%); HRMS (ESI⁻); C₂₀H₁₄Cl₂FN₂O₃S [M-H]⁻; found 451.0080, requires 451.0092.

(-)-(2*S*,5*R*)-2--(4-Bromophenyl)-*N*-(4-morpholinophenyl)-6-hydroxy-8-oxo-5,8-dihydro-1*H*,3*H*-pyrrolo[1,2-*c*]thiazole-7-carboxamide 9r

Yield (0.15 g, 24 %); brown solid, mp 116 °C; $R_f = 0.29$ (EtOAc/MeOH 12:1); $[\alpha]_D^{25} = -154.5$ (c = 0.22, CHCl₃); v_{max}/cm^{-1} (neat) 1627 (C=C), 1686 (C=O); δ_H (400 MHz, CD₂Cl₂): 3.04 (1H, dd, J = 11.2, 8.4 Hz, H4_A), 3.12 (4H, br. t, J = 4.7 Hz, H10), 3.30 (1H, dd, J = 11.2, 7.1 Hz, H4_B),

3.82 (4H, br. t, J = 4.7 Hz, H11), 4.80 (1H, br signal, H5), 6.22 (1H, s, H2), 6.90 (2H, d, J = 8.8 Hz, morpholinophenyl Ar-C*H*), 7.37 (2H, d, J = 8.3 Hz, H2'), 7.45 (2H, d, J = 8.8 Hz, morpholinophenyl Ar-C*H*), 7.51 (2H, d, J = 8.3 Hz, H3'), 8.08 (1H, br. s., NH/OH), 9.20 (1H, br. s., NH/OH); $\delta_{\rm C}$ (125.8 MHz, CD₂Cl₂): 33.1 (C4), 49.9 (C10), 61.9 (C2), 67.3 (C5 + C11), 98.9 (C7), 116.4, 122.3 (morpholinophenyl Ar-CH), 122.5 (C4'), 128.8 (C2'), 129.3, 149.4 (morpholinophenyl Ar-C), 132.3 (C3'), 140.1 (C1'), 164.1 (C9), 172.4 (C8), 185.3 (C6); *m/z* (ESI⁻) 514.0, 516.0 ([M-

H]⁻, 100%); HRMS (ESI⁻); C₂₃H₂₁O₄N₃BrS [M-H]⁻; found 514.04451 and 516.04235, requires 514.04416, 516.04212.

(-)-(2*S*,5*R*)-2--(2-Furyl)-*N*-(4-morpholinophenyl)-6-hydroxy-8-oxo-5,8-dihydro-1*H*,3*H*-pyrrolo[1,2-*c*]thiazole-7-carboxamide 9s

Yield (0.11 g, 85 %); brown solid, mp 110 °C; $R_f = 0.47$ (EtOAc/MeOH 12:1); $[\alpha]_D^{25} = -153.3$ (c = 0.06, CHCl₃); v_{max}/cm^{-1} (neat) 1630 (C=C), 1688 (C=O), 3274 (N-H/O-H); δ_H (400 MHz, CD₂Cl₂): 3.06 - 3.11 (1H, m, H4_A, obscured by H10), 3.12 (4H, br. t, J = 4.8 Hz, H10), 3.46 (1H, dd, J =

11.0, 8.1 Hz, H4_B), 3.82 (4H, br. t, J = 4.7 Hz, H11), 4.85 (1H, H5), 6.30 (1H, s, H2), 6.34 - 6.40 (2H, m, H3' + H4'), 6.90 (2H, d, J = 9.0 Hz, morpholinophenyl Ar-C*H*), 7.41 - 7.49 (3H, m, H5' + morpholinophenyl Ar-C*H*), 8.38 (1H, br. s., NH/OH), 9.18 (1H, br. s., NH/OH); $\delta_{\rm C}$ (125.8 MHz, CD₂Cl₂): 32.5 (C4), 49.9 (C10), 55.7 (C2), 66.4 (C5), 67.3 (C11), 98.4 (C7), 107.7 (H3'), 111.0 (H4'), 116.4, 122.3 (morpholinophenyl Ar-CH), 129.3, 149.4 (morpholinophenyl Ar-C), 143.6 (C5'), 153.2 (C2'), 164.1 (C9), 172.2 (C8), 186.1 (C6); *m/z* (ESI⁻) 426 ([M-H]⁻, 100%); HRMS (ESI⁻); C₂₁H₂₀O₅N₃S [M-H]⁻; found 426.11310, requires 426.11291.

(-)-(2*S*,5*R*)-2-(4-Bromophenyl)-*N*-(tetrahydro-2*H*-pyran-4-yl)-6-hydroxy-8-oxo-5,8-dihydro-1*H*,3*H*-pyrrolo[1,2-*c*]thiazole-7-carboxamide 9t

Yield (0.63 g, 55 %); yellow solid, mp 90-92 °C, 5.2:1 AB:CD tautomers; $R_f = 0.37$ (EtOAc/MeOH 9:1); $[\alpha]_D^{25} = -171.9$ (c = 0.39, CHCl₃); v_{max}/cm^{-1} (neat) 1623 (C=C), 1647 (C=O), 1688 (C=O), 3319 (O-H/N-H); δ_H (400 MHz, CD₂Cl₂): 1.50 - 1.71 (2H, m, H11), 1.83 - 1.98 (2H, m, H11), 3.01 (1H, dd, J = 11.3, 8.3 Hz, H4_A), 3.27

(1H, dd, J = 11.3, 7.1 Hz, H4_B), 3.41 - 3.52 (2H, m, H12), 3.88 - 3.99 (2H, m, H12), 4.00 - 4.11 (1H, m, H10), 4.42 (1H, app t, J = 7.8 Hz, H5 CD), 4.75 (1H, app t, J = 7.7 Hz, H5 AB), 6.18 (1H, s, H2 AB), 6.27 (1H, s, H2 CD), 6.89 (2H, br. s., NH + OH), 7.35 (2H, d, J = 8.3 Hz, H2'), 7.50 (2H, d, J = 8.5 Hz, H3'); $\delta_{\rm C}$ (125.8 MHz, CD₂Cl₂): 33.0 (C4), 33.3 (C11), 45.9 (C10 AB), 47.7 (C10 CD), 62.0 (C2 AB), 62.7 (C2 CD), 66.9 (C12), 67.4 (C5 AB), 71.4 (C5 CD), 85.5 (C7 CD), 97.2 (C7 AB), 122.4 (C4'), 128.8 (C2'), 132.2 (C3'), 140.3 (C4'), 165.9 (C9 AB), 166.5 (C9 CD), 172.5 (C8 AB), 178.8 (C8 CD), 186.6 (C6 AB), 191.6 (C6 CD); m/z (ESI⁻) 437, 439 ([M-H]⁻, 100 %); HRMS (ESI⁻); C₁₈H₁₈N₂O₄BrS [M-H]⁻; found 437.01407 and 439.01190, requires 437.01761 and 439.01557.

(-)-(2S,5R)-2-Phenyl-N-(cyclohexyl)-6-hydroxy-8-oxo-5,8-dihydro-1H,3H-pyrrolo[1,2-

c]thiazole-7-carboxamide 9u

Yield (0.29 g, 49 %); brown solid, mp 54 °C; $R_f = 0.77$ (EtOAc/MeOH 96:4); $[\alpha]_D^{25} = -261.5$ (c = 0.20, CHCl₃); v_{max}/cm^{-1} (neat) 1619 (C=C), 1645 (C=O), 1686 (C=O), 3324 (N-H/O-H); δ_H (500 MHz, Methanol- d_4) 1.23 - 1.47 (5H, m, 2 x H11, 2 x H12, H13), 1.57 - 1.67 (1H, m, H13), 1.70 - 1.82 (2H, m, H12), 1.86 -

1.96 (2H, m, H11), 3.01 (1H, dd, J = 11.0, 8.4 Hz, H4_A), 3.27 - 3.30 (1H, m, H4_B, obscured by solvent peak), 3.79 - 3.89 (1H, m, H10), 4.82 (1H, app t, J = 7.7 Hz, H5), 6.24 (1H, s, H2), 7.26 - 7.29 (1H, m, H4'), 7.32 - 7.37 (2H, m, H3'), 7.44 - 7.48 (2H, m, H2'); $\delta_{\rm C}$ (125.8 MHz, Methanol-*d*₄): 25.8 (C12), 26.6 (C13), 33.4 (C4), 33.7 (C11), 49.8 (C10), 63.5 (C2), 69.4 (C5), 95.3 (C7), 127.6 (C2'), 129.1 (C4'), 129.7 (C3'), 142.3 (C1'), 166.1 (C9), 175.5 (C8), 188.6 (C6); *m/z* (ESI⁻) 357 ([M-H]⁻, 100 %); HRMS (ESI⁺); C₁₉H₂₃O₃N₂S [M+H]⁺; found 359.14265, requires 359.14239.

(-)-(2*S*,5*R*)-2-(2-Chloro-4-fluorophenyl)-*N*-(cyclohexyl)-6-hydroxy-8-oxo-5,8-dihydro-1*H*,3*H*-pyrrolo[1,2-*c*]thiazole-7-carboxamide 9v

Yield (0.16 g, 40 %); yellow foam; mp 80-82 °C; $R_f = 0.70$ (EtOAc/MeOH 96:4); $[\alpha]_D^{25} = -291.6$ (c = 0.27, CHCl₃); v_{max}/cm^{-1} Cl (neat) 1620 (C=C), 1646 (C=O), 1689 (C=O), 3326 (NH/OH); δ_H (400 MHz, Methanol- d_4) 1.23 - 1.47 (5H, m, 2 x H11, 2 x H12, H13), 1.57 - 1.67 (1H, m, H13), 1.70 - 1.82 (2H, m, H12), 1.86 -

1.96 (2H, m, H11), 3.03 (1H, dd, J = 10.8, 8.8 Hz, H4_A), 3.27 - 3.33 (1H, m, H4_B, obscured by solvent peak), 3.79 - 3.89 (1H, m, H10), 4.97 (1H, dd, J = 8.2, 7.2 Hz, H5), 6.40 (1H, s, H2), 7.11 (1H, app td, J = 8.4, 2.5 Hz, H5'), 7.26 (1H, dd, J = 8.6, 2.5 Hz, H3'), 7.58 (1H, dd, J = 8.6, 6.0 Hz, H6'); $\delta_{\rm C}$ (125.8 MHz, Methanol-*d*₄): 25.8 (C12), 26.5 (C13), 33.0 (C4), 33.7 (C11), 49.6 (C10), 60.5 (C2), 70.2 (C5), 94.6 (C7), 115.6 (d, J = 21.9 Hz, C5'), 118.1 (d, J = 24.8 Hz, C3'), 129.3 (d, J = 9.5 Hz, C6'), 134.1 (d, J = 10.5 Hz, C2'), 136.8 (d, J = 3.8 Hz, C1'), 163.5 (d, J = 248.9 Hz, C4'), 166.1 (C9), 175.2 (C8), 189.2 (C6); *m*/z (ESI⁻) 409 ([M-H]⁻, 100 %); HRMS (ESI⁺); C₁₉H₁₉O₃N₂CIFS [M+H]⁺; found 409.07999, requires 409.07835.

(-)-(2*S*,5*R*)-2-Phenyl-*N*-(phenyl)-6-hydroxy-8-oxo-5,8-dihydro-1*H*,3*H*-pyrrolo[1,2-*c*]thiazole-7-carboxamide 9w

Yield (0.16 g, 55 %); brown solid, mp 156-160 °C; $R_f = 0.51$ (EtOAc/MeOH 98:2); $[\alpha]_D^{25} = -72.5$ (c = 1.0, CHCl₃); v_{max}/cm^{-1} (neat) 1633 (C=C), 1651 (C=O), 1691 (C=O), 3289 (N-H/O-H); δ_H (400

MHz, CD₂Cl₂): 3.05 (1H, dd, J = 11.1, 8.6 Hz, H4_A), 3.33 (1H, dd, J = 11.1, 6.9 Hz, H4_B), 4.90 (1H, app t, J = 7.7 Hz, H5), 6.28 (1H, s, H2), 7.13 - 7.19 (1H, m, Ar-C*H*), 7.30 - 7.42 (5H, m, Ar-C*H*), 7.46 - 7.52 (2H, m, Ar-C*H*), 7.57 - 7.63 (2H, m, Ar-C*H*), 9.42 (1H, br. s., OH/NH), 9.69 (1H, br. s., OH/NH); $\delta_{\rm C}$ (125.8 MHz, CD₂Cl₂): 33.1 (C4), 62.4 (C2), 67.6 (C5), 98.4 (C7), 120.9, 125.3, 126.9, 128.7, 129.2, 129.6 (Ar-CH), 137.4, 141.0 (Ar-C), 164.6 (C9), 172.8 (C8), 185.7 (C6); *m/z* (ESI⁻) 351 ([M-H]⁻, 100 %); HRMS (ESI⁻); C₁₉H₁₅O₃N₂S [M-H]⁻; found 351.08051, requires 351.08089.

(-)-(2*S*,5*R*)-2-Phenyl)-*N*-(4-(methylsulfonyl)phenyl)-6-hydroxy-8-oxo-5,8-dihydro-1*H*,3*H*-pyrrolo[1,2-*c*]thiazole-7-carboxamide 9x

Yield (0.26 g, 40 %); yellow foam; mp 126-130 °C; $R_f = 0.62$ (EtOAc/MeOH 9:1); $[\alpha]_D^{25} = -195.9$ (c = 0.19, CHCl₃); v_{max}/cm^{-1} (neat) 1144, 1291 (S=O), 1621 (C=C), 1667 (C=O), 1687 (C=O); δ_H (500 MHz, CDCl₃): 3.03 - 3.09 (1H, m, H4_A, obscured by CH₃), 3.05 (3H, s, CH₃), 3.34 (1H, dd, J = 11.2, 7.2 Hz, H4_B), 4.91

(1H, dd, J = 8.3, 7.3 Hz, H5), 6.29 (1H, s, H2), 6.83 (1H, br. s, OH), 7.31 - 7.36 (1H, m, Ar-C*H*), 7.37 - 7.42 (2H, m, Ar-C*H*), 7.48 - 7.53 (2H, m, Ar-C*H*), 7.80 (2H, d, J = 8.8 Hz, Ar-C*H*), 7.93 (2H, d, J = 8.8 Hz, Ar-C*H*), 9.70 (1H, s, NH); $\delta_{\rm C}$ (125.8 MHz, CDCl₃): 32.2 (C4), 44.6 (CH₃), 61.7 (C2), 66.2 (C5), 99.3 (C7), 120.1, 126.4, 128.4, 128.8, 128.9 (Ar-C*H*), 136.0, 139.4, 141.5 (Ar-C), 163.9 (C9), 171.2 (C8), 184.1 (C6); *m/z* (ESI⁻) 429 ([M-H]⁻, 100 %); HRMS (ESI⁻); C₂₀H₁₇O₅N₂S₂ [M-H]⁻; found 429.05888, requires 429.05844.

(-)-(2*S*,5*R*)-2-Phenyl-*N*-(4-(piperidine-1-sulfonyl)phenyl)-6-hydroxy-8-oxo-5,8-dihydro-1*H*,3*H*-pyrrolo[1,2-*c*]thiazole-7-carboxamide 9y

Yield (0.24 g, 25 %); light brown foam; mp 126-130 °C; R_f = 0.35 (EtOAc: MeOH; 98:2); $[\alpha]_D^{25}$ = -192.3 (*c* = 0.16, CHCl₃); v_{max}/cm^{-1} (neat) 1162, 1338 (S=O), 1631 (C=C), 1651 (C=O), 1689 (C=O); δ_H (400 MHz, CDCl₃): 1.36 -1.48 (2H, m, H12), 1.65 (4H, br. quin, *J* = 5.6 Hz, H11),

2.99 (4H, br. t, J = 5.4 Hz, H10), 3.06 (1H, dd, J = 11.3, 8.6 Hz, H4_A), 3.34 (1H, dd, J = 11.3, 7.1 Hz, H4_B), 4.92 (1H, dd, J = 8.4, 7.1 Hz, H5), 6.29 (1H, s, H2), 7.30 - 7.36 (1H, m, Ar-CH), 7.37 - 7.42 (2H, m, Ar-CH), 7.48 - 7.64 (3H, m, Ar-CH + OH), 7.74, 7.75 (4H, ABq, $J_{AB} = 9.8$ Hz, Ar-CH), 9.63 (1H, s, NH); δ_{C} (125.8 MHz, CDCl₃): 23.5 (C12), 25.1 (C11), 32.2 (C4), 46.9 (C10), 61.8 (C2), 66.2 (C5), 99.3 (C7), 119.8, 126.4, 128.4, 128.8, 129.0 (Ar-CH), 131.9, 139.4, 140.5 (Ar-C),

163.9 (C9), 171.2 (C8), 184.1 (C6); *m/z* (ESI⁻) 498 ([M-H]⁻, 26 %); HRMS (ESI⁻); C₂₄H₂₄O₅N₃S₂ [M-H]⁻; found 498.11756, requires 498.11629.

(-)-(2*S*,5*R*)-2-Phenyl-*N*-(4-(morpholinosulfonyl)phenyl)-6-hydroxy-8-oxo-5,8-dihydro-1*H*,3*H*pyrrolo[1,2-*c*]thiazole-7-carboxamide 9z

Yield (0.14 g, 30 %); light brown solid; mp 118-120 °C; R_f = 0.47 (EtOAc/MeOH 96:4); $[\alpha]_D^{25}$ = -203.4 (*c* = 0.23, CHCl₃); v_{max}/cm⁻¹ (neat) 1162, 1347 (S=O), 1629 (C=C), 1655 (C=O), 1688 (C=O); δ_H (400 MHz, CDCl₃): 3.00 (4H, br. t, *J* = 4.7 Hz, H10), 3.06 (1H, dd, *J* = 11.3, 8.6 Hz, H4_A),

3.34 (1H, dd, J = 11.3, 7.0 Hz, H4_B), 3.75 (4H, br. t, J = 4.7 Hz, H11), 4.92 (1H, dd, J = 8.3, 7.3 Hz, H5), 6.28 (1H, s, H2), 7.30 - 7.36 (1H, m, Ar-C*H*), 7.36 - 7.42 (2H, m, Ar-C*H*), 7.47 - 7.53 (2H, m, Ar-C*H*), 7.75, 7.78 (4H, ABq, $J_{AB} = 9.0$ Hz, Ar-C*H*), 8.55 (1H, br. s, OH), 9.68 (1H, s, NH); δ_C (100.6 MHz, CDCl₃): 32.2 (C4), 45.9 (C10), 61.7 (C2), 66.0 (C11), 66.2 (C5), 99.3 (C7), 119.9, 126.4, 128.4, 128.8, 129.2 (Ar-C*H*), 130.5, 139.4, 141.0 (Ar-C), 163.9 (C9), 171.2 (C8), 184.0 (C6); *m*/*z* (ESI⁻) 500 ([M-H]⁻, 100 %); HRMS (ESI⁻); C₂₃H₂₂O₆N₃S₂ [M-H]⁻; found 500.09556, requires 500.09555.

(-)-(9*H*-Fluoren-9-yl)methyl(4-((4-((2*S*,5*R*)-6-hydroxy-8-oxo-2-phenyl-5,8-dihydro-1*H*,3*H*-pyrrolo[1,2-*c*]thiazole-7-carboxamido)phenyl)sulfonyl)phenyl)carbamate 9a'

Yield (0.32 g, 30 %); yellow solid, mp 170 °C; 1.3:1 tautomers; $R_f = 0.59$ (EtOAc/MeOH 98:2); $[\alpha]_D^{25} = -118.3$ (c = 0.21, CHCl₃); v_{max}/cm^{-1} (neat) 1148, 1364 (S=O), 1629 (C=C), 1649 (C=O), 1690 (C=O), 1736 (C=O), 3302 (N-H/O-H); δ_H (500 MHz, Acetone- d_6) major tautomer: 3.13 - 3.25 (1H, m, H4_A), 3.45 (1H, dd, J = 10.9, 6.8 Hz, H4_B), 4.30 (1H, t, J = 6.5 Hz, OCH₂CH-), 4.54 (2H, d, J = 6.6 Hz, OCH₂CH-), 5.14 -

5.20 (1H, m, H5), 6.25 (1H, s, H2), 7.22 - 7.44 (8H, m, Ar-C*H*), 7.45 - 7.56 (3H, m, Ar-C*H*), 7.68 - 7.76 (4H, m, Ar-C*H*), 7.84 - 7.91 (4H, m, Ar-C*H*), 7.92 - 7.97 (2H, m, Ar-C*H*), 9.31 (1H, br. s, NH/OH), 9.91 (1H, br. s, NH/OH); minor tautomer: 2.99 - 3.05 (1H, m, H4_A), 3.40 (1H, dd, J = 11.0, 6.6 Hz, H4_B), 4.30 (1H, t, J = 6.5 Hz, OCH₂C*H*-), 4.55 (2H, d, J = 6.6 Hz, OCH₂CH-), 5.01 (1H, app t, J = 7.5 Hz, H5), 6.20 (1H, s, H2), 7.22 - 7.44 (8H, m, Ar-C*H*), 7.45 - 7.56 (3H, m, Ar-C*H*), 7.68 - 7.76 (4H, m, Ar-C*H*), 7.84 - 7.91 (4H, m, Ar-C*H*), 7.92 - 7.97 (2H, m, Ar-C*H*), 9.31

(1H, br. s, NH/OH), 9.91 (1H, br. s, NH/OH); δ_C (125.8 MHz, Acetone-*d*₆) major tautomer: 32.9 (C4), 47.9 (OCH₂CH-), 62.5 (C2), 67.4 (OCH₂CH-), 67.8 (C5), 94.4 (C7), 119.1, 119.2, 121.0, 126.0, 127.3, 127.4, 128.1, 128.7, 129.3, 129.5, 129.7, 129.8 (Ar-CH), 129.6, 130.2, 136.5, 138.6, 142.3, 144.9, 146.2 (Ar-C), 154.2 (HNCO₂), 164.4 (C9), 172.6 (C8), 185.0 (C6); minor tautomer: 35.4 (C4), 47.9 (OCH₂CH-), 62.9 (C2), 67.4 (OCH₂CH-), 69.6 (C5), 94.4 (C7), 119.1, 119.2, 121.0, 126.0, 127.3, 127.4, 128.1, 128.7, 129.3, 129.5, 129.7, 129.8 (Ar-CH), 129.6, 130.2, 136.5, 138.6, 142.3, 144.9, 146.2 (Ar-C), 154.2 (HNCO₂), 164.4 (C9), 176.6 (C8), 185.0 (C6); *m/z* (ESI/FI) molecular ion not detected.

(-)-(2*S*,5*R*)-*N*-(4-((4-Aminophenyl)sulfonyl)phenyl)-6-hydroxy-8-oxo-2-phenyl-5,8-dihydro-1*H*,3*H*-pyrrolo[1,2-*c*]thiazole-7-carboxamide 9b'

Tetramate **9a'** (0.22 g, 0.31 mmol, 1.0 eq) was dissolved in DMF (2 mL) and piperidine (0.03 mL, 0.31 mmol, 1.0 eq) was added. The reaction was stirred at rt for 1 h until complete deprotection was observed by TLC. The crude was purified by silica gel flash column chromatography to

obtain **9b**' (eluent: 100 % EtOAc to EtOAc/MeOH 9:1). Yield (62 mg, 40 %); brown solid, mp 152-156 °C; $R_f = 0.56$ (EtOAc/MeOH 9:1); $[\alpha]_D^{25} = -209.4$ (c = 0.20, CHCl₃); v_{max}/cm^{-1} (neat) 1146, 1366 (S=O), 1627 (C=C), 1654 (C=O), 1687 (C=O); δ_H (500 MHz, Acetone- d_6): 3.18 (1H, dd, J = 11.0, 8.9 Hz, H4_A), 3.45 (1H, dd, J = 10.9, 6.8 Hz, H4_B), 5.16 (1H, app t, J = 7.7 Hz, H5), 6.25 (1H, s, H2), 6.74 (2H, d, J = 8.8 Hz, Ar-CH), 7.29 - 7.34 (1H, m, Ar-CH), 7.35 - 7.41 (2H, m, Ar-CH), 7.52 - 7.56 (2H, m, Ar-CH), 7.63 (2H, d, J = 8.8 Hz, Ar-CH), 7.84, 7.88 (4H, ABq, $J_{AB} = 8.8$ Hz, Ar-CH); δ_C (125.8 MHz, Acetone- d_6): 32.9 (C4), 62.5 (C2), 67.8 (C5), 99.7 (C7), 114.3, 120.6, 127.4, 128.9, 129.2, 129.5, 130.5 (Ar-CH), 129.0, 140.1, 141.9, 142.0, 154.1 (Ar-C), 164.3 (C9), 172.7 (C8), 184.8 (C6); m/z (ESI⁻) 506 ([M-H]⁻, 47 %); HRMS (ESI⁺); C₂₅H₂₂N₃O₅S₂ [M+H]⁺; found 508.09978, requires 508.09954.

(-)-(2*S*,5*R*)-2-(4-Bromophenyl)-6-hydroxy-8-oxo-*N*-(4-(piperidin-1-ylsulfonyl)phenyl)-5,8dihydro-1*H*,3*H*-pyrrolo[1,2-*c*]thiazole-7-carboxamide 9c'

Yield (0.57 g, 40 %); brown foam; mp 148-150 °C; $R_f = 0.70$ (EtOAc/MeOH 9:1); $[\alpha]_D^{25} = -263.4$ (c = 0.15, CHCl₃); v_{max}/cm^{-1} (neat) 1162,1337 (S=O), 1631 (C=C), 1650 (C=O), 1690 (C=O); δ_H (500 MHz, Acetone- d_6): 1.35 - 1.47 (2H, m, H12), 1.61 (4H, br. quin, J = 5.7 Hz, H11), 2.96

(4H, br. t, J = 5.4 Hz, H10), 3.21 (1H, dd, J = 11.0, 8.8 Hz, H4_A), 3.49 (1H, dd, J = 11.0, 7.0 Hz,

H4_B), 3.78 (2H, br. s, N-H + O-H), 5.21 (1H, app t, J = 7.7 Hz, H5), 6.25 (1H, s, H2), 7.53, 7.59 (4H, ABq, $J_{AB} = 8.6$ Hz, Ar-CH), 7.76 (2H, d, J = 8.8 Hz, Ar-CH), 7.92 (2H, d, J = 8.8 Hz, Ar-CH); δ_{C} (125.8 MHz, Acetone- d_{6}): 24.2 (C12), 26.0 (C11), 32.9 (C4), 47.8 (C10), 61.9 (C2), 67.7 (C5), 99.9 (C7), 120.5, 129.6, 130.0, 132.5 (Ar-CH), 122.4, 132.7, 141.3, 142.1 (Ar-C), 164.3 (C9), 172.7 (C8), 184.8 (C6); m/z (ESI⁻) 576, 578 ([M-H]⁻, 100 %); HRMS (ESI⁺); C₂₄H₂₅O₅N₃BrS₂ [M+H]⁺; found 578.04135 and 580.03904 requires 578.04135 and 580.03930.

(-)-(2*R*,3*S*,4*S*,5*R*,6*S*)-2-(acetoxymethyl)-6-(4-((2*S*,5*R*)-6-hydroxy-8-oxo-2-phenyl-6a,8-dihydro-1*H*,2*H*-pyrrolo[1,2-*c*]thiazole-7-carboxamido)phenoxy)tetrahydro-2*H*-pyran-3,4,5-triyl triacetate 9d'

Yield (0.17 g, 60 %); yellow foam, mp 130-132 °C; $R_f = 0.72$ (EtOAc/MeOH 9:1); $[\alpha]_D^{25} = -148.7$ (c = 0.20, CHCl₃); v_{max}/cm^{-1} (neat) 1213 (C-O), 1647 (C=O, br with shoulder towards smaller wave number), 1689 (C=O),

1747 (C=O); $\delta_{\rm H}$ (500 MHz, CD₂Cl₂): 1.99 (3H, s, CH₃-C(=O)-O-), 2.04 (3H, s, CH₃-C(=O)-O-), 2.06 (3H, s, CH₃-C(=O)-O-), 2.17 (3H, s, CH₃-C(=O)-O-), 3.03 (1H, dd, J = 11.1, 7.8 Hz, H4_A), 3.26 (1H, dd, J = 11.0, 7.4 Hz, H4_B), 4.04 - 4.09 (1H, m, H5'), 4.15 (1H, dd, J = 11.3, 6.0 Hz, H6'_A), 4.21 (1H, dd, J = 11.3, 7.2 Hz, H6'_B), 4.58 (1H, br signal, H5), 5.01 (1H, d, J = 7.9 Hz, H1'), 5.10 (1H, dd, J = 10.5, 3.6 Hz, H3'), 5.39 (1H, dd, J = 10.5, 8.0 Hz, H2'), 5.44 (1H, dd, J = 3.4, 0.9 Hz, H4'), 6.33 (1H, s, H2), 6.97 (2H, d, J = 9.0 Hz, Ar-CH), 7.26 - 7.32 (1H, m, Ar-CH), 7.33 - 7.40 (2H, m, Ar-CH), 7.45 - 7.49 (2H, m, Ar-CH), 7.51 (2H, d, J = 9.0 Hz, Ar-CH); $\delta_{\rm C}$ (125.8 MHz, CD₂Cl₂): 20.9, 21.0, 21.0, 21.1 (4xCH₃-C(=O)-O-), 33.7 (C4), 62.0 (C6'), 63.4 (C2), 67.5 (C4'), 68.7 (C5), 69.1 (C2'), 71.4 (C3'), 71.7 (C5'), 100.7 (C1'), 118.1, 121.8, 126.8, 128.3, 129.0 (Ar-CH), 134.4, 142.0, 153.6 (Ar-C), 164.7 (C9), 169.9, 170.5, 170.7, 170.8 (CH₃-C(=O)-O-), 175.8 (C8), 189.0 (C6); *m/z* (ESI⁻) 697 ([M-H]⁻, 100 %); HRMS (ESI⁻); C₃₃H₃₃O₁₃N₂S [M-H]⁻; found 697.16989, requires 697.16979.

(-)-(2*S*,5*R*)-6-Hydroxy-8-oxo-2-phenyl-*N*-(4-(((2*S*,3*R*,4*S*,5*R*,6*R*)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2*H*-pyran-2-yl)oxy)phenyl)-5,8-dihydro-1*H*,3*H*-pyrrolo[1,2*c*]thiazole-7-carboxamide 9e'

Tetramate **9d'** (20 mg, 0.03 mmol, 1.0 eq) was dissolved in MeOH (2 mL) and aq. K_2CO_3 (4.8 mg in 0.5 mL of H₂O, 0.034 mmol, 1.2 eq) was added. The reaction was stirred at rt for 10-15 min and upon

completion, solvents were removed *in vacuo*. The residue was treated with MeOH, filtered and concentrated *in vacuo* to obtain **9e**'. Yield (15 mg, 89 %); yellow solid, mp >250 °C; $R_f = 0.10$ (EtOAc/MeOH 3:1); $[\alpha]_D^{25} = -221.7$ (c = 0.12, H₂O); v_{max}/cm^{-1} (neat) 1215 (C-O), 1630 (C=C, br with shoulder towards larger wave number), 1664 (C=O), 3233 (O-H); δ_H (500 MHz, D₂O): 2.98 (1H, dd, J = 10.4, 8.5 Hz, H4_A), 3.24 (1H, dd, J = 10.8, 7.6 Hz, H4_B), 3.68 - 3.82 (5H, m, H2', H3', H5', 2xH6'), 3.95 (1H, app d, J = 3.0 Hz, H4'), 4.48 (1H, app t, J = 7.6 Hz, H5), 4.97 (1H, d, J = 7.6 Hz, H1'), 6.29 (1H, s, H2), 7.08 (2H, d, J = 8.8 Hz, Ar-CH), 7.30 - 7.50 (7H, m, Ar-CH); δ_C (125.8 MHz, D₂O): 32.6 (C4), 60.7 (C6'), 62.8 (C2), 68.5 (C4'), 69.4 (C5), 70.5, 72.5, 75.3 (C2', C3', C5'), 93.0 (C7), 101.0 (C1'), 117.0, 123.4, 125.9, 128.0, 128.9 (Ar-CH), 132.6, 141.4, 153.3 (Ar-C), 165.0 (C9), 179.0 (C8), 193.6 (C6); m/z (ESI⁻) 529 ([M-H]⁻, 100 %); HRMS (ESI⁺); C₂₅H₂₆O₉N₂NaS [M+Na]⁺; found 553.12523, requires 553.12512.

(-)-(2*S*,5*R*)-2-(2-Chloro-4-fluorophenyl)-6-hydroxy-8-oxo-*N*-(4-(piperidinyl)-5,8-dihydro-1*H*,3*H*-pyrrolo[1,2-*c*]thiazole-7-carboxamide 9f'

Yield (0.10 g, 30 %); light brown foam; mp 80-84 °C; $R_f = 0.54$ (EtOAc/MeOH 4:1); $[\alpha]_D^{25} = -320.5$ (c = 0.15, CHCl₃); v_{max}/cm^{-1} (neat) 1649 (C=O), 1685 (C=O); δ_H (500 MHz, CD₂Cl₂): 1.60 - 1.74 (6H, m, H11, H12), 3.04 (1H, dd, J = 11.2, 8.4 Hz, H4_A), 3.27 (1H, dd, J =11.2, 7.1 Hz, H4_B), 3.75 - 3.91 (4H, m, H10), 4.68 (1H, app t, J = 7.7

Hz, H5), 6.51 (1H, s, H2), 7.03 (1H, app td, J = 8.4, 2.5 Hz, H5'), 7.16 (1H, dd, J = 8.4, 2.5 Hz, H3'), 7.45 (1H, dd, J = 8.7, 6.0 Hz, H6'); $\delta_{\rm C}$ (125.8 MHz, CD₂Cl₂): 24.6, 26.8 (C12, C11), 33.5 (C4), 47.9 (C10), 61.2 (C2), 69.8 (C5), 90.0 (C7), 114.8 (d, J = 21.9 Hz, C5'), 117.7 (d, J = 24.8 Hz, C3'), 128.2 (d, J = 9.5 Hz, C6'), 133.5 (d, J = 10.5 Hz, C2'), 135.8 (d, J = 3.8 Hz, C1'), 162.4 (d, J = 24.9 Hz, C4'), 166.1 (C9), 175.9 (C8), 192.7 (C6); m/z (ESI⁻) 395 ([M-H]⁻, 100 %); HRMS (ESI⁺); C₁₈H₁₉O₃N₂CIFS [M+H]⁺; found 397.07851, requires 397.07835.

(-)-(2*S*,5*R*)-2-(2-Chloro-4-fluorophenyl)-6-hydroxy-8-oxo-*N*-(4-(3-phenylpropyl)piperidinyl)-5,8-dihydro-1*H*,3*H*-pyrrolo[1,2-*c*]thiazole-7-carboxamide 9g'

Yield (0.15 g, 36 %); yellow foam; mp 78-80 °C; $R_f = 0.34$ (EtOAc/MeOH 9:1); $[\alpha]_D^{25} = -175.8$ (c = 0.27, CHCl₃); v_{max}/cm^{-1} (neat) 1686 (C=O); δ_H (500 MHz, CD₂Cl₂): 1.13 - 1.35 (3H, m, H11, H15), 1.53 - 1.69 (3H, m, H12, H14), 1.75 - 1.87 (2H, m, H11), 2.56 - 2.63 (1H, m, H15), 2.65 - 2.80 (1H, m, H13), 2.88 - 2.98 (2H, m,

H10), 3.03 (1H, dd, J = 11.3, 8.1 Hz, H4_A), 3.25 (1H, dd, J = 11.3, 7.3 Hz, H4_B), 3.32 - 3.38 (1H, m, H13), 4.55 - 4.68 (3H, m, H5, H10), 6.50 (1H, s, H2), 7.02 (1H, app td, J = 8.4, 2.6 Hz, H5'), 7.13 - 7.20 (4H, m, H3', H17, H19), 7.23 - 7.29 (2H, m, H18), 7.45 (1H, dd, J = 8.8, 6.1 Hz, H6'); $\delta_{\rm C}$ (125.8 MHz, CD₂Cl₂): 29.1 (C14), 33.0 (C11), 33.5 (C4), 36.1 (C12), 36.5 (C15), 44.9 (C13), 47.0 (C10), 61.3 (C2), 69.9 (C5), 91.2 (C7), 114.8 (d, J = 21.0 Hz, C5'), 117.7 (d, J = 24.8 Hz, C3'), 126.2 (C19), 128.2 (d, J = 8.6 Hz, C6'), 128.8 (C18), 128.9 (C17), 133.5 (d, J = 10.5 Hz, C2'), 136.0 (d, J = 2.9 Hz, C1'), 143.2 (C16), 162.4 (d, J = 249.9 Hz, C4'), 166.2 (C9), 175.9 (C8), 191.9 (C6); m/z (ESI⁻) 513 ([M-H]⁻, 100 %); HRMS (ESI⁺); C₂₇H₂₉O₃N₂ClFS [M+H]⁺; found 515.15651, requires 515.15660.

9-Fluorenylmethyl (4-hydroxyphenyl)carbamate, 11b

To 4-aminophenol **11a** (1.0 g, 9.13 mmol, 1.0 eq) in THF (20 mL), DIPEA (1.91 mL, 11.0 mmol, 1.2 eq) and Fmoc chloride (2.85 g, 11.0 mmol, 1.2 eq) were added and stirred at reflux for 1 h. The reaction was cooled to rt, and concentrated *in vacuo*. The residue was dissolved in 10 mL of CH_2Cl_2 and treated with 25 mL of sat. NH₄Cl. The precipitate formed was filtered

and washed with NH₄Cl (2x15 mL) to obtain **11b**. Yield (2.12 g, 70 %); brown solid, mp 230-232 °C; $R_f = 0.47$ (EtOAc/petrol 1:2); v_{max}/cm^{-1} (neat) 1697 (C=O), 3337 (O-H); δ_H (400 MHz, Dimethyl sulfoxide- d_6): 4.28 (1H, t, J = 6.6 Hz, OCH₂CH-), 4.43 (2H, br. d, J = 5.9 Hz, OCH₂CH-), 6.69 (2H, d, J = 7.3 Hz, Ar-CH), 7.26 (2H, Ar-CH), 7.34 (2H, app t, J = 7.1 Hz, Ar-CH), 7.42 (2H, app t, J = 7.1 Hz, Ar-CH), 7.74 (2H, br. d, J = 6.4 Hz, Ar-CH), 7.90 (2H, d, J = 7.6 Hz, Ar-CH), 9.15 (1H, br. s., NH/OH), 9.42 (1H, br. s., NH/OH); δ_C (100.6 MHz, Dimethyl sulfoxide- d_6): 46.7 (OCH₂CH-), 65.4 (OCH₂CH-), 115.1, 120.2, 120.2, 125.1, 127.1, 127.7 (Ar-CH), 130.5, 140.8, 143.9, 152.9 (Ar-C), 153.6 (HNCO₂); m/z (ESI⁺) 354 ([M+Na]⁺, 75 %); HRMS (ESI⁺); C₂₁H₁₇O₃NNa [M+Na]⁺; found 354.10922, requires 354.11006.

(+)-9-Fluorenylmethyl (4-(2,3,4,6-tetra-*O*-acetyl-β-D-galactopyranosyloxy)phenyl)carbamate 12a

Aryl glycosylation of **11b** was according to a modified literature procedure.² β -D-Galactose pentaacetate (0.87 g, 2.23 mmol, 1.0 eq) and **11b** (0.89 g, 2.68 mmol, 1.2 eq) in CH₂Cl₂ (10 mL) was cooled to 0 °C. BF₃.OEt₂ (0.33 mL, 2.68 mmol, 1.2 eq) was added dropwise under N₂. The reaction flask was warmed to rt and stirred for 18 h. The

reaction mixture was quenched with sat. NaHCO₃ (10 mL) and left to stir for 30 min. The product was extracted with CH₂Cl₂ dried over MgSO₄, filtered and concentrated *in vacuo*. The residue was purified by silica gel flash column chromatography to obtain **12a** (eluent: EtOAc/petrol). Yield (0.57 g, 39 %); brown solid; $R_f = 0.47$ (EtOAc/petrol 1:2); $[\alpha]_D^{25} = +35.4$ (c = 0.23, CHCl₃) v_{max}/cm^{-1} (neat) 1216 (C-O), 1745 (C=O); δ_H (400 MHz, CD₂Cl₂): 1.99 (3H, s, CH₃-C(=O)-O-), 2.03 (3H, s, CH₃-C(=O)-O-), 2.06 (3H, s, CH₃-C(=O)-O-), 2.17 (3H, s, CH₃-C(=O)-O-), 4.02 - 4.24 (3H, m, H6_A, H6_B, H5), 4.28 (1H, t, J = 6.4 Hz, OCH₂CH-), 4.52 (2H, d, J = 6.6 Hz, OCH₂CH-), 5.00 (1H, d, J = 8.1 Hz, H1), 5.11 (1H, dd, J = 10.3, 3.4 Hz, H3), 5.39 (1H, dd, J = 10.5, 8.1 Hz, H2), 5.44 (1H, app d, J = 2.7 Hz, H4), 6.90 (1H, br. s., NH), 6.95 (2H, d, J = 8.8 Hz, Ar-CH), 7.33 (4H, app t, J = 7.1 Hz, Ar-CH), 7.42 (2H, app t, J = 7.3 Hz, Ar-CH), 7.63 (2H, d, J = 7.3 Hz, Ar-CH), 7.80 (2H, d, J = 7.3 Hz, Ar-CH); δ_C (100.6 MHz, CD₂Cl₂): 20.9, 21.0, 21.0, 21.1 (CH₃-C(=O)-O-), 47.7 (OCH₂CH-), 62.0 (C6), 67.2 (OCH₂CH-), 67.6 (C4), 69.1 (C2), 71.4 (C3), 71.7 (C5), 100.7 (C1), 118.3, 120.5, 120.8, 125.5, 127.6, 128.3 (Ar-CH) 141.9, 144.4, 153.6, 154.1 (Ar-C), 169.9, 170.6, 170.7, 170.8 (CH₃-C(=O)-O-); m/z (ESI⁺) 684 ([M+Na]⁺, 44 %); HRMS (ESI⁺); C₃₅H₃₅O₁₂NNa [M+Na]⁺; found 684.20315, requires 684.20515.

(+)-4-(2,3,4,6-tetra-O-acetyl-β-D-galactopyranosyloxy)aniline, 12b

12a (0.46 g, 0.7 mmol, 1.0 eq) was dissolved in DMF (4 mL) and piperidine (0.07 mL, 0.7 mmol, 1.0 eq) was added. The reaction was stirred at rt for 1 h until complete deprotection was observed by TLC. The crude was purified by silica gel flash column chromatography to obtain **12b** (eluent: EtOAc/petrol). Yield (0.23 g, 75 %); yellow oil; $R_f = 0.18$

(EtOAc/petrol 1:1); $[\alpha]_D^{25} = +3.84$ (c = 0.43, CHCl₃) {lit. $[\alpha]_D^{22} = +5.83$ (c = 2.0, CHCl₃)}³ v_{max}/cm⁻¹ (neat) 1216 (C-O), 1743 (C=O), 3368, 3452 (N-H); δ_H (500 MHz, CD₂Cl₂): 1.98 (3H, s, CH₃-C(=O)-O-), 2.03 (3H, s, CH₃-C(=O)-O-), 2.06 (3H, s, CH₃-C(=O)-O-), 2.17 (3H, s, CH₃-C(=O)-O-), 3.60 (2H, br. s., NH), 3.96 - 4.04 (1H, m, H5), 4.14 (1H, dd, J = 11.4, 6.0 Hz, H6_A), 4.20 (1H, dd, J = 11.4, 7.1 Hz, H6_B), 4.88 (1H, d, J = 8.0 Hz, H1), 5.07 (1H, dd, J = 10.4, 3.5 Hz, H3), 5.31 - 5.36 (1H, m, H2, obscured by solvent peak), 5.42 (1H, dd, J = 3.4, 0.9 Hz, H4), 6.60 (2H, d, J = 8.8 Hz, Ar-CH); δ_C (125.8 MHz, CD₂Cl₂): 20.9, 21.0, 21.0, 21.1 (CH₃-

C(=O)-O-), 62.0 (C6), 67.6 (C4), 69.2 (C2), 71.4 (C3), 71.6 (C5), 101.7 (C1), 116.1, 119.4 (Ar-*C*H) 143.5, 150.3 (Ar-C), 169.9, 170.6, 170.7, 170.7 (CH₃-*C*(=O)-O-); *m/z* (ESI⁺) 462 ([M+Na]⁺, 20 %); HRMS (ESI⁺); C₂₀H₂₅O₁₀NNa [M+Na]⁺; found 462.13580, requires 462.13707.

9-Fluorenylmethyl (4-((4-aminophenyl)sulfonyl)phenyl)carbamate 10b

To 4-aminophenylsulfone **10a** (1.0 g, 4.0 mmol, 1.0 eq) in THF (20 mL), DIPEA (0.77 mL, 4.4 mmol, 1.1 eq) and Fmoc chloride (1.15 g, 4.4 mmol, 1.1 eq) were added and stirred at reflux for 3 h. The reaction mixture was cooled to rt, treated with sat. NH₄Cl (20 mL) and the product was extracted with EtOAc. The organic fractions were dried over Na₂SO₄, filtered and concentrated *in vacuo*. The residue was purified by silica gel flash column

chromatography to obtain **10b** (eluent: EtOAc/petrol). Yield (1.18 g, 63 %); white foam, mp 144 °C; $R_f = 0.61$ (EtOAc/petrol 2:1); v_{max}/cm^{-1} (neat) 1145, 1315 (S=O), 1722 (C=O), 3335, 3375, 3478 (N-H); δ_H (400 MHz, CDCl₃): 4.15 (2H, br. s., NH), 4.23 (1H, t, J = 6.4 Hz, OCH₂CH-), 4.54 (2H, d, J = 6.6 Hz, OCH₂CH-), 6.60 (2H, d, J = 8.8 Hz, Ar-CH), 7.21 (1H, br. s, NH), 7.30 (2H, td, J = 7.5, 1.2 Hz, Ar-CH), 7.37 - 7.47 (4H, m, Ar-CH), 7.59 (2H, d, J = 7.6 Hz, Ar-CH), 7.65 (2H, d, J = 8.8 Hz, Ar-CH), 7.74 - 7.80 (4H, m, Ar-CH); δ_C (100.6 MHz, CDCl₃): 46.9 (OCH₂CH-), 67.0 (OCH₂CH-), 114.1, 118.3, 120.0, 124.8, 127.1, 127.8, 128.4, 129.5 (Ar-CH), 129.6, 136.8, 141.3, 141.8, 143.4, 150.9 (Ar-C), 152.9 (HNCO₂); m/z (ESI⁺) 471 ([M+H]⁺, 100 %); HRMS (ESI⁺); C₂₇H₂₃O₄N₂S [M+H]⁺; found 471.13716, requires 471.13730.

General procedure: Suzuki-Miyaura cross-coupling reactions

Suzuki-Miyaura cross-coupling reactions were carried out according to a modified literature procedure.⁹⁰ Tetramic acid (1.0 eq), the appropriate boronic acid (3 eq), $Pd(OAc)_2$ (0.05 eq) XPhos (0.15 eq), aq. Na₂CO₃ (2 M, 6.3 eq) and 1,2-dimethoxyethane (6.3 mL/mmol) were placed in a sealed flask and degassed with N₂. The suspension was refluxed for 15-48 h as required with the progress of the reaction monitored by TLC and LRMS. The crude mixture was filtered through a Celite plug and the filtrate was concentrated *in vacuo*. The residue was purified by flash column chromatography (eluent: EtOAc/petrol to EtOAc/MeOH/1% Et₃N). The product isolated was dissolved in CH₂Cl₂ and washed with 5% citric acid. The organic fractions were dried over Na₂SO₄, filtered and concentrated *in vacuo* to yield the desired bicyclic carboxamide tetramate. Where the major and minor tautomeric forms have distinct chemical shift values, they have been specified as either AB (major tautomeric form) or CD (minor tautomeric form) in compound characterisation.

(-)-(2*S*,5*R*)-*N*-(Adamantan-1-yl)-2-(4-(furan-2-yl)phenyl)-6-hydroxy-8-oxo-5,8-dihydro-1*H*,3*H*-pyrrolo[1,2-*c*]thiazole-7-carboxamide 14a

Yield (0.35 g, 72 %); brown foam, 2.7:1 AB:CD tautomers, mp 130-132 °C; $R_f = 0.63$ (EtOAc/MeOH 98:2); $[\alpha]_D^{25} = -240.7$ (c = 0.25, CHCl₃); v_{max}/cm^{-1} (neat) 1625 (C=C), 1648 (C=O), 1689 (C=O), 3315 (O-H/N-H); δ_H (400 MHz, CDCl₃): 1.70 (6H, Adamantyl-CH₂), 2.06 (6H, Adamantyl-CH₂), 2.12 (3H, Adamantyl-CH), 2.98 - 3.09 (1H, m, H4_A), 3.27 (1H, dd, J = 11.1, 7.2 Hz, H4_B), 4.45 (1H, app t, J = 7.7 Hz, H5 CD), 4.69 (1H, app t,

J = 7.7 Hz, H5 AB), 6.27 (1H, s, H2 AB), 6.37 (1H, s, H2 CD), 6.47 (1H, dd, J = 3.4, 1.7 Hz, H7'), 6.65 (1H, app d, J = 3.4 Hz, H6'), 7.43 (1H, br. s, NH AB), 7.45 - 7.50 (3H, m, H2' and H8'), 7.65 (2H, d, J = 8.3 Hz, H3'), 7.94 (1H, br. s, NH CD), 11.75 (1H, br. s, OH); $\delta_{\rm C}$ (100.6 MHz, CDCl₃): 29.3 (Adamantyl-CH), 32.4 (C4 AB), 32.7 (C4 CD), 35.8 (Adamantyl-CH₂ CD), 36.0 (Adamantyl-CH₂ AB), 41.5 (Adamantyl-CH₂ AB), 41.6 (Adamantyl-CH₂ CD), 53.1 (Adamantyl-C AB), 54.5 (Adamantyl-C CD), 61.9 (C2 AB), 62.5 (C2 CD), 67.3 (C5 AB), 70.6 (C5 CD), 85.3 (C7 CD), 94.9 (C7 AB), 105.3 (C6'), 111.6 (C7'), 123.9 (C3'), 126.7 (C2' CD), 126.8 (C2' AB), 130.5 (C4' CD), 130.6 (C4' AB), 139.2 (C1' AB), 139.5 (C1' CD), 142.2 (C8'), 153.4 (C5'), 166.0 (C9 AB), 166.5 (C9 CD), 172.4 (C8 AB), 178.3 (C8 CD), 188.2 (C6 AB), 191.2 (C6 CD); *m/z* (ESI⁻) 475 ([M-H]⁻, 100 %); HRMS (ESI⁻); C₂₇H₂₇N₂O₄S [M-H]⁻; found 475.16905, requires 475.16860.

(-)-(2*S*,5*R*)-*N*-(Adamantan-1-yl)-2-(4'-formyl-[1,1'-biphenyl]-4-yl)-6-hydroxy-8-oxo-5,8dihydro-1*H*,3*H*-pyrrolo[1,2-*c*]thiazole-7-carboxamide 14b

Yield (0.31 g, 74 %); brown foam, 2.6:1 AB:CD tautomers, mp 150-152 °C; $R_f = 0.49$ (EtOAc: MeOH; 96:4); $[\alpha]_D^{25} = -216.1$ (*c* = 0.19, CHCl₃); v_{max} /cm⁻¹ (neat) 1623 (C=C), 1646 (C=O), 1687 (C=O), 3315 (O-H/N-H); δ_H (400 MHz, CDCl₃): 1.57 - 1.80 (6H, m, Adamantyl-CH₂), 2.02 - 2.09 (6H, m, Adamantyl-CH₂), 2.10 - 2.20 (3H, m, Adamantyl-CH), 2.99 - 3.10 (1H, m, H4_A), 3.29 (1H, dd, *J* = 11.3, 7.1 Hz, H4_B), 4.48 (1H, app t, *J* = 7.7 Hz,

H5 CD), 4.72 (1H, app t, J = 7.8 Hz, H5 AB), 6.30 (1H, s, H2 AB), 6.40 (1H, s, H2 CD), 7.43 (1H, br. s, NH), 7.54 - 7.60 (2H, m, Ar-CH), 7.60 - 7.64 (2H, m, Ar-CH), 7.73 (2H, d, J = 8.3 Hz, Ar-CH), 7.95 (2H, d, J = 8.3 Hz, Ar-CH), 10.05 (1H, s, CHO), 11.00 (1H, br. s, OH); $\delta_{\rm C}$ (100.6 MHz, CDCl₃): 29.3 (Adamantyl-CH), 32.6 (C4 AB), 32.9 (C4 CD), 35.8 (Adamantyl-CH₂ CD), 36.0 (Adamantyl-CH₂ AB), 41.5 (Adamantyl-CH₂ AB), 41.6 (Adamantyl-CH₂ CD), 53.1 (Adamantyl-CH AB), 54.5 (Adamantyl-C CD), 61.7 (C2 AB), 62.3 (C2 CD), 67.5 (C5 AB), 70.7 (C5 CD), 85.3 (C7

CD), 94.7 (C7 AB), 127.0, 127.1, 127.6, 130.2 (Ar-*C*H), 135.3, 139.5, 140.7, 146.4 (Ar-C), 166.0 (C9 AB), 166.5 (C9 CD), 172.4 (C8 AB), 178.2 (C8 CD), 188.4 (C6 AB), 191.1 (C6 CD), 191.8 (*C*HO); *m/z* (ESI⁻) 513 ([M-H]⁻, 100 %); HRMS (ESI⁻); C₃₀H₂₉N₂O₄S [M-H]⁻; found 513.19140, requires 513.18535.

(-)-(2*S*,5*R*)-*N*-(Adamantan-1-yl)-2-(4'-(1,3-dioxolan-2-yl)-[1,1'-biphenyl]-4-yl)-6-hydroxy-8oxo-5,8-dihydro-1*H*,3*H*-pyrrolo[1,2-*c*]thiazole-7-carboxamide 14c

Yield (92 mg, 80 %); yellow oil; 3:1 AB:CD tautomers; $R_f = 0.56$ (EtOAc/MeOH 96:4); $[\alpha]_D^{25} = -182.5$ (c = 0.47, CHCl₃); v_{max}/cm^{-1} (neat) 1622 (C=C), 1647 (C=O), 1687 (C=O), 3316 (O-H/N-H); δ_H (400 MHz, CDCl₃) 1.71 (6H, Adamantyl-CH₂), 2.01 - 2.16 (9H, m, Adamantyl-CH₂ + Adamantyl-CH), 3.02 (1H, dd, J = 11.1, 8.4 Hz, H4_A), 3.29 (1H, dd, J = 11.1, 7.0 Hz, H4_B), 4.00 - 4.07 (2H, m, dioxolane-CH₂), 4.08 - 4.15 (2H, m, dioxolane-CH₂), 4.49 (1H, app t, J = 7.8 Hz, H5 CD), 4.75 (1H, dd, J = 8.1, 7.3 Hz, H5 AB), 5.82 (1H, s, dioxolane-CH), 6.27

(1H, s, H2 AB), 6.36 (1H, s, H2 CD), 7.38 (1H, br. s, NH AB), 7.50 - 7.55 (4H, m, Ar-C*H*), 7.58 - 7.64 (4H, m, Ar-C*H*), 7.94 (1H, br. s, NH CD), 9.75 (1H, br. s, OH); $\delta_{\rm C}$ (100.6 MHz, CDCl₃): 30.1 (Adamantyl-*C*H), 33.1 (C4 AB), 33.5 (C4 CD), 36.4 (Adamantyl-*C*H₂ CD), 36.6 (Adamantyl-*C*H₂ AB), 42.1 (Adamantyl-*C*H₂ AB), 42.2 (Adamantyl-*C*H₂ CD), 53.5 (Adamantyl-C AB), 54.4 (Adamantyl-C CD), 62.4 (C2 AB), 62.9 (C2 CD), 65.9 (dioxolane-*C*H₂), 68.0 (C5 AB), 71.6 (C5 CD), 96.0 (C7), 104.0 (dioxolane-*CH*), 127.4, 127.5, 127.6, 127.9 (Ar-*C*H), 138.0, 140.6, 141.0, 141.8 (Ar-C), 166.6 (C9), 172.9 (C8), 188.4 (C6 AB), 191.1 (C6 CD); *m/z* (ESI⁻) 557 ([M-H]⁻, 50 %); HRMS (ESI⁻); C₃₂H₃₃N₂O₅S [M-H]⁻; found 557.21398, requires 557.21157.

(-)-(2*S*,5*R*)-*N*-(Adamantan-1-yl)-2-(4-allylphenyl)-6-hydroxy-8-oxo-5,8-dihydro-1*H*,3*H*pyrrolo[1,2-*c*]thiazole-7-carboxamide 14d

Yield (25 mg, 45 %); brown oil, 2.5:1 AB:CD tautomers; $R_f = 0.58$ (EtOAc/Petrol 1:1); $[\alpha]_D^{25} = -175.4$ (c = 0.53, CHCl₃); v_{max}/cm^{-1} (neat) 1621 (C=C), 1646 (C=O), 1686 (C=O), 3315 (O-H/N-H); δ_H (200 MHz, CDCl₃); 1.70 (6H, Adamantyl-CH₂), 2.06 (6H, Adamantyl-CH₂), 2.12 (3H, Adamantyl-CH), 2.92 - 3.08 (1H, m, H4_A), 3.26 (1H, dd, J = 11.1, 7.2 Hz, H4_B), 3.38 (2H, app d, J = 5.9 Hz, H1'), 4.44 (1H, app t, J = 7.8 Hz, H5 CD), 4.68 (1H, app t, J = 5.9

7.7 Hz, H5 AB), 5.01 - 5.15 (2H, m, H3'), 5.83 - 6.06 (1H, m, H2'), 6.24 (1H, s, H2 AB), 6.34 (1H,

s, H2 CD), 7.18 (2H, d, J = 8.1 Hz, Ar-CH), 7.40 (2H, d, J = 8.1 Hz, Ar-CH), 7.93 (1H, br. s., NH/OH CD), 10.40 (3H, br. s., NH+OH AB and NH/OH CD); $\delta_{\rm C}$ (100.6 MHz, CDCl₃): 29.3 (Adamantyl-CH), 32.5 (C4 AB), 32.7 (C4 CD), 35.8 (Adamantyl-CH₂ CD), 36.0 (Adamantyl-CH₂ AB), 39.8 (C1'), 41.5 (Adamantyl-CH₂ AB), 41.6 (Adamantyl-CH₂ CD), 53.1 (Adamantyl-C AB), 54.5 (Adamantyl-C CD), 61.9 (C2 AB), 62.4 (C2 CD), 67.3 (C5 AB), 70.6 (C5 CD), 85.4 (C7 CD), 95.0 (C7 AB), 116.0 (C3'), 126.4, 128.8 (Ar-CH CD), 126.5, 128.8 (Ar-CH AB), 137.1 (C2'), 138.1, 140.0 (Ar-C AB), 138.4, 139.9 (Ar-C CD), 166.0 (C9 AB), 166.5 (C9 CD), 172.3 (C8 AB), 178.2 (C8 CD), 188.0 (C6 AB), 191.3 (C6 CD); *m*/*z* (ESI⁻) 449 ([M-H]⁻, 100 %); HRMS (ESI⁺); C₂₆H₃₁N₂O₃S [M+H]⁺; found 451.20477, requires 451.20499.

(-)-(2*S*,5*R*)-*N*-(Adamantan-1-yl)-2-(4'-(methylsulfonyl)-[1,1'-biphenyl]-4-yl)-6-hydroxy-8-oxo-5,8-dihydro-1*H*,3*H*-pyrrolo[1,2-*c*]thiazole-7-carboxamide 14e

Yield (0.16 g, 53 %); brown foam; 3:1 AB:CD tautomers; mp 154-156 °C; $R_f = 0.55$ (EtOAc/MeOH 94:6); $[\alpha]_D^{25} = -218.6$ (c = 0.15, CHCl₃); v_{max}/cm^{-1} (neat) 1149, 1305 (S=O), 1622 (C=C), 1646 (C=O), 1685 (C=O), 3314 (N-H/O-H); δ_H (400 MHz, CD₂Cl₂) 1.70 (6H, Adamantyl-CH₂), 2.01 - 2.16 (9H, m, Adamantyl-CH₂ + Adamantyl-CH), 3.03 (1H, dd, J = 11.3, 8.6 Hz, H4_A), 3.07 (3H, s, CH₃), 3.29 (1H, dd, J = 11.3, 7.1 Hz, H4_B), 4.47 (1H, app t, J = 7.8 Hz, H5 CD), 4.74 (1H, dd, J =

8.1, 7.3 Hz, H5 AB), 6.28 (1H, s, H2 AB), 6.37 (1H, s, H2 CD), 7.17 (1H, br. s, OH), 7.36 (1H, br. s, NH AB), 7.58, 7.64 (4H, ABq, $J_{AB} = 8.3$ Hz, Ar-C*H*), 7.79 (2H, d, J = 8.5 Hz, Ar-C*H*), 7.94 (1H, br. s, NH CD), 7.98 (2H, d, J = 8.5 Hz, Ar-C*H*); δ_{C} (125.8 MHz, CD₂Cl₂): 30.0 (Adamantyl-CH), 33.2 (C4), 36.6 (Adamantyl-CH₂), 42.1 (Adamantyl-CH₂), 45.0 (CH₃), 53.5 (Adamantyl-C), 62.3 (C2 AB), 62.9 (C2 CD), 68.1 (C5 AB), 71.6 (C5 CD), 85.7 (C7 CD), 95.8 (C7 AB), 127.5, 127.6, 128.2, 128.4 (Ar-C*H*), 139.3, 140.0, 142.2, 146.4 (Ar-C CD), 139.4, 140.0, 141.9, 146.4 (Ar-C AB), 166.6 (C9 AB), 167.2 (C9 CD), 172.9 (C8 AB), 179.0 (C8 CD), 188.5 (C6 AB), 191.5 (C6 CD); m/z (ESI⁻) 563 ([M-H]⁻, 21 %); HRMS (ESI⁻); C₃₀H₃₁O₅N₂S₂ [M-H]⁻; found 563.16921, requires 563.16799.

(-)-(2*S*,5*R*)-*N*-(Adamantan-1-yl)-2-(4-(3,5-dimethylisoxazol-4-yl)phenyl)-6-hydroxy-8-oxo-5,8dihydro-1*H*,3*H*-pyrrolo[1,2-*c*]thiazole-7-carboxamide 14f

Yield (0.23 g, 72 %); yellow solid; 2.5:1 AB:CD tautomers; mp 130-134 °C; $R_f = 0.60$ (EtOAc/MeOH 96:4); $[\alpha]_D^{25} = -195.5$ (c = 0.23, CHCl₃); v_{max}/cm^{-1} (neat) 1624 (C=C, br with shoulder towards higher wavenumber), 1686 (C=O), 3311 (N-H/O-H); $\delta_{\rm H}$ (400 MHz, CDCl₃) 1.68 (6H, Adamantyl-C*H*₂), 2.00 - 2.07 (6H, m, Adamantyl-C*H*₂), 2.08 - 2.16 (3H, m, Adamantyl-C*H*), 2.24 (3H, s, C*H*₃), 2.38 (3H, s, C*H*₃), 2.95 - 3.07 (1H, m, H4_A), 3.24 - 3.32 (1H, m, H4_B), 4.47 (1H, app t, J = 7.8 Hz, H5 CD), 4.72 (1H, dd, J = 8.6, 6.9 Hz, H5 AB), 6.25 (1H, s, H2 AB), 6.35 (1H, s, H2 CD), 7.23 (2H, d, J = 8.3 Hz, Ar-C*H*), 7.41 (1H, s, NH AB), 7.48 - 7.55 (2H, m, Ar-C*H*), 7.93 (1H, s, NH CD), 11.16 (1H, br. s, OH); $\delta_{\rm C}$ (100.6 MHz, CDCl₃): 10.7 (CH₃), 11.4 (CH₃), 29.2 (Adamantyl-CH), 32.6 (C4 AB), 32.8 (C4 CD), 35.7 (Adamantyl-CH₂ CD), 35.9 (Adamantyl-CH₂ AB), 41.4 (Adamantyl-CH₂ AB), 41.5 (Adamantyl-CH₂ CD), 53.0 (Adamantyl-C AB), 53.4 (Adamantyl-C CD), 61.6 (C2 AB), 62.1 (C2 CD), 67.5 (C5 AB), 70.7 (C5 CD), 85.2 (C7 CD), 94.7 (C7 AB), 116.0, 130.2, 139.6, 158.5, 165.2 (Ar-C, AB), 116.0, 130.1, 139.9, 158.5, 165.2 (Ar-C CD), 126.6, 129.1 (Ar-CH CD), 126.8, 129.2 (Ar-CH AB), 165.9 (C9 AB), 166.4 (C9 CD), 172.2 (C8 AB), 178.0 (C8 CD), 188.1 (C6 AB), 191.0 (C6 CD); *m/z* (ESI⁻) 504 ([M-H]⁻, 100 %); HRMS (ESI⁻); C₂₈H₃₀O₄N₃S [M-H]⁻; found 504.19749, requires 504.19625.

(-)-(2*S*,5*R*)-*N*-(Adamantan-1-yl)-2-(4-(benzo[*d*][1,3]dioxol-4-yl)phenyl)-6-hydroxy-8-oxo-5,8dihydro-1*H*,3*H*-pyrrolo[1,2-*c*]thiazole-7-carboxamide 14g

Yield (75 mg, 60 %); yellow solid, mp 130-132 °C; 3:1 AB:CD tautomers; $R_f = 0.72$ (EtOAc; 100 %); $[\alpha]_D^{25} = -199.7$ (c = 0.18, CHCl₃); v_{max}/cm^{-1} (neat) 1621 (C=C), 1646 (C=O), 1686 (C=O), 3310 (N-H/O-H); δ_H (400 MHz, CDCl₃) 1.65 -1.74 (6H, m, Adamantyl-CH₂), 2.02 - 2.16 (9H, m, Adamantyl-CH + Adamantyl-CH₂), 2.98 - 3.05 (1H, m, H4_A), 3.24 - 3.32 (1H, m, H4_B), 4.47 (1H, app t, J = 7.8 Hz, H5 CD), 4.74 (1H,

dd, J = 8.1, 7.3 Hz, H5 AB), 6.00 (2H, s, CH_2), 6.25 (1H, s, H2 AB), 6.34 (1H, s, H2 CD), 6.87 - 6.90 (1H, m, Ar-C*H*), 7.05 - 7.09 (2H, m, Ar-C*H*), 7.37 (1H, br. s, NH, AB), 7.50, 7.51 (4H, ABq, $J_{AB} = 8.6$ Hz, Ar-C*H*), 7.93 (1H, br. s, NH CD), 9.01 (1H, br. s, OH); δ_C (125.8 MHz, CDCl₃): 30.0 (Adamantyl-CH), 33.1 (C4 AB), 33.4 (C4 CD), 36.4 (Adamantyl-CH₂ CD), 36.6 (Adamantyl-CH₂ AB), 42.1 (Adamantyl-CH₂ AB), 42.2 (Adamantyl-CH₂ CD), 55.0 (Adamantyl-C), 62.3 (C2 AB), 62.9 (C2 CD), 68.0 (C5 AB), 71.5 (C5 CD), 85.7 (C7 CD), 96.1 (C7 AB), 102.0 (*C*H₂), 107.9, 109.0, 121.1, 127.3, 127.5 (Ar-CH), 135.3, 140.0, 140.3, 141.0, 141.1, 147.8, 147.9, 148.8 (Ar-C), 166.6 (C9 AB), 167.2 (C9 CD), 172.8 (C8 AB), 179.0 (C8 CD), 188.3 (C6 AB), 191.6 (C6 CD); *m/z* (ESI⁻) 529 ([M-H]⁻, 100 %); HRMS (ESI⁺); C₃₀H₃₁O₅N₂S [M+H]⁺; found 531.19469, requires 531.19482.

(-)-(2*S*,5*R*)-*N*-(Adamantan-1-yl)-2-(4-(1-methyl-1*H*-pyrazol-4-yl)phenyl)-6-hydroxy-8-oxo-5,8dihydro-1*H*,3*H*-pyrrolo[1,2-*c*]thiazole-7-carboxamide 14h

Yield (0.24 g, 78 %); light brown foam, mp 140-142 °C; 2.7:1 AB:CD tautomers; $R_f = 0.72$ (EtOAc/MeOH 4:1); $[\alpha]_D^{25} = -293.5$ (*c* = 0.17, CHCl₃); v_{max}/cm^{-1} (neat) 1618 (C=C), 1645 (C=O), 1684 (C=O), 3310 (N-H/O-H); δ_H (400 MHz, CDCl₃) 1.69 (6H, Adamantyl-CH₂), 2.04 (6H, Adamantyl-CH₂), 2.11 (3H, Adamantyl-CH), 3.00 (1H, dd, *J* = 11.0, 8.6 Hz, H4_A), 3.26 (1H, dd, *J* = 11.0, 7.2 Hz, H4_B), 3.93 (3H, s, CH₃), 4.44 (1H, app t, *J* =

7.7 Hz, H5 CD), 4.69 (1H, app t, J = 7.8 Hz, H5 AB), 6.24 (1H, s, H2 AB), 6.34 (1H, s, H2 CD), 7.42 (1H, br. s, NH AB), 7.44, 7.44 (4H, ABq, $J_{AB} = 10.8$ Hz, Ar-C*H*), 7.59 (1H, s, Ar-C*H*), 7.74 (1H, s, Ar-C*H*), 7.92 (1H, s, NH CD), 10.70 (1H, br. s, OH); δ_{c} (125.8 MHz, CDCl₃): 29.2 (Adamantyl-CH), 32.4 (C4 AB), 32.7 (C4 CD), 35.8 (Adamantyl-CH₂ CD), 36.0 (Adamantyl-CH₂ AB), 39.0 (CH₃), 41.4 (Adamantyl-CH₂ AB), 41.5 (Adamantyl-CH₂ CD), 53.4 (Adamantyl-C AB), 54.4 (Adamantyl-C CD), 61.8 (C2 AB), 62.4 (C2 CD), 67.3 (C5 AB), 70.6 (C5 CD), 85.3 (C7 CD), 95.0 (C7 AB), 125.6, 126.8, 126.9, 136.7 (Ar-CH AB), 125.5, 126.7, 126.9, 136.7 (Ar-CH CD), 122.5, 132.3, 138.5 (Ar-C CD), 122.5, 132.4, 138.2 (Ar-C AB), 165.9 (C9 AB), 166.5 (C9 CD), 172.3 (C8 AB), 178.2 (C8 CD), 188.0 (C6 AB), 191.2 (C6 CD); *m/z* (ESI⁻) 489 ([M-H]⁻, 100 %); HRMS (ESI⁺); C₂₇H₃₁O₃N₄S [M+H]⁺; found 491.21116, requires 491.21114.

(-)-(2*S*,5*R*)-*N*-(Adamantan-1-yl)-2-(4-(2,4-dimethoxypyrimidin-5-yl)phenyl)-6-hydroxy-8-oxo-5,8-dihydro-1*H*,3*H*-pyrrolo[1,2-*c*]thiazole-7-carboxamide 14i

Yield (0.18 g, 56 %); light brown foam, mp 106-108 °C; 2.5:1 AB:CD tautomers; $R_f = 0.66$ (EtOAc/MeOH 96:4); $[\alpha]_D^{25} = -290.3$ (c = 0.15, CHCl₃); v_{max}/cm^{-1} (neat) 1624 (C=C), 1647 (C=O), 1687 (C=O), 3313 (N-H/O-H); δ_H (400 MHz, CDCl₃) - 1.68 - 1.74 (6H, m, Adamantyl-CH₂), 2.02 - 2.10 (6H, m, Adamantyl-CH₂), 2.11 - 2.20 (3H, m, Adamantyl-CH), 2.98 - 3.10 (1H, m, H4_A), 3.30 (1H, dd, J = 11.0, 7.1 Hz, H4_B), 4.02

(3H, s, OC*H*₃), 4.04 (3H, s, OC*H*₃), 4.47 (1H, app t, J = 7.8 Hz, H5 CD), 4.71 (1H, dd, J = 8.3, 7.3 Hz, H5 AB), 6.28 (1H, s, H2 AB), 6.38 (1H, s, H2 CD), 6.40 (1H, br. s, OH), 7.43 (1H, br. s, NH AB), 7.47 - 7.56 (4H, m, Ar-C*H*), 7.94 (1H, s, NH CD), 8.24 - 8.27 (1H, m, Ar-C*H*, overlapping singlet peaks for AB and CD tautomers); δ_{C} (125.8 MHz, CDCl₃): 29.3 (Adamantyl-*C*H), 32.6 (C4 AB), 32.9 (C4 CD), 35.8 (Adamantyl-*C*H₂ CD), 36.0 (Adamantyl-*C*H₂ AB), 41.5 (Adamantyl-*C*H₂ CD), 53.2 (Adamantyl-C AB), 54.1 (OCH₃), 54.5 (Adamantyl-C CD),

54.9 (OCH₃), 61.9 (C2 AB), 62.4 (C2 CD), 67.5 (C5 AB), 70.7 (C5 CD), 85.4 (C7 CD), 94.8 (C7 AB), 126.5, 129.0, 157.5 (Ar-CH CD), 126.6, 129.1, 157.5 (Ar-CH AB), 115.7, 133.1, 139.8, 164.6, 168.1 (Ar-C CD), 115.7, 133.0, 140.1, 164.6, 168.1 (Ar-C CD), 166.0 (C9 AB), 166.6 (C9 CD), 172.4 (C8 AB), 178.2 (C8 CD), 188.3 (C6 AB), 191.2 (C6 CD); *m/z* (ESI⁻) 547 ([M-H]⁻, 100 %); HRMS (ESI⁺); C₂₉H₃₃O₅N₄S [M+H]⁺; found 549.21610, requires 549.21662.

(-)-(2*S*,5*R*)-*N*-(Adamantan-1-yl)-2-(4-([1,2,4])triazolo[1,5-*a*]pyridin-6-yl)phenyl)-6-hydroxy-8oxo-5,8-dihydro-1*H*,3*H*-pyrrolo[1,2-*c*]thiazole-7-carboxamide 14j

Yield (0.12 g, 70 %); light brown solid, mp 220 °C; 3:1 AB:CD tautomers; $R_f = 0.68$ (EtOAc/MeOH 4:1); $[\alpha]_D^{25} = -217.8$ (c = 0.19, CHCl₃); v_{max} /cm⁻¹ (neat) 1620 (C=C, br with shoulder towards higher wavenumber), 1684 (C=O), 3307 (N-H/O-H); δ_H (400 MHz, CD₂Cl₂) 1.70 (6H, Adamantyl-CH₂), 2.01 - 2.16 (9H, m, Adamantyl-CH₂ + Adamantyl-CH), 3.04 (1H, dd, J = 11.0, 8.6 Hz, H4_A), 3.30 (1H, dd, J = 11.0, 7.1 Hz, H4_B), 4.48

(1H, app t, J = 7.0 Hz, H5 CD), 4.75 (1H, app t, J = 7.7 Hz, H5 AB), 6.28 (1H, s, H2 AB), 6.37 (1H, s, H2 CD), 7.37 (1H, br. s, NH AB), 7.59, 7.62 (4H, ABq, $J_{AB} = 8.6$ Hz, Ar-CH), 7.80, 7.80 (2H, ABq, $J_{AB} = 9.3$ Hz, Ar-CH), 7.95 (1H, br. s, NH CD), 8.32 (1H, s, Ar-CH), 8.82 (1H, s, Ar-CH); $\delta_{\rm C}$ (125.8 MHz, CD₂Cl₂): 30.1 (Adamantyl-CH), 33.2 (C4), 36.6 (Adamantyl-CH₂), 42.1 (Adamantyl-CH₂), 53.6 (Adamantyl-C, obscured by CD₂Cl₂ signals, but HMBC correlation seen with adamantyl-CH₂), 62.3 (C2 AB), 62.8 (C2 CD), 68.1 (C5 AB), 71.6 (C5 CD), 95.8 (C7), 117.1, 126.5, 127.9, 127.9, 130.4, 154.9 (Ar-CH), 128.4, 136.6, 141.7, 150.4 (Ar-C), 166.6 (C9 AB), 167.2 (C9 CD), 173.0 (C8), 188.5 (C6 AB), 191.5 (C6 CD); *m*/*z* (ESI⁻) 526 ([M-H]⁻, 100 %); HRMS (ESI⁺); C₂₉H₃₀O₃N₅S [M+H]⁺; found 528.20630, requires 528.20748.

(-)-(2*S*,5*R*)-*N*-(Adamantan-1-yl)-2-(4-(1-(tetrahydro-2*H*-pyran-2'-yl)-1*H*-pyrazol-5-yl)phenyl)-6-hydroxy-8-oxo-5,8-dihydro-1*H*,3*H*-pyrrolo[1,2-*c*]thiazole-7-carboxamide 14k

Yield (0.14 g, 60 %); yellow foam; 1:1 dr, each diastereomer exists as 2.6:1 AB:CD tautomers; $R_f = 0.63$ (EtOAc/MeOH 9:1); v_{max}/cm^{-1} (neat) 1622 (C=C), 1646 (C=O), 1686 (C=O), 3315 (N-H/O-H); since the diastereomers are overlapping, the ¹H resonances are reported together as multiplets, δ_H (500 MHz, CD₂Cl₂) 1.50 - 1.61 (2H, m, H4' + H5'), 1.68 - 1.74 (7H, Adamantyl-CH₂ + H5'), 1.76 -1.82 (1H, m, H3'), 1.99 - 2.16 (10H, m, Adamantyl-CH₂ +

Adamantyl-CH + H4'), 2.48 - 2.57 (1H, m, H3'), 3.00 - 3.06 (1H, m, H4A), 3.26 - 3.33 (1H, m,

H4_B), 3.56 - 3.64 (1H, m, H6'), 4.05 - 4.11 (1H, m, H6'), 4.45 - 4.51 (1H, m, H5 CD), 4.73 - 4.78 (1H, m, H5 AB), 4.88 (1H, br. s, OH), 5.15 - 5.20 (1H, m, H2'), 6.27 (1H, s, H2 AB), 6.33 - 6.35 (1H, m, Ar-C*H*), 6.36 (1H, s, H2 CD), 7.36 (1H, br. s, NH AB), 7.50 - 7.58 (5H, m, Ar-C*H*), 7.94 (1H, br. s, NH CD); $\delta_{\rm C}$ (125.8 MHz, CD₂Cl₂): 23.6 (C4'), 25.5 (C5'), 30.1 (Adamantyl-CH), 30.2 (C3'), 33.2, 33.3 (C4 AB), 33.5, 33.6 (C4 CD), 36.4 (Adamantyl-CH₂ CD), 36.6 (Adamantyl-CH₂ AB), 42.1 (Adamantyl-CH₂ AB), 42.2 (Adamantyl-CH₂ CD), 53.6 (Adamantyl-C, obscured by CD₂Cl₂ signals, but HMBC correlation seen with adamantyl-CH₂), 62.2, 62.3 (C2 AB), 62.8, 62.9 (C2 CD), 68.1 (C5 AB), 68.2 (C6'), 71.6 (C5 CD), 84.8 (C2'), 85.6 (C7 CD), 95.8 (C7 AB), 107.1, 127.2, 129.7, 139.6 (Ar-CH AB), 130.8, 141.8, 144.2 (Ar-C AB), 130.7, 142.1, 144.2 (Ar-C CD), 166.6 (C9 AB), 167.2 (C9 CD), 172.9 (C8 AB), 179.0 (C8 CD), 188.5 (C6 AB), 191.5 (C6 CD); *m/z* (ESI⁺) 559 ([M-H]⁻, 100 %); HRMS (ESI⁺); C₃₁H₃₇O₄N₄S [M+H]⁺; found 561.25289, requires 561.25300.

(-)-(2*S*,5*R*)-*N*-(Adamantan-1-yl)-2-(4-(1-(tetrahydro-2*H*-pyran-2'-yl)-*1H*-pyrazol-5-yl)phenyl)-6-hydroxy-8-oxo-5,8-dihydro-1*H*,3*H*-pyrrolo[1,2-*c*]thiazole-7-carboxamide 14l

Yield (70 mg, 30 %); yellow oil, 5.3:1 AB:CD tautomers; $R_f = 0.45$ (EtOAc/MeOH 9:1); $[\alpha]_D^{25} = -181.7$ (c = 0.12, CHCl₃); v_{max}/cm^{-1} (neat) 1624 (C=C with shoulder towards higher wavenumber), 1687 (C=O), 3317 (O-H/N-H); δ_H (400 MHz, CD₂Cl₂) major tautomer (AB): 1.51 - 1.73 (2H, m, H11), 1.83 - 1.99 (2H, m, H11), 2.98 -3.07 (1H, m, H4_A), 3.29 (1H, dd, J = 11.1, 7.0 Hz, H4_B), 3.47 (2H,

app t, J = 11.6, 2.2 Hz, H12), 3.88 - 3.99 (2H, m, H12), 4.01 - 4.12 (1H, m, H10), 4.48 (1H, app t, J = 7.8 Hz, H5 CD), 4.80 (1H, dd, J = 8.0, 7.2 Hz, H5 AB), 6.24 (1H, s, H2 AB), 6.33 (1H, s, H2 CD), 6.47 - 6.54 (1H, m, Ar-CH), 6.69 - 6.73 (1H, m, Ar-CH), 7.45 - 7.51 (3H, m, Ar-CH), 7.64 - 7.69 (2H, m, Ar-CH), 8.84 (1H, br. s, NH/OH); δ_{c} (100.6 MHz, CD₂Cl₂): 33.0 (C4), 33.3 (C11), 45.9 (C10 AB), 47.6 (C10 CD), 62.3 (C2 AB), 63.0 (C2 CD), 66.9 (C12), 67.5 (C5 AB), 71.6 (C5 CD), 97.5 (C7), 106.0, 112.3, 124.4, 127.3, 142.9 (Ar-CH), 131.2, 140.1, 154.0 (Ar-C), 165.9 (C9 AB), 166.6 (C9 CD), 172.4 (C8 AB), 178.5 (C8 CD), 186.5 (C6 AB), 191.3 (C6 CD); m/z (ESI⁻) 425 ([M-H]⁻, 100 %); HRMS (ESI⁻); C₂₂H₂₁N₂O₅S [M-H]⁻; found 425.11872, requires 425.11767.

2-(4-(1,3-Dioxolan-2-yl)phenyl)-1,3,2-dioxaborolane⁴

To 4-formylphenyl boronic acid (0.5 g, 3.33 mmol, 1.0 eq) in toluene (30 mL), ethylene glycol (0.93 mL, 16.7 mmol, 5.0 eq) and *p*-toluenesulfonic acid (15.8 mg, 0.08 mmol, 0.025 eq) was added and refluxed with a Dean-Stark apparatus. The reaction was not complete in 5 h and was refluxed overnight. The reaction flask was cooled to rt and concentrated under reduced pressure. The residue

^{4'} $\underset{4'}{\bigcirc} \underset{0}{\bigcirc} \underset{4'}{\bigcirc} \underset{0}{\bigcirc} \underset{5}{2} \underset{5}{2} \underset{6}{2} \underset{6}{2} \underset{6}{2} \underset{6}{2} \underset{7}{2} \underset{7}{2} \underset{7}{2} \underset{7}{2} \underset{7}{2} \underset{7}{2} \underset{8}{2} \underset{7}{2} \underset{7}{2} \underset{7}{2} \underset{7}{2} \underset{7}{2} \underset{8}{2} \underset{7}{2} \underset{7}{$

(+)-2,3,4,6-Tetra-*O*-acetyl-α-D-galactopyranosyl bromide, 15b⁵

To a stirred solution of β -D-galactose pentaacetate (0.3 g, 0.77 mmol, 1.0 eq) and BiBr₃ (17 mg, 0.039 mmol, 0.05 eq) in 3 mL of CH₂Cl₂ was added under N₂, TMSBr (0.41 mL, 3.08 mmol, 4 eq). The reaction was stirred at rt and monitored by TLC. After 2 h, upon completion of reaction, the reaction mixture was poured into cold sat. NaHCO₃ and extracted twice with CH₂Cl₂. The combined organic layers were dried over anhydrous Na₂SO₄, filtered and

concentrated *in vacuo* to obtain **15b**. Yield (0.32 g, quant.); white solid, mp 82-84 °C {lit. mp = 84-85 °C}⁵ R_f = 0.39 (EtOAc/Petrol 1:3); $[\alpha]_D^{25} = +200.7$ (c = 0.5, CHCl₃) {lit. $[\alpha]_D = +217$ (c = 1, CHCl₃)} ⁵ v_{max}/cm⁻¹ (neat) 1220 (C-O), 1749 (C=O); δ_H (400 MHz, CDCl₃): 2.02 (3H, s, CH₃-C(=O)-O-), 2.07 (3H, s, CH₃-C(=O)-O-), 2.12 (3H, s, CH₃-C(=O)-O-), 2.17 (3H, s, CH₃-C(=O)-O-), 4.12 (1H, dd, J = 11.4, 6.8, H6_A), 4.19 (1H, dd, J = 11.4, 6.4, H6_B), 4.49 (1H, app t, J = 6.6, H5), 5.06 (1H, dd, J = 10.6, 4.0 Hz, H2), 5.41 (1H, dd, J = 10.7, 3.3 Hz, H3), 5.53 (1H, dd, J = 3.2, 1.2 Hz, H4), 6.70 (1H, d, J = 4.1 Hz, H1); δ_C (125.8 MHz, CDCl₃): 20.5, 20.6, 20.7 (CH₃-C(=O)-O-), 60.8 (C6), 66.9 (C4), 67.7 (C2), 68.0 (C3), 71.0 (C5), 88.1 (C1), 169.7, 169.9, 170.1, 170.3 (CH₃-C(=O)-O-); *m/z* (ESI⁺ and FI⁺) 331 ([M-Br]⁺, 100 %); molecular ion not detected.

(-)-4-(2,3,4,6-Tetra-O-acetyl-β-D-galactopyranosyloxy)benzaldehyde, 15c⁶

To **15b** (1.0 g, 2.44 mmol, 1.0 eq), 4-hydroxybenzaldehyde (0.36 g, 2.93 mmol, 1.2 eq) and benzyltributylammonium chloride (0.17 g, 0.49 mmol, 0.2 eq) in CHCl₃ (5 mL), was added powdered K_2CO_3 (1.69 g, 12.2 mmol, 5 eq) and stirred at rt for 24 h. The reaction mixture was neutralised with 10 % HCl and the organic layer was separated. The organic layer was washed with sat. NaHCO₃ and brine, then dried over anhydrous MgSO₄,

filtered and concentrated *in vacuo*. The residue was purified by silica gel flash column chromatography (eluent: EtOAc/petrol) to furnish **15c**. Yield (0.95 g, 86 %); white solid, mp 132 °C {lit. mp = 140-141 °C}⁶ R_f = 0.18 (EtOAc/petrol 1:2); $[\alpha]_D^{25} = -1.87$ (c = 1.0, CHCl₃) v_{max}/cm^{-1} (neat) 1212 (C-O), 1694 (C=O), 1746 (C=O); δ_H (400 MHz, CDCl₃): 2.02 (3H, s, CH₃-C(=O)-O-), 2.06 (6H, s, 2xCH₃-C(=O)-O-), 2.18 (3H, s, CH₃-C(=O)-O-), 4.10 - 4.26 (3H, m, H6_A + H6_B + H5), 5.14 (1H, dd, J = 10.3, 3.4 Hz, H3), 5.18 (1H, d, J = 7.8 Hz, H1), 5.48 (1H, app d, J = 3.4 Hz, H4), 5.52 (1H, dd, J = 10.4, 8.0 Hz, H2), 7.11 (2H, d, J = 8.8 Hz, Ar-CH), 7.85 (2H, d, J = 8.8 Hz, Ar-CH), 9.92 (1H, s, CHO); δ_C (100.6 MHz, CDCl₃): 20.5, 20.6, 20.7 (CH₃-C(=O)-O-), 61.3 (C6), 66.7 (C4), 68.3 (C2), 70.6 (C3), 71.3 (C5), 98.5 (C1), 116.7, 131.8 (Ar-CH), 161.2 (Ar-C), 169.3, 170.0, 170.1, 170.3 (CH₃-C(=O)-O-), 190.7 (CHO); *m/z* (ESI⁺) 475 ([M+Na]⁺, 100 %); HRMS (ESI⁺); C₂₁H₂₄O₁₁Na [M+Na]⁺; found 475.11966, requires 475.12108.

(-)-(2*R*,3*R*,4*S*,5*R*,6*S*)-2-(Acetoxymethyl)-6-(4-((2*S*,5*R*)-7-(ethoxycarbonyl)-6-hydroxy-8-oxo-5,8-dihydro-1*H*,3*H*-pyrrolo[1,2-*c*]thiazol-2-yl)phenoxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate 16

Thiazolidine derived from the condensation of L-cysteine methyl ester hydrochloride and aldehyde **15c** followed the general procedure. Yield (0.14 g, 70 %); colourless oil; 1.6:1 *cis* and *trans* diastereomers; $R_f = 0.4$ (EtOAc/petrol 1:1); v_{max} /cm⁻¹ (neat) 1223 (C-O), 1745 (C=O), 3314 (N-H); δ_H (400 MHz, CDCl₃) major isomer (*cis*): 1.97 (3H, s, CH₃-C(=O)-O-), 2.01 (3H, s, CH₃-C(=O)-O-), 2.02 (3H, s, CH₃-C(=O)-O-), 2.14 (3H, s, CH₃-C(=O)-O-), 2.60 (1H, br. s., NH), 3.06 (1H, dd, J = 10.3, 8.8 Hz, H4_A), 3.41 (1H, dd, J = 10.3, 7.1 Hz, H4_B), 3.76 (3H, s, -CO₂CH₃), 3.93

(1H, dd, J = 8.6, 7.3 Hz, H5), 4.01 - 4.20 (3H, m, H6'_A + H6'_B + H5'), 5.03 (1H, d, J = 8.1 Hz, H1'), 5.05 - 5.11 (1H, m, H3', obscured by H3' of minor isomer), 5.39 - 5.46 (2H, m, H2' + H4'), 5.47 (1H, s, H2), 6.96 (2H, d, J = 8.6 Hz, Ar-C*H*), 7.42 (2H, d, J = 8.6 Hz, Ar-C*H*); minor isomer (*trans*): 1.97 (3H, s, CH₃-C(=O)-O-), 2.01 (3H, s, CH₃-C(=O)-O-), 2.02 (3H, s, CH₃-C(=O)-O-), 2.13 (3H, s, CH₃-C(=O)-O-), 2.60 (1H, br. s., NH), 3.15 (1H, dd, J = 10.6, 5.8 Hz, H4_A), 3.34 (1H, dd, J = 10.5, 7.1 Hz, H4_B), 3.74 (3H, s, -CO₂CH₃), 4.01 - 4.20 (4H, m, H6'_A + H6'_B + H5' + H5),

5.00 (1H, d, J = 7.8 Hz, H1'), 5.05 - 5.11 (1H, m, H3', obscured by H3' of major isomer), 5.39 - 5.46 (2H, m, H2' + H4'), 5.73 (1H, s, H2), 6.92 (2H, d, J = 8.6 Hz, Ar-CH), 7.38 (2H, d, J = 8.6 Hz, Ar-CH); $\delta_{\rm C}$ (100.6 MHz, CDCl₃): major isomer (*cis*): 20.4, 20.5, 20.5, 20.5 (CH₃-C(=O)-O-), 39.0 (C4), 52.4 (-CO₂CH₃), 61.2 (C6'), 65.3 (C5), 66.7 (C4'), 68.4 (C2'), 70.6 (C3'), 70.9 (C5'), 71.8 (C2), 99.3 (C1'), 116.8, 128.7 (Ar-CH), 132.9, 156.9 (Ar-C), 169.2, 169.9, 170.0, 170.1 (CH₃-C(=O)-O-), 171.4 (-CO₂CH₃); minor isomer (*trans*): 20.4, 20.5, 20.5, 20.5 (CH₃-C(=O)-O-), 37.9 (C4), 52.4 (-CO₂CH₃), 61.2 (C6'), 64.0 (C5), 66.7 (C4'), 68.4 (C2'), 70.0 (C2), 70.6 (C3'), 70.9 (C5'), 99.4 (C1'), 116.6, 128.1 (Ar-CH), 135.9, 156.4 (Ar-C), 169.2, 169.9, 170.0, 170.1 (CH₃-C(=O)-O-), 172.0 (-CO₂CH₃); *m*/*z* (ESI⁺) 570 ([M+H]⁺ 35 %); HRMS (ESI⁺); C₂₅H₃₂O₁₂NS [M+H]⁺; found 570.16190, requires 570.16397.

The *N*-acylthiazolidine was obtained *via N*-acylation of thiazolidine using the general procedure. Yield (68 mg, 52 %); colourless oil; 1.1:1 *cis* and *trans* diastereomers; $R_f = 0.18$ (EtOAc/petrol 1:1); v_{max}/cm^{-1} (neat) 1223 (C-O), 1663 (C=O), 1745 (C=O); δ_H (500 MHz, CDCl₃) major isomer (*cis*, a mixture of two conformers): 1.20 - 1.31 (3H, m, OCH₂CH₃), 2.01 (3H, s, CH₃-C(=O)-O-), 2.05 - 2.11 (6H, m, 2xCH₃-C(=O)-O-), 2.18 (3H, s, CH₃-C(=O)-O-), 3.07 - 3.46 (4H, m, H4_A + H4_B + H2"_A + H2"_B), 3.82 (3H, s, CO₂CH₃ major conformer), 3.83

(3H, s, CO₂CH₃ minor conformer), 4.03 - 4.24 (5H, m, OCH₂CH₃, H6'_A + H6'_B + H5'), 4.99 - 5.08 (2H, m, H5 + H1'), 5.11 (1H, dd, J = 10.6, 3.1 Hz, H3'), 5.43 - 5.52 (2H, m, H2' + H4'), 6.12 (1H, s, H2 major conformer), 6.28 (1H, s, H2 minor conformer), 6.91 - 6.96 (2H, m, Ar-CH minor conformer), 6.98 - 7.04 (2H, m, Ar-CH major conformer), 7.46 (2H, d, J = 8.5 Hz, Ar-CH minor conformer); 7.62 (2H, d, J = 8.7 Hz, Ar-CH major conformer); minor isomer (*trans*, a mixture of two conformers): 1.20 - 1.31 (3H, m, OCH₂CH₃), 2.01 (3H, s, CH₃-C(=O)-O-), 2.05 - 2.11 (6H, m, $2xCH_3-C(=O)-O_{-}$, 2.18 (3H, s, $CH_3-C(=O)-O_{-}$), 3.07 - 3.46 (4H, m, $H4_A + H4_B + H2''_A + H2''_B$), 3.79 (3H, s, CO₂CH₃ major conformer), 3.85 (3H, s, CO₂CH₃ minor conformer), 4.03 - 4.24 (5H, m, $OCH_2CH_3 + H6'_A + H6'_B + H5'$), 4.99 - 5.08 (1H, m, H1' obscured by H5 of major isomer), 5.11 (1H, dd, J = 10.6, 3.1 Hz, H3'), 5.18 (1H, app d, J = 5.4 Hz, H5 minor conformer), 5.28 - 5.31 (1H, m, H5 major conformer), 5.43 - 5.52 (2H, m, H2' + H4'), 6.16 (1H, s, H2 major conformer), 6.28 (1H, s, H2 minor conformer), 6.91 - 6.96 (2H, m, Ar-CH minor conformer), 6.98 - 7.04 (2H, m, Ar-CH major conformer), 7.16 (2H, d, J = 8.7 Hz, Ar-CH major conformer); 7.22 (2H, d, J = 8.6 Hz, Ar-CH minor conformer); δ_C (125.8 MHz, CDCl₃): major isomer (*cis*, a mixture of two conformers): 14.0, 14.2 (OCH₂CH₃), 20.6, 20.6, 20.6, 20.7 (CH₃-C(=O)-O-), 33.1, 33.8 (C4), 42.1, 43.1 (C2"), 52.7, 53.4 (CO₂CH₃), 61.2, 61.3 (C6'), 61.6, 61.7 (OCH₂CH₃), 63.8, 64.6 (C5), 65.8, 66.7 (C2), 66.8 (C4'), 68.5 (C2'), 70.7, 70.8 (C3'), 70.9, 71.1 (C5'), 99.3, 99.5 (C1'), 116.6, 117.2,

127.9, 128.6 (Ar-CH), 133.5, 134.5, 156.6, 157.0 (Ar-C), 165.0, 165.4 (C1"), 166.7, 167.1 (C3"), 169.3, 169.4, 170.06, 170.08, 170.15, 170.18, 170.20, 170.23, 170.3, 170.4 (*C*O₂CH₃ and CH₃-*C*(=O)-O-); minor isomer (*trans*, a mixture of two conformers): 14.0, 14.1 (OCH₂CH₃), 20.6, 20.6, 20.6, 20.7 (*C*H₃-C(=O)-O-), 31.0, 32.0 (C4), 42.4, 43.3 (C2"), 52.8, 53.4 (CO₂CH₃), 61.2, 61.3 (C6'), 61.5, 61.8 (OCH₂CH₃), 64.0, 64.2 (C5), 64.5, 65.2 (C2), 66.8 (C4'), 68.5 (C2'), 70.7, 70.8 (C3'), 70.9, 71.1 (C5'), 99.3, 99.6 (C1'), 116.9, 117.4, 126.1, 126.3 (Ar-CH), 136.6, 137.0, 156.3, 156.8 (Ar-C), 164.6, 165.3 (C1"), 166.3, 167.3 (C3"), 169.30, 169.33, 170.06, 170.08, 170.15, 170.18, 170.20, 170.23, 170.3, 170.4 (*C*O₂CH₃ and CH₃-*C*(=O)-O-); *m*/*z* (ESI⁺) 706 ([M+Na]⁺ 43 %); HRMS (ESI⁺); C₃₀H₃₇O₁₅NNaS [M+Na]⁺; found 706.17535, requires 706.17761.

Tetramate **16** was obtained following the general procedure for Dieckmann cyclisation. The product isolated by flash column chromatography (eluent: 100 % EtOAc to EtOAc/MeOH/1 % Et₃N) was then dissolved in CH₂Cl₂ and washed with 5% citric acid. The organic layer was dried over Na₂SO₄, filtered and concentrated *in vacuo* to yield **16**. Yield (0.66 g, 52 %); yellow solid, mp 114 °C; $R_f = 0.45$ (EtOAc/MeOH 9:1); $[\alpha]_D^{25} = -152.6$ (c = 0.27, CHCl₃); v_{max}/cm^{-1} (neat) 1217 (C-O), 1613 (C=C), 1746 (C=O, br with shoulder towards smaller wave

number); $\delta_{\rm H}$ (400 MHz, CDCl₃): 1.39 (3H, t, J = 7.1 Hz, OCH₂CH₃), 2.02 (3H, s, CH₃-C(=O)-O-), 2.07 (3H, s, CH₃-C(=O)-O-), 2.19 (3H, s, CH₃-C(=O)-O-), 2.99 (1H, dd, J = 11.0, 8.3 Hz, H4_A), 3.29 (1H, dd, J = 11.1, 7.0 Hz, H4_B), 4.03 - 4.09 (1H, m, H5'), 4.15 (1H, dd, J = 11.4, 5.8 Hz, H6'_A), 4.19 (1H, dd, J = 11.4, 7.1 Hz, H6'_B), 4.40 (2H, q, J = 7.1 Hz, OCH₂CH₃), 4.75 (1H, app t, J = 7.6 Hz, H5), 5.03 (1H, d, J = 8.1 Hz, H1'), 5.11 (1H, dd, J = 10.5, 3.4 Hz, H3'), 5.44 - 5.52 (2H, m, H2' + H4'), 6.27 (1H, s, H2), 6.97 (2H, d, J = 8.8 Hz, Ar-CH), 7.43 (2H, d, J = 8.6 Hz, Ar-CH); $\delta_{\rm C}$ (125.8 MHz, CD₂Cl₂): 14.5 (OCH₂CH₃), 20.9, 21.0, 21.1, 21.1 (CH₃-C(=O)-O-), 33.4 (C4), 62.0 (C6'), 62.2 (OCH₂CH₃), 62.5 (C2), 66.1 (C5), 67.5 (C4'), 69.0 (C2'), 71.3 (C3'), 71.8 (C5'), 100.2 (C1'), 117.5, 128.3 (Ar-CH), 136.0, 157.3 (Ar-C), 167.6 (C9), 169.2 (C8), 169.9, 170.5, 170.7, 170.8 (CH₃-C(=O)-O-), 186.7 (C6); *m/z* (ESI⁺) 674 ([M+Na]⁺, 15 %); HRMS (ESI⁺); C₂9H₃3O₁₄NNaS [M+Na]⁺; found 674.15101, requires 674.15140.

(-)- Ethyl (2*S*,5*R*)-6-hydroxy-8-oxo-2-(4-((2*S*,3*R*,4*S*,5*S*,6*R*)-3,4,5-trihydroxy-6-(hydroxymethyl)-tetrahydro-2*H*-pyran-2-yl)oxy)phenyl)-5,8-dihydro-1*H*,3*H*-pyrrolo[1,2*c*]thiazole-7-carboxylate 17

Tetramate /16 (28 mg, 0.04 mmol, 1.0 eq) was dissolved in MeOH (2 mL) and aq. K_2CO_3 (6.6 mg in 0.5 mL of H₂O, 0.048 mmol, 1.2 eq) was added. The reaction was stirred at rt for 5 min and upon completion, solvents were removed *in vacuo* to afford 17. (An acidic work-up was not possible due

to the acid-labile glycosidic linkage). Yield (25 mg, quant.); yellow solid, mp >260 °C; $R_f = 0.07$ (EtOAc/MeOH 3:1); $[\alpha]_D^{25} = -215.1$ (c = 0.18, DMSO); v_{max}/cm^{-1} (neat) 1227 (C-O), 1627 (C=C, br. with shoulder towards higher wavenumber), 1689 (C=O), 3246 (O-H); δ_H (400 MHz, D₂O): 1.32 (3H, t, J = 7.1 Hz, OCH₂CH₃), 3.04 (1H, dd, J = 11.1, 7.9 Hz, H4_A), 3.30 (1H, dd, J = 11.1, 7.5 Hz, H4_B), 3.77 - 3.87 (4H, m, H6'_A + H6'_B + H3'+ H2'), 3.88 - 3.94 (1H, m, H5'), 4.05 (1H, app d, J = 2.5 Hz, H4'), 4.23 (2H, q, J = 7.1 Hz, OCH₂CH₃), 4.49 (1H, app t, J = 7.6 Hz,

H5), 5.11 (1H, d, J = 7.2 Hz, H1'), 6.36 (1H, s, H2), 7.14 (2H, d, J = 8.7 Hz, Ar-C*H*), 7.47 (2H, d, J = 8.7 Hz, Ar-C*H*); $\delta_{\rm C}$ (100.6 MHz, D₂O): 13.9 (OCH₂CH₃), 32.9 (C4), 59.7 (OCH₂CH₃), 60.8 (C6'), 62.6 (C2), 68.5 (C4'), 69.2 (C5), 70.6, 72.6 (C2', C3'), 75.4 (C5'), 91.1 (C7), 100.8 (C1'), 116.7, 127.6 (Ar-CH), 136.1, 156.3 (Ar-C), 166.2 (C9), 178.7 (C8), 194.4 (C6); *m/z* (ESI⁻) 482 ([M-H]⁻, 100 %); HRMS (ESI⁺); C₂₁H₂₅O₁₀NNaS [M+Na]⁺; found 506.10689, requires 506.10914.

(-)-(2*R*,3*S*,4*S*,5*R*,6*S*)-2-(Acetoxymethyl)-6-(4-(3*S*,5*R*)-6-((adamantan-1-yl)carbamoyl)-6hydroxy-8-oxo-5,8-dihydro-1*H*,3*H*-pyrrolo[1,2-*c*]thiazol-2-yl)phenoxy)tetrahydro-2*H*-pyran-3,4,5-triyl triacetate 18

Carboxamide tetramate **18a** was obtained by aminolysis of **16** with 1-adamantylamine according to the general procedure for the synthesis of carboxamides with THF/toluene as solvent. Yield (22 mg, 30 %); yellow foaming solid, mp 142-146 °C; 2.9:1 AB:CD tautomers; $R_f = 0.38$ (EtOAc/petrol 4:1); $[\alpha]_D^{25} = -148.2$ (c = 0.74, CHCl₃); v_{max}/cm^{-1} (neat) 1227 (C-O), 1626 (C=C), 1650 (C=O), 1690 (C=O), 1753 (C=O); δ_H (400 MHz, CD₂Cl₂): 1.69 (6H, Adamantyl-CH₂), 1.98 (3H, s, CH₃-C(=O)-O-), 2.04 (12H,

Adamantyl- CH_2 + 2x CH_3 -C(=O)-O-), 2.09 (3H, Adamantyl-CH), 2.16 (3H, s, CH_3 -C(=O)-O-), 2.98 (1H, dd, J = 11.0, 8.6 Hz, H4_A), 3.25 (1H, dd, J = 11.0, 7.1 Hz, H4_B), 3.47 (1H, br. s., OH), 4.04 - 4.22 (3H, m, H6'_A + H6'_B + H5'), 4.41 (1H, app t, J = 6.9 Hz, H5 CD), 4.69 (1H, app t, J = 7.6 Hz, H5 AB), 5.05 (1H, d, J = 7.8 Hz, H1'), 5.10 (1H, dd, J = 10.4, 3.6 Hz, H3'), 5.40 (1H, dd, J = 10.5, 8.0 Hz, H2'), 5.44 (1H, app d, J = 3.4 Hz, H4'), 6.18 (1H, s, H2 AB), 6.27 (1H, s, H2 CD), 6.99 (2H, d, J = 8.8 Hz, Ar-CH), 7.34 (1H, br. s., NH AB), 7.40 (2H, d, J = 8.6 Hz, Ar-CH), 7.91 (1H, br. s., NH AB), 7.40 (2H, d, J = 8.6 Hz, Ar-CH), 7.91 (1H, br. s., NH CD); δ_C (100.6 MHz, CD₂Cl₂): 20.8, 20.9, 21.0, 21.0 (CH_3 -C(=O)-O-), 30.0 (Adamantyl-CH), 33.1 (C4), 36.5 (Adamantyl- CH_2), 42.0 (Adamantyl- CH_2), 53.3 (Adamantyl-C), 62.0 (C6'), 62.0 (C2), 67.5 (C4'), 67.8 (C5), 69.0 (C2'), 71.3 (C3'), 71.7 (C5'), 96.0 (C7), 100.1 (C1'), 117.4, 128.3 (Ar-CH), 136.1, 157.2 (Ar-C), 166.5 (C9), 169.8, 170.5, 170.7, 170.7 (CH_3 -C(=O)-O-), 172.7 (C8),

188.1 (C6); *m/z* (ESI⁻) 755 ([M-H]⁻, 29 %); HRMS (ESI⁻); C₃₇H₄₃O₁₃N₂S [M-H]⁻; found 755.24963, requires 755.24913.

(2*S*,5*R*)-*N*-((Adamantan-1-yl)-6-hydroxy-8-oxo-2-(4-(((2*S*,3*R*,4*S*,5*R*,6*R*)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2*H*-pyran-2-yl)oxy)phenyl)-5,8-dihydro-1*H*,3*H*-pyrrolo[1,2-*c*]thiazole-7-carboxamide 19

Tetramate **18a** (31 mg, 0.04 mmol, 1.0 eq) was dissolved in MeOH (2 mL) and aq. K₂CO₃ (6.6 mg in 0.5 mL of H₂O, 0.048 mmol, 1.2 eq) was added. The reaction was stirred at rt for 10-15 min and upon completion, solvents were removed *in vacuo*. The residue was dissolved in MeOH, filtered and concentrated *in vacuo* to afford **19**. Yield (20 mg, 85 %); yellow solid, mp >260 °C; R_f = 0.08 (EtOAc/MeOH 3:1); $[\alpha]_D^{25} = -130.8$ (c = 0.11, H₂O); v_{max}/cm^{-1} (neat) 1228 (C-O), 1607 (br with shoulder towards higher

wavenumber), 3339 (O-H); $\delta_{\rm H}$ (500 MHz, Methanol-*d4*): 1.71 (6H, Adamantyl-C*H*₂), 2.05 (9H, Adamantyl-C*H*₂ + Adamantyl-C*H*), 2.93 (1H, dd, *J* = 11.0, 6.9 Hz, H4_A), 3.17 (1H, dd, *J* = 11.0, 7.8 Hz, H4_B), 3.60 - 3.66 (1H, m, H3'), 3.70 - 3.82 (4H, m, H6'_A + H6'_B + H5' + H2'), 3.94 (1H, app d, *J* = 3.0 Hz, H4'), 4.21 (1H, app t, *J* = 7.3 Hz, H5), 4.90 (1H, d, *J* = 7.9 Hz, H1'), 6.25 (1H, s, H2), 7.08 (2H, d, *J* = 8.6 Hz, Ar-C*H*), 7.39 (2H, d, *J* = 8.5 Hz, Ar-C*H*); $\delta_{\rm C}$ (125.8 MHz, Methanol-*d4*): 31.0 (Adamantyl-CH), 34.4 (C4), 37.7 (Adamantyl-CH₂), 43.3 (Adamantyl-CH₂), 51.9 (Adamantyl-C), 62.3 (C6'), 64.7 (C2), 70.1 (C4'), 70.4 (C5), 72.3 (C2'), 74.7 (C3'), 76.9 (C5'), 94.6 (C7), 102.9 (C1'), 117.7, 128.8 (Ar-CH), 137.6, 158.4 (Ar-C), 167.4 (C9), 181.0 (C8), 194.0 (C6); *m/z* (ESI⁻) 587 ([M-H]⁻, 38 %); HRMS (ESI⁻); C₂₉H₃₅O₉N₂S [M-H]⁻; found 587.20687, requires 587.20687.

(+)-4-*O*-(2,3,4,6-Tetra-*O*-acetyl-β-D-galactopyranosyl)-2,3,6-tri-*O*-acetyl-D-glucopyranosyl bromide, 20b⁵

To a stirred solution of lactose octaacetate (2.0 g, 2.95 mmol, 1.0 eq) and BiBr₃ (66 mg, 0.15 mmol, 0.05 eq) in 20 mL of CH₂Cl₂ was added under N₂, TMSBr (1.56 mL, 11.8 mmol, 4 eq). The reaction was stirred at rt and after 15 h, upon completion of reaction, the reaction mixture was

poured into cold sat. NaHCO₃ and extracted twice with CH₂Cl₂. The combined organic layers were dried over anhydrous Na₂SO₄, filtered and concentrated *in vacuo* to obtain **20b**. Yield (1.95 g, 92 %); white solid, mp 98 °C; $R_f = 0.33$ (EtOAc/petrol 1:1); $[\alpha]_D^{25} = +94.1$ (c = 1.0, CHCl₃); v_{max}/cm^{-1} (neat) 1211 (C-O), 1743 (C=O); δ_H (400 MHz, CD₂Cl₂): 1.94 (3H, s, CH₃-C(=O)-O-), 2.02 - 2.06

(9H, s, CH₃-C(=O)-O-), 2.07 (3H, s, CH₃-C(=O)-O-), 2.11 (3H, s, CH₃-C(=O)-O-), 2.14 (3H, s, CH₃-C(=O)-O-), 3.79 - 3.93 (2H, m, H5 + H11), 4.04 - 4.23 (4H, m, H6 + H12 + H4), 4.41 - 4.54 (1H, m, H6/H12), 4.50 (1H, d, J = 7.8 Hz, H7), 4.74 (1H, dd, J = 9.9, 4.1 Hz, H2), 4.87 - 4.99 (1H, m, H9), 5.04 - 5.17 (1H, m, H8), 5.33 (1H, app d, J = 3.2 Hz, H10), 5.53 (1H, app t, J = 9.6 Hz, H3), 6.51 (1H, d, J = 4.0 Hz, H1); $\delta_{\rm C}$ (100.6 MHz, CD₂Cl₂): 20.4, 20.6, 20.7 (CH₃-C(=O)-O-), 60.8, 61.0 (C6, C12), 66.6 (C10), 69.0 (C8), 69.5 (C3), 70.7 (C5/C11), 70.8 (C2), 70.9 (C9), 72.9 (C4), 74.9 (C5/C11), 86.3 (C1), 110.7 (C7); *m/z* (ESI⁺) 721,723 ([M+Na]⁺, 78 %); HRMS (ESI⁺); C₂₆H₃₅O₁₇BrNa [M+Na]⁺; found 721.09288 and 723.09099, requires 721.09498 and 723.09294.

(+)-4-(4-*O*-(2,3,4,6-Tetra-*O*-acetyl-β-D-galactopyranosyl)-2,3,6-tri-*O*-acetyl-D-glucopyranosyloxy)benzaldehyde, 20c⁶

To **20b** (2.63 g, 3.76 mmol, 1.0 eq), 4hydroxybenzaldehyde (0.55 g, 4.51 mmol, 1.2 eq) and benzyltributylammonium chloride (0.23 g, 0.75 mmol, 0.2 eq) in CHCl₃ (15 mL), was added powdered K_2CO_3 (1.69 g, 12.2 mmol, 5 eq) and stirred at rt for 24 h. The reaction mixture was

neutralised with 10 % HCl and the organic layer was separated. The organic layer was washed with sat. NaHCO₃ and brine, then dried over anhydrous MgSO₄, filtered and concentrated *in vacuo*. The residue was purified by silica gel flash column chromatography (eluent: EtOAc/petrol) to furnish **20c**. Yield (2.45 g, 88 %); white foam, mp 98-104 °C; $R_f = 0.28$ (EtOAc/petrol 1:1); $[\alpha]_D^{25} = +14.9$ (c = 1.0, CHCl₃); v_{max} /cm⁻¹ (neat) 1699 (C=O), 1744 (C=O); δ_H (400 MHz, CDCl₃): 1.95 (3H, s, CH₃-C(=O)-O-), 2.01 - 2.10 (15H, m, 5xCH₃-C(=O)-O-), 2.13 (3H, s, CH₃-C(=O)-O-), 3.78 - 3.93 (2H, m, lactose-CH), 4.01 - 4.25 (4H, m, lactose-CH₂ + lactose-CH), 4.36 - 4.54 (1H, m, lactose-CH₂), 4.51 (1H, d, J = 7.8 Hz, lactose-CH), 4.93 - 5.00 (1H, m, lactose-CH), 5.07 - 5.21 (4H, m, lactose-CH), 5.25 - 5.30 (1H, m, lactose-CH), 7.06 (2H, d, J = 8.6 Hz, Ar-CH), 7.82 (2H, d, J = 8.6 Hz, Ar-CH), 9.89 (1H, s, CHO); δ_H (100.6 MHz, CDCl₃) 20.4, 20.4, 20.5, 20.6, 20.7, 20.7, 20.9 (CH₃-C(=O)-O-), 60.7, 61.3 (lactose-CH₂), 68.2, 69.0, 70.6, 70.7, 71.2, 72.6, 72.9, 76.0, 97.6, 101.0 (lactose-CH), 116.6, 131.7 (Ar-CH), 127.4, 139.3 (Ar-C), 169.0, 169.1, 169.4, 169.6, 169.9, 170.0, 170.3 (CH₃-C(=O)-O-), 190.6 (1H, s, CHO); m/z (ESI⁺) 763 ([M+Na]⁺, 4 %); HRMS (ESI⁺); C₃₃H₄₀O₁₉Na [M+Na]⁺; found 763.20569, requires 763.20560.

(2*R*,3*S*,4*S*,5*R*,6*S*)-2-(Acetoxymethyl)-6-(((2*R*,3*R*,4*S*,5*R*,6*S*)-4,5-diacetoxy-2-(acetoxymethyl)-6-(4-((2*S*,5*R*)-7-(ethoxycarbonyl)-6-hydroxy-8-oxo-5,8-dihydro-1*H*,3*H*-pyrrolo[1,2-*c*]thiazol-2yl)phenoxy)tetrahydro-2*H*-pyran-3-yl)oxy)tetrahydro-2*H*-pyran-3,4,5-triyl triacetate 21

Thiazolidine derived from the condensation of Lcysteine methyl ester hydrochloride and aldehyde **20c** was prepared following the general procedure for thiazolidine synthesis . Yield (2.05 g, 30 %); white foam; 1.7:1 *cis* and *trans* diastereomers; $R_f = 0.37$ (EtOAc/petrol 2:1); v_{max}/cm^{-1} (neat) 1738 (C=O); δ_H (400 MHz, CDCl₃) major isomer (*cis*): 1.95 (3H, s, CH₃-C(=O)-O-), 2.02 - 2.07 (12H, m, 4xCH₃-C(=O)-O-), 2.10 - 2.16 (6H, m, 2xCH₃-C(=O)-O-), 2.58 (1H, br.

s., NH), 3.09 (1H, dd, J = 10.3, 8.8 Hz, H4_A), 3.44 (1H, dd, J = 10.3, 7.1 Hz, H4_B), 3.73 - 3.77 (1H, m, lactose-CH), 3.79 (3H, s, CO₂CH₃), 3.84 - 3.91 (1H, m, lactose-CH), 4.01 - 4.20 (3H, m, H5 + lactose-CH2), 4.44 - 4.58 (3H, m, lactose-CH+ lactose-CH2), 4.66 - 4.83 (2H, m, lactose-CH), 4.90 -5.40 (4H, m, lactose-CH), 5.46 -5.55 (2H, H2 + lactose-CH), 6.95 (2H, d, J = 8.6 Hz, Ar-CH), 7.43 (2H, d, J = 8.6 Hz, Ar-CH); minor isomer (*trans*): 1.95 (3H, s, CH₃-C(=O)-O-), 2.02 - 2.07 (12H, m, 4xCH₃-C(=O)-O-), 2.10 - 2.16 (6H, m, 2xCH₃-C(=O)-O-), 2.58 (1H, br. s., NH), 3.16 -3.21 (1H, m, H4_A), 3.33 - 3.40 (1H, m, H4_B), 3.73 - 3.77 (1H, m, lactose-CH), 3.79 (3H, s, CO_2CH_3), 3.84 - 3.91 (1H, m, lactose-CH), 4.01 - 4.20 (3H, m, H5 + lactose-CH₂), 4.44 - 4.58 (3H, m, lactose-CH + lactose-CH₂), 4.66 - 4.83 (2H, m, lactose-CH), 4.90 - 5.40 (4H, m, lactose-CH), 5.46 - 5.55 (2H, H2 + lactose-CH), 6.91 (2H, d, J = 8.8 Hz, Ar-CH), 7.39 (2H, d, J = 8.6 Hz, Ar-CH); δ_C (125.8 MHz, CDCl₃) major isomer (*cis*): 20.4, 20.6, 20.7, 20.7, 20.8, 20.8, 21.0 (CH₃-C(=O)-O-), 39.1 (C4), 52.6 (CO₂CH₃), 60.8, 61.8 (lactose-CH₂), 66.6 (lactose-CH), 68.1 (C5), 69.1 (lactose-CH), 69.5 (C2), 70.5, 70.9, 71.0, 71.3, 72.7, 76.3, 89.9, 100.9 (lactose-CH), 116.9, 128.8 (Ar-CH), 132.9, 156.9 (Ar-C), 169.0, 169.6, 170.1, 170.2, 170.3, 170.3, 170.5 (CH₃-C(=O)-O-), 171.5 (CO₂CH₃); minor isomer (trans): 20.4, 20.6, 20.7, 20.7, 20.8, 20.8, 21.0 (CH₃-C(=O)-O-), 38.0 (C4), 52.5 (CO₂CH₃), 60.4, 61.7 (lactose-CH₂), 66.5 (lactose-CH), 68.1 (C5), 69.0 (lactose-CH), 69.5 (C2), 70.6, 70.9, 71.0, 71.4, 72.8, 76.1, 89.9, 101.0 (lactose-CH), 116.7, 128.2 (Ar-CH), 135.9, 156.4 (Ar-C), 169.1, 169.6, 170.0, 170.1, 170.3, 170.3, 170.5 (CH₃-C(=O)-O-), 172.1 (CO₂CH₃); *m/z* (ESI⁺) 858 ([M+H]⁺, 89 %); HRMS (ESI⁺); C₃₇H₄₈NO₂₀S [M+H]⁺; found 858.24967, requires 858.24959.

S- 37

The *N*-acylthiazolidine was synthesised following the general procedure for *N*-acylation . Yield 27 % (0.60 g); white solid; 1.2:1 *cis* and *trans* diastereomers; $R_f = 0.32$ (EtOAc/petrol 3:2); v_{max}/cm^{-1} (neat) 1661 (C=O), 1742 (C=O); $\delta_{\rm H}$ (400 MHz, CDCl₃) major isomer (*cis*, a mixture of two conformers): 1.19 - 1.31 (3H, m,

OCH₂CH₃), 1.96 - 2.18 (21H, m, 7 x CH₃-C(=O)-O- major conformer + 21H, m, 7 x CH₃-C(=O)-Ominor conformer), 3.04 - 3.55 (4H, m, $H4_A + H4_B + H2''_A + H2''_B$), 3.75 - 3.81 (1H, m, lactose-CH), 3.83 (3H, s, CO₂CH₃ major conformer), 3.85 (3H, s, CO₂CH₃ minor conformer), 3.86 - 3.93 (2H, m, lactose-CH), 4.05 - 4.19 (4H, m, OCH₂CH₃ + lactose-CH₂), 4.43 - 4.62 (3H, m, lactose-CH + lactose-CH₂), 4.92 - 5.42 (6H, m, H5 + 5 x lactose-CH), 6.11 (1H, s, H2 major conformer), 6.27 (1H, s, H2 minor conformer), 6.87 - 6.94 (2H, m, Ar-CH minor conformer), 6.95 - 7.02 (2H, m, Ar-CH major conformer), 7.45 (2H, d, J = 8.6 Hz, Ar-CH minor conformer), 7.61 (2H, d, J = 8.8 Hz, Ar-CH major conformer); minor isomer (trans, a mixture of two conformers): 1.19 - 1.31 (3H, m, OCH₂CH₃), 1.96 - 2.18 (21H, m, 7 x CH₃-C(=O)-O- major conformer + 21H, m, 7 x CH₃-C(=O)-Ominor conformer), 3.04 - 3.55 (4H, m, H4_A + H4_B + H2"_A + H2"_B), 3.75 - 3.81 (4H, m, CO₂CH₃ + lactose-CH), 3.86 - 3.93 (2H, m, lactose-CH), 4.05 - 4.19 (4H, m, OCH₂CH₃ + lactose-CH₂), 4.43 -4.62 (3H, m, lactose-CH + lactose-CH₂), 4.92 - 5.42 (6H, m, H5 + 5 x lactose-CH), 6.15 (1H, s, H2 major conformer), 6.27 (1H, s, H2 minor conformer), 6.87 - 6.94 (2H, m, Ar-CH minor conformer), 6.95 - 7.02 (2H, m, Ar-CH major conformer), 7.15 (2H, d, J = 8.6 Hz, Ar-CH major conformer), 7.22 (2H, d, J = 8.8 Hz, Ar-CH minor conformer); $\delta_{\rm C}$ (125.8 MHz, CDCl₃) major isomer (*cis*, a mixture of two conformers): 14.0, 14.1 (OCH₂CH₃), 20.3, 20.4, 20.5, 20.6, 20.6, 20.8, 21.0 (CH₃-C(=O)-O-), 32.0, 33.0 (C4), 42.1, 43.0 (C2"), 52.7, 53.2 (CO₂CH₃), 60.4, 60.7, 60.8, 61.5, 61.6, 61.7, 61.8, 61.9, 61.9, 62.4 (OCH₂CH₃, lactose-CH₂, obscured by *trans* isomer), 63.8, 64.0 (C5), 65.7, 65.8 (C2), 66.6, 66.7, 68.6, 69.0, 70.7, 70.9, 71.3, 71.5, 72.6, 72.7, 72.7, 72.8, 72.8, 73.3, 76.1, 76.1, 98.4, 98.6, 101.1, 102.0 (lactose-CH), 116.5, 117.1, 127.9, 128.6 (Ar-CH), 134.2, 134.5, 156.9, 157.1 (Ar-C), 165.0, 165.4 (C1"), 166.7, 167.1 (C2"), 169.1, 170.0, 169.6, 169.7, 170.0, 170.1, 170.2, 170.3, 170.3 (CO₂CH₃ + CH₃-C(=O)-O-); minor isomer (trans, a mixture of two conformers): 14.0, 14.1 (OCH₂CH₃), 20.3, 20.4, 20.5, 20.6, 20.6, 20.8, 21.0 (CH₃-C(=O)-O-), 31.0, 33.0 (C4), 42.4, 43.3 (C2"), 52.8, 53.4 (CO₂CH₃), 60.4, 60.7, 60.8, 61.5, 61.6, 61.7, 61.8, 61.9, 61.9, 62.4 (OCH₂CH₃, lactose-CH₂, obscured by *cis* isomer), 64.2, 64.6 (C5), 64.6, 65.2 (C2), 66.6, 66.7, 68.6, 69.0, 70.9, 70.9, 71.3, 71.4, 72.6, 72.7, 72.7, 72.8, 72.8, 73.3, 76.0, 76.1, 98.4, 98.6, 101.01, 101.1 (lactose-CH), 116.9, 117.4, 126.1, 126.3 (Ar-CH), 136.6, 137.0, 156.7, 157.1 (Ar-C), 164.5, 165.3 (C1"), 166.2, 167.3 (C2"), 169.0, 169.3, 169.5, 170.0, 170.1, 170.2, 170.3, 170.3 $(CO_2CH_3 + CH_3 - C(=O) - O); m/z$ (ESI/FI) molecular ion not detected.

Tetramate **21** was obtained using the general procedure for Dieckmann cyclisation. The product isolated by flash column chromatography (eluent: 100 % EtOAc to EtOAc/MeOH/1% Et₃N) was then dissolved in CH₂Cl₂ and washed with 5% citric acid. The organic layer was dried over Na₂SO₄, filtered and concentrated *in vacuo* to yield **21**. Yield (0.15 g, 31 %); yellow solid, mp 144-146 °C; R_f = 0.38 (EtOAc/MeOH 9:1); $[\alpha]_D^{25} = -96.8$ (*c* = 0.16, CHCl₃); v_{max}/cm⁻¹ (neat) 1215 (C-O), 1620

(C=O), 1659 (C=O), 1744 (C=O); $\delta_{\rm H}$ (400 MHz, CD₂Cl₂): 1.36 (3H, t, *J* = 7.1 Hz, OCH₂CH₃), 1.95 (3H, s, *CH*₃-C(=O)-O-), 2.03 (3H, s, *CH*₃-C(=O)-O-), 2.05 (6H, s, *CH*₃-C(=O)-O-), 2.06 (3H, s, *CH*₃-C(=O)-O-), 2.08 (3H, s, *CH*₃-C(=O)-O-), 2.12 (3H, s, *CH*₃-C(=O)-O-), 3.00 (1H, dd, *J* = 11.3, 8.3 Hz, H4_A), 3.28 (1H, dd, *J* = 11.3, 7.1 Hz, H4_B), 3.73 - 3.82 (1H, m, lactose-CH), 3.87 - 3.95 (2H, m, lactose-CH), 4.04 - 4.20 (3H, m, lactos-CH₂), 4.37 (2H, q, *J* = 7.1 Hz, OCH₂CH₃), 4.46 - 4.55 (2H, m, lactose-CH + lactose-CH₂), 4.76 (1H, app t, *J* = 7.6 Hz, H5), 4.94 - 5.01 (1H, m, lactose-CH), 5.04 - 5.10 (2H, m, lactose-CH), 5.12 - 5.17 (1H, m, lactose-CH), 5.22 - 5.28 (1H, m, lactose-CH), 5.36 (1H, dd, *J* = 3.4, 1.0 Hz, lactose-CH), 6.23 (1H, s, H2), 6.96 (2H, d, *J* = 8.6 Hz, Ar-CH); $\delta_{\rm C}$ (125.8 MHz, CD₂Cl₂): 14.5 (OCH₂CH₃), 20.8, 20.9, 21.0, 21.2 (CH₃-C(=O)-O-), 33.4 (C4), 61.5 (lactose-CH₂), 62.2 (OCH₂CH₃), 62.3 (lactose-CH₂), 62.4 (C2), 66.0 (C5), 67.3, 69.5, 71.5, 71.7, 72.9, 73.6, 76.5, 99.5, 101.6 (lactose-CH), 117.4, 128.3 (Ar-CH), 136.0, 157.1 (Ar-C), 167.6 (C9), 169.2 (C8), 169.7, 170.5, 170.3, 170.5, 170.6, 170.8 (CH₃-C(=O)-O-), 186.6 (C6); *m/z* (ESI⁻) 938 ([M-H]⁻, 100 %); HRMS (ESI⁻); C₄₁H₄₈O₂₂NS [M-H]⁻; found 938.2412, requires 938.23942.

4-(Hydroxymethyl)benzaldehyde⁷

Terephthalaldehyde (2.0 g, 15 mmol, 1.0 eq) in EtOH:THF (5:7, 60 mL) was cooled to -5 °C. NaBH₄ (0.28 g, 7.5 mmol, 0.5 eq) was added with continuous stirring over 30 min, while maintaining the temperature at -5 °C. The mixture was stirred for 6 h at 0-2 °C and then neutralized with 2M HCl to pH 5. Solvents were removed *in vacuo* and H₂O was added to the residue. The product was extracted twice with EtOAc and the combined organic extracts were dried over anhydrous MgSO₄, filtered and concentrated *in vacuo*. The residue was purified by silica gel flash column chromatography to furnish the product. Yield (0.81 g, 70 %); white crystalline solid, mp 40 °C; $R_f = 0.28$ (EtOAc/petrol 1:2); v_{max}/cm^{-1} (neat) 1684 (C=O), 3369 (OH); δ_H (400 MHz, CDCl₃) 2.29 (1H, br. s, OH), 4.80 (2H, s, OCH₂), 7.53 (2H, d, J = 8.1 Hz, Ar-CH), 7.87 (2H, d, J = 8.1 Hz,

Ar-C*H*), 9.99 (1H, s, C*H*O); δ_C (125.8 MHz, CDCl₃): 64.5 (OCH₂), 126.9, 130.0 (Ar-C*H*), 135.6, 147.8 (Ar-C), 192.1 (*C*HO); *m/z* (ESI) molecular ion not detected.

(-)-4-((2,3,4,6-Tetra-O-acetyl-β-D-galactopyranosyloxy)methyl)benzaldehyde, 22²

β-D-Galactose pentaacetate (5.5 g, 14.1 mmol, 1.5 eq) and 4-(hydroxymethyl)benzaldehyde (1.28 g, 9.39 mmol, 1.0 eq) in CH₂Cl₂ (50 mL) was cooled to 0 °C and BF₃.OEt₂ (1.73 mL, 14.1 mmol, 1.5 eq) was added dropwise under N₂. The reaction flask was warmed to rt and stirred for 18 h. The reaction mixture was quenched with sat. NaHCO₃ (20 mL) and left to stir for 30 min. The product was extracted with CH₂Cl₂, dried over MgSO₄, filtered and concentrated *in vacuo*. The residue was purified by silica gel flash column chromatography to obtain **22** (eluent:

EtOAc/petrol). Yield (3.09 g, 71 %); white crystalline solid, mp 88-90 °C; $R_f = 0.12$ (EtOAc/petrol 1:2); $[\alpha]_D^{25} = -30.3$ (c = 1.25, CHCl₃); v_{max}/cm^{-1} (neat) 1217 (C-O), 1699 (C=O), 1747 (C=O); δ_H (400 MHz, CDCl₃): 1.99 (3H, s, CH₃-C(=O)-O-), 2.05 (3H, s, CH₃-C(=O)-O-), 2.06 (3H, s, CH₃-C(=O)-O-), 2.17 (3H, s, CH₃-C(=O)-O-), 3.93 (1H, app td, J = 6.6, 1.0 Hz, H5), 4.15, 4.21 (2H, ABq, $J_{AB} = 11.3$, 6.6 Hz, H6), 4.58 (1H, d, J = 7.9 Hz, H1), 4.71 (1H, d, J = 13.2 Hz, OCH₂), 4.98 - 5.05 (2H, m, OCH₂ + H3), 5.32 (1H, dd, J = 10.3, 7.9 Hz, H2), 5.41 (1H, dd, J = 3.4, 1.0 Hz, H4), 7.46 (2H, d, J = 8.1 Hz, Ar-CH), 7.87 (2H, d, J = 8.1 Hz, Ar-CH), 10.01 (1H, s, CHO); δ_H (100.6 MHz, CDCl₃): 20.5, 20.6, 20.7, 20.8 (CH₃-C(=O)-O-), 61.2 (C6), 66.9 (C4), 68.7 (C2), 70.0 (OCH₂), 70.7 (C3), 70.8 (C5), 100.4 (C1), 127.5, 129.9 (Ar-CH), 135.9, 143.8 (Ar-C), 169.4, 170.1, 170.2, 170.4 (CH₃-C(=O)-O-), 191.8 (CHO); m/z (ESI⁺) 489 ([M+Na]⁺, 100 %); HRMS (ESI⁺); C₂₂H₂₆O₁₁Na [M+Na]⁺; found 489.13711, requires 489.13673.

(2*R*,3*S*,4*S*,5*R*,6*R*)-2-(Acetoxymethyl)-6-((4-((3*S*,7a*R*)-7-(ethoxycarbonyl)-6-hydroxy-8-oxo-5,8dihydro-1*H*,3*H*-pyrrolo[1,2-*c*]thiazol-2-yl)benzyl)oxy)tetrahydro-2*H*-pyran-3,4,5-triyl triacetate, 23

Condensation of L-cysteine methyl ester hydrochloride and aldehyde **22** following the general procedure gave the corresponding thiazolidine. Yield (2.08 g, 54 %); yellow foam; 1.7:1 *cis* and *trans* diastereomers; $R_f = 0.53$ (EtOAc/petrol 2:1); v_{max}/cm^{-1} (neat) 1217 (C-O), 1742 (C=O); δ_H (500 MHz, CDCl₃) major isomer (*cis*) 1.98 (3H, s, CH₃-C(=O)-O-), 2.03 (3H, s, CH₃-C(=O)-O-), 2.07 (3H, s, CH₃-C(=O)-O-), 2.16 (3H, s, CH₃-C(=O)-O-), 2.61-2.71 (1H, m, NH), 3.12 (1H, dd, J = 10.3, 9.1 Hz, H4_A), 3.48 (1H, dd, J = 10.3, 7.2 Hz, H4_B), 3.82 (3H, s, -CO₂CH₃), 3.86 - 3.91 (1H, m, H5'), 3.95 -

4.03 (1H, m, H5), 4.12 - 4.24 (2H, m, H6'), 4.49 - 4.54 (1H, m, H1'), 4.60 - 4.66 (1H, m, OCH₂), 4.88 - 4.93 (1H, m, OCH₂), 4.96 - 5.02 (1H, m, H3'), 5.25 - 5.32 (1H, m, H2'), 5.37 - 5.40 (1H, m, H4'), 5.56 (1H, d, J = 9.3 Hz, H2), 7.30 (2H, d, J = 8.1 Hz, Ar-CH), 7.51 (2H, d, J = 8.1 Hz, Ar-CH); minor isomer (trans): 1.98 (3H, s, CH₃-C(=O)-O-), 2.02 (3H, s, CH₃-C(=O)-O-), 2.07 (3H, s, *CH*₃-C(=O)-O-), 2.16 (3H, s, *CH*₃-C(=O)-O-), 2.86 (1H, br. s., NH), 3.21 (1H, dd, *J* = 10.7, 6.0 Hz, H4_A), 3.40 (1H, dd, J = 10.7, 7.1 Hz, H4_B), 3.80 (3H, s, -CO₂CH₃), 3.86 - 3.91 (1H, m, H5'), 4.12 -4.24 (3H, m, H5 + H6'), 4.49 - 4.54 (1H, m, H1'), 4.60 - 4.66 (1H, m, OCH₂), 4.88 - 4.93 (1H, m, OCH₂), 4.96 - 5.02 (1H, m, H3'), 5.25 - 5.32 (1H, m, H2'), 5.37 - 5.40 (1H, m, H4'), 5.82 (1H, s, H2), 7.25 (2H, d, J = 8.1 Hz, Ar-CH), 7.47 (2H, d, J = 8.2 Hz, Ar-CH); $\delta_{\rm H}$ (125.8 MHz, CDCl₃): major isomer (cis): 20.5, 20.6, 20.7, 20.8 (CH₃-C(=O)-O-), 39.2 (C4), 52.6 (-CO₂CH₃), 61.3 (C6'), 65.5 (C5), 67.0 (C4'), 68.8 (C2'), 70.1 (OCH₂), 70.7 (C5'), 70.9 (C3'), 72.2 (C2), 99.8 (C1'), 127.6, 127.9 (Ar-CH), 137.3, 137.9 (Ar-C), 169.4, 170.1, 170.2, 170.4 (CH₃-C(=O)-O-), 171.6 (-CO₂CH₃); minor isomer (trans): 20.5, 20.6, 20.7, 20.8 (CH₃-C(=O)-O-), 38.1 (C4), 52.6 (-CO₂CH₃), 61.3 (C6'), 64.2 (C5), 66.7 (C4'), 68.48 (C2'), 70.2 (OCH₂), 70.4 (C2), 70.7 (C5'), 70.9 (C3'), 99.7 (C1'), 127.0, 127.8 (Ar-CH), 136.4, 141.1 (Ar-C), 169.4, 170.1, 170.2, 170.4 (CH₃-C(=O)-O-), 172.1 (- CO_2CH_3 ; m/z (ESI⁺) 584 ([M+H]⁺ 100 %); HRMS (ESI⁺); $C_{26}H_{34}O_{12}NS$ [M+H]⁺; found 584.17932, requires 584.17962.

N-Acylthiazolidine was obtained following the general procedure for *N*-acylation. Yield (1.93 g, 80 %); white foam; 1.3:1 *cis* and *trans* diastereomers; $R_f = 0.42$ (EtOAc/petrol 2:1); v_{max}/cm^{-1} (neat) 1216 (C-O), 1662 (C=O), 1741 (C=O); δ_H (500 MHz, CDCl₃) major isomer (*cis*, a mixture of two conformers): 1.21 - 1.31 (3H, m, OCH₂CH₃), 1.99 (3H, s, CH₃-C(=O)-O-), 2.04 (3H, s, CH₃-C(=O)-O-), 2.07 (3H, s, CH₃-C(=O)-O-), 2.17 (3H, s, CH₃-C(=O)-O-), 3.07 - 3.57 (4H, m, H4_A + H4_B + H2"_A + H2"_B), 3.83 (3H, s, CO₂CH₃ minor conformer), 3.85 (3H, s, CO₂CH₃ major conformer), 3.87 - 3.94 (1H, m, H5'), 4.09 -

4.27 (4H, m, OC H_2 CH₃ + H6'), 4.50 - 4.66 (2H, m, H1' + OC H_2), 4.86 - 4.93 (1H, m, OC H_2), 4.97 - 5.05 (1H, m, H3'), 5.07 (1H, app t, J = 7.1 Hz, H5), 5.24 - 5.32 (1H, m, H2'), 5.37 - 5.42 (1H, m, H6'), 6.16 (1H, s, H2 major conformer), 6.35 (1H, s, H2 minor conformer), 7.22 - 7.27 (2H, m, Ar-CH minor conformer), 7.31 - 7.33 (2H, m, Ar-CH major conformer), 7.51 (2H, d, J = 7.9 Hz, Ar-CH minor conformer), 7.66 (2H, d, J = 8.1 Hz, Ar-CH major conformer); minor isomer (*trans*, a mixture of two conformers): 1.21 - 1.31 (3H, m, OCH₂CH₃), 1.99 (3H, s, CH₃-C(=O)-O-), 2.05 (3H, s, CH₃-C(=O)-O-), 2.08 (3H, s, CH₃-C(=O)-O-), 2.16 (3H, s, CH₃-C(=O)-O-), 3.07 - 3.57 (4H, m, H4_A + H4_B + H2"_A + H2"_B), 3.80 (3H, s, CO₂CH₃ major conformer), 3.86 (3H, s, CO₂CH₃

minor conformer), 3.87 - 3.94 (1H, m, H5'), 4.09 - 4.27 (4H, m, OCH₂CH₃ + H6'), 4.50 - 4.66 (2H, m, H1' + OCH₂), 4.86 - 4.93 (1H, m, OCH₂), 4.97 - 5.05 (1H, m, H3'), 5.20 (1H, app d, J = 5.7 Hz, H5 minor conformer), 5.24 - 5.32 (2H, m, H5 major conformer + H2'), 5.37 - 5.42 (1H, m, H6'), 6.19 (1H, s, H2 major conformer), 6.32 (1H, s, H2 minor conformer), 7.21 (2H, d, J = 8.2 Hz, Ar-CH major conformer), 7.22 - 7.27 (4H, m, Ar-CH minor conformer), 7.31 - 7.33 (2H, m, Ar-CH major conformer); δ_C (125.8 MHz, CDCl₃): major isomer (*cis*, a mixture of two conformers): 14.0, 14.1 (OCH₂CH₃), 20.6, 20.7, 20.7, 20.8 (CH₃-C(=O)-O-), 32.1, 33.1 (C4), 42.2, 43.0 (C2"), 52.7, 53.4 (CO₂CH₃), 61.3 (C6'), 61.7, 62.0 (OCH₂CH₃), 63.8, 64.7 (C5), 66.1, 66.9 (C2), 67.1 (C4'), 68.8 (C2'), 70.2, 70.3 (OCH₂), 70.7, 70.8 (C3'), 70.9 (C5'), 99.8, 100.0 (C1'), 126.6, 127.3, 127.6, 128.2 (Ar-CH), 136.5, 137.4, 138.5, 139.6 (Ar-C), 165.0, 165.5 (C1"), 166.7, 167.1 (C3"), 169.3, 169.4, 169.4, 170.1, 170.1, 170.2, 170.2, 170.3, 170.4 (CO₂CH₃ + CH₃-C(=O)-O-); minor isomer (*trans*, a mixture of two conformers): 14.0, 14.1 (OCH₂CH₃), 20.6, 20.7, 20.7, 20.8 (CH₃-C(=O)-O-), 31.0, 33.9 (C4), 42.5, 43.3 (C2"), 52.8, 53.5 (CO₂CH₃), 61.2, 61.3 (C6'), 61.6, 61.8 (OCH₂CH₃), 64.0, 64.3 (C5), 64.8, 65.5 (C2), 67.1 (C4'), 68.8 (C2'), 70.0, 70.3 (OCH₂), 70.7, 70.9 (C3'), 70.8, 70.9 (C5'), 99.8, 100.2 (C1'), 124.9, 125.1, 127.9, 128.3 (Ar-CH), 136.1, 137.4, 141.5, 141.9 (Ar-C), 164.6, 165.3 (C1"), 166.3, 167.3 (C3"), 169.3, 169.4, 169.4, 170.1, 170.1, 170.2, 170.2, 170.3, 170.4 ($CO_2CH_3 + CH_3-C(=O)-O_-$); m/z (ESI⁺) 698 ([M+H]⁺ 100 %); HRMS (ESI⁺); $C_{31}H_{40}O_{15}NS$ [M+H]⁺; found 698.21035, requires 698.21132.

Tetramate **23** was obtained following the general procedure for Dieckmann cyclisation. Yield (0.44 g, 30 %); yellow foam, mp 110-114 °C; $R_f = 0.20$ (EtOAc/MeOH 9:1); $[\alpha]_D^{25} = -143.0$ (c = 0.17, CHCl₃); v_{max}/cm^{-1} (neat) 1217 (C-O), 1618 (C=O), 1660 (C=O), 1744 (C=O); δ_H (400 MHz, CDCl₃): 1.37 (3H, t, J = 7.1 Hz, OCH₂CH₃), 1.95 (3H, s, CH₃-C(=O)-O-), 2.01 (3H, s, CH₃-C(=O)-O-), 2.04 (3H, s, CH₃-C(=O)-O-), 2.14 (3H, s, CH₃-C(=O)-O-), 3.02 (1H, dd, J = 11.1, 8.3 Hz, H4_A), 3.30 (1H, dd, J = 11.1, 7.1 Hz, H4_B), 3.91 (1H, td, J = 6.5, 1.1 Hz, H5'), 4.13, 4.18 (2H, ABq, $J_{AB} = 11.4$, 6.8 Hz, H6'), 4.38 (2H, q, J = 7.1 Hz,

OC H_2 CH₃), 4.54 (1H, d, J = 8.0 Hz, H1'), 4.62 (1H, d, J = 12.3 Hz, OC H_2), 4.80 (1H, app t, J = 7.7 Hz, H5), 4.87 (1H, d, J = 12.3 Hz, OC H_2), 4.98 (1H, dd, J = 10.5, 3.5 Hz, H3'), 5.18 (1H, dd, J = 10.5, 8.0 Hz, H2'), 5.37 (1H, dd, J = 3.5, 1.1 Hz, H4'), 6.27 (1H, s, H2), 7.29 (2H, d, J = 8.1 Hz, Ar-CH), 7.44 (2H, d, J = 8.1 Hz, Ar-CH); δ_C (125.8 MHz, CD₂Cl₂): 14.5 (OCH₂CH₃), 20.9, 21.0, 21.1, 21.1 (CH₃-C(=O)-O-), 33.4 (C4), 62.0 (C6'), 62.3 (OCH₂CH₃), 62.6 (C2), 65.9 (C5), 67.7 (C4'), 69.3 (C2'), 70.8 (OCH₂), 71.4 (C3'), 71.5 (C5'), 99.7 (C7), 100.5 (C1'), 127.0, 128.5 (Ar-CH), 137.5, 140.9 (Ar-C), 167.6 (C9), 169.0 (C8), 169.9, 170.5, 170.7, 170.8 (CH₃-C(=O)-O-), 186.6

(C6); *m/z* (ESI⁻) 664 ([M-H]⁻, 100 %); HRMS (ESI⁻); C₃₀H₃₄O₁₄NS [M-H]⁻; found 664.17073, requires 664.17055.

4-((tert-Butyldimethylsilyl)oxy)benzaldehyde, 24a

To 4-hydroxybenzaldehyde (2.0 g, 16.4 mmol, 1 eq) and Et₃N (3.42 mL, 24.6 mmol, 1.5 eq) in CH₂Cl₂ (40 mL) at 0 °C, a solution of TBDMSCl in CH₂Cl₂ (3.7 g, 24.6 mmol, 1.5 eq) was added portionwise. The reaction mixture was stirred at rt for 2 h and quenched with water. The organic layer was separated and the aqueous layer was extracted twice with CH₂Cl₂. The combined organic extracts were washed with brine, dried over MgSO₄, filtered and concentrated *in vacuo*. The residue was purified by silica gel flash column chromatography (eluent: EtOAc/petrol).

Yield (3.86 g, quant.); yellow oil, $R_f = 0.74$ (EtOAc/petrol 1:9); v_{max}/cm^{-1} (neat) 1102 (Si-O), 1257 (Si-C), 1698 (C=O); δ_H (400 MHz, CDCl₃): 0.24 (6H, s, Si(CH₃)₂), 0.99 (9H, s, SiC(CH₃)₃), 6.94 (2H, d, J = 8.6 Hz, Ar-CH), 7.78 (2H, d, J = 8.6 Hz, Ar-CH), 9.87 (1H, s, CHO); δ_C (100.6 MHz, CDCl₃): -4.4 (Si(CH₃)₂), 18.2 (SiC(CH₃)₃), 25.5 (SiC(CH₃)₃), 120.4, 131.8 (Ar-CH), 130.3, 161.4 (Ar-C), 190.8 (CHO); *m/z* (ESI⁺) ~ 237 ([M+H]⁺, 100 %); HRMS (ESI⁺); C₁₃H₂₁O₂Si [M+H]⁺; found 237.13038, 87 13053

requires 237.13053.

4-((tert-Butyldimethylsilyl)oxy)methyl)benzaldehyde, 24b

To the aldehyde (0.81 g, 5.96 mmol, 1.0 eq) in CH₂Cl₂ (20 mL), imidazole (0.61 g, 8.94 mmol, 1.5 eq) was added and stirred at rt for 30 min. TBDMSCl (1.35 g, 8.94 mmol, 1.5 eq) was then added portionwise and the reaction mixture was stirred at rt for 6 h. The reaction was quenched with water and the product extracted with CH₂Cl₂. The organic extracts were dried over MgSO₄, filtered and concentrated *in vacuo*. The residue was purified by silica gel flash column chromatography (eluent: EtOAc/petrol). Yield (1.47 g, 99 %); colourless oil; $R_f = 0.56$ (EtOAc/petrol 1:9);

 v_{max}/cm^{-1} (neat) 1107 (Si-O), 1255 (Si-C), 1703 (C=O); δ_{H} (400 MHz, CDCl₃): 0.13 (6H, s, Si(CH₃)₂), 0.96 (9H, s, SiC(CH₃)₃), 4.83 (2H, s, OCH₂), 7.50 (2H, d, *J* = 8.1 Hz, Ar-C*H*), 7.86 (2H, d, *J* = 8.1 Hz, Ar-C*H*), 10.01 (1H, s, CHO); δ_{C} (100.6 MHz, CDCl₃): -5.4 (Si(CH₃)₂), 18.4 (SiC(CH₃)₃), 25.9 (SiC(CH₃)₃), 64.4 (OCH₂), 126.2, 129.8 (Ar-CH), 135.3, 148.7 (Ar-C), 192.1 (CHO); *m/z* (ESI) molecular ion not detected.

(-)-Ethyl (2*S*,5*R*)-2-(4-((*tert*-butyldimethylsilyl)oxy)phenyl)-6-hydroxy-8-oxo-5,8-dihydro-1*H*,3*H*-pyrrolo[1,2-*c*]thiazole-7-carboxylate 25a

Thiazolidine was obtained from the condensation of L-cysteine methyl ester hydrochloride and aldehyde **24a** following the general procedure. Yield (4.81 g, 85 %); yellow oil; 2:1 *cis* and *trans* diastereomers; $R_f = 0.20$ (EtOAc/petrol 1:9); v_{max}/cm^{-1} (neat) 1254 (Si-C), 1742 (C=O), 3309 (N-H); δ_H (400 MHz, CDCl₃) major isomer (*cis*): 0.19 (6H, s, Si(CH₃)₂), 0.97 (9H, s, SiC(CH₃)₃), 2.60 (1H, app t, J = 12.4, NH), 3.08 (1H, dd, J = 10.3, 9.1 Hz, H4_A), 3.42 (1H, dd, J = 10.3, 7.1 Hz, H4_B), 3.77 (3H, s, CO₂CH₃), 3.89 - 3.99 (1H, m, H5), 5.49 (1H, d, J = 12.2 Hz, H2), 6.81 (2H, d, J = 8.6 Hz, Ar-CH), 7.38 (2H, d, J

= 8.6 Hz, Ar-C*H*); minor isomer (*trans*): 0.17 (6H, s, Si(CH₃)₂), 0.97 (9H, s, SiC(CH₃)₃), 2.76 (1H, br. s., NH), 3.20 (1H, dd, J = 10.6, 5.5 Hz, H4_A), 3.36 (1H, dd, J = 10.5, 7.1 Hz, H4_B), 3.75 (3H, s, CO₂CH₃), 4.21(1H, app t, J = 6.1 Hz, H5), 5.72 (1H, s, H2), 6.78 (2H, d, J = 8.6 Hz, Ar-C*H*), 7.34 (2H, d, J = 8.3 Hz, Ar-C*H*); δ_{C} (100.6 MHz, CDCl₃): major isomer (*cis*): -4.6 (Si(CH₃)₂), 18.0 (SiC(CH₃)₃), 25.5 (SiC(CH₃)₃), 39.0 (C4), 52.4 (CO₂CH₃), 65.3 (C5), 72.2 (C2), 120.0, 128.5 (Ar-CH), 130.6, 155.8 (Ar-C), 171.5 (CO₂CH₃); minor isomer (*trans*): -4.6 (Si(CH₃)₂), 18.0 (SiC(CH₃)₃), 25.5 (SiC(CH₃)₃), 37.9 (C4), 52.3 (CO₂CH₃), 64.1 (C5), 70.5 (C2), 119.7, 128.1 (Ar-CH), 133.3, 155.2 (Ar-C), 172.1 (CO₂CH₃); *m*/*z* (ESI⁺) 354 ([M+H]⁺ 100 %); HRMS (ESI⁺); C₁₇H₂₈O₃NSSi [M+H]⁺; found 354.15499, requires 354.15537.

N-Acylthiazolidine was derived following the general procedure for *N*-acylation. Yield (5.2 g, 83 %); yellow oil; 2:1 *cis* and *trans* diastereomers; $R_f = 0.15$ (EtOAc/petrol 1:4); v_{max}/cm^{-1} (neat) 1252 (Si-C), 1662 (C=O), 1742 (C=O); δ_H (400 MHz, CDCl₃) major isomer (*cis*, a mixture of two conformers): 0.16 and 0.19 (6H, s, Si(CH₃)₂), 0.95 and 0.97 (9H, s, SiC(CH₃)₃), 1.19 - 1.28 (3H, m, OCH₂CH₃), 3.05 - 3.47 (4H, m, H4_A + H4_B + H2"_A + H2"_B), 3.82 (3H, s, CO₂CH₃), 4.06 - 4.17 (2H, m, OCH₂CH₃), 4.99 - 5.04 (1H, m, H5 minor conformer), 5.07 (1H, app

t, J = 6.5 Hz, H5 major conformer), 6.08 (1H, s, H2 major conformer), 6.33 (1H, s, H2 minor conformer), 6.78 - 6.87 (2H, m, Ar-CH, major conformer), 6.93 (2H, d, J = 8.6 Hz, Ar-CH, minor conformer), 7.37 (2H, d, J = 8.3 Hz, Ar-CH, minor conformer), 7.51 (2H, d, J = 8.6 Hz, Ar-CH, major conformer); minor isomer (*trans*, a mixture of two conformers: 0.16 and 0.19 (6H, s, Si(CH₃)₂), 0.95 and 0.97 (9H, s, SiC(CH₃)₃), 1.19 - 1.28 (3H, m, OCH₂CH₃), 3.05 - 3.47 (4H, m, H4_A + H4_B + H2"_A + H2"_B), 3.77 (3H, s, CO₂CH₃), 4.06 - 4.17 (2H, m, OCH₂CH₃), 5.16 (1H, app d, J = 5.9 Hz, H5 minor conformer), 5.25 - 5.29 (1H, m, H5 major conformer), 6.12 (1H, s, H2 major conformer), 6.78 - 6.87 (2H, m, Ar-CH, major conformer), 7.07 (2H, d, J = 8.6 Hz, Ar-CH, major conformer), 7.13 (2H, d, J = 8.6 Hz, Ar-CH, minor conformer); $\delta_{\rm H}$ (100.6 MHz, CDCl₃): major

isomer (*cis*, a mixture of two conformers): -4.5 (Si(*C*H₃)₂), 13.9, 14.1 (OCH₂CH₃), 18.1 (Si*C*(CH₃)₃), 25.5 (SiC(*C*H₃)₃), 32.0, 33.1 (C4), 42.0, 43.4 (C2"), 52.6, 53.3 (CO₂CH₃), 61.5, 61.7 (OCH₂CH₃), 63.6, 64.5 (C5), 66.1, 66.5 (C2), 119.5, 120.4, 127.9, 128.5 (Ar-CH), 132.0, 155.9 (Ar-C), 165.5 (C1"), 166.8 (C3"), 170.2 (CO₂CH₃); minor isomer (*trans*, a mixture of two conformers): -4.5 (Si(*C*H₃)₂), 13.9, 14.1 (OCH₂CH₃), 18.1 (Si*C*(CH₃)₃), 25.5 (SiC(*C*H₃)₃), 31.0, 33.8 (C4), 42.3, 42.9 (C2"), 52.7, 53.4 (CO₂CH₃), 60.3, 61.4 (OCH₂CH₃), 63.9, 64.1 (C5), 64.8, 65.4 (C2), 119.7, 120.5, 126.0, 126.2 (Ar-CH), 134.2, 155.8 (Ar-C), 165.4 (C1"), 166.3 (C3"), 169.4 (*C*O₂CH₃); *m*/*z* (ESI⁺) 468 ([M+H]⁺ 100 %); HRMS (ESI⁺); C₂₂H₃₄O₆NSSi [M+H]⁺; found 468.18630, requires 468.18706.

Tetramate **25a** was obtained following the general procedure for Dieckmann cyclisation. Yield (0.14 g, 30 %); yellow solid, mp 118-122 °C; $R_f = 0.42$ (EtOAc/MeOH 9:1); $[\alpha]_D^{25} = -105.3$ (c = 1.0, CHCl₃); v_{max}/cm^{-1} (neat) 1261 (Si-C), 1610 (C=C), 1651 (C=O), 1685 (C=O), 3311 (O-H); δ_H (400 MHz, CD₂Cl₂): 0.20 (6H, s, Si(CH₃)₂), 0.98 (9H, s, SiC(CH₃)₃), 1.36 (3H, t, J = 7.1 Hz, OCH₂CH₃), 2.99 (1H, dd, J = 11.0, 8.3 Hz, H4_A), 3.30 (1H, dd, J = 11.1, 7.0 Hz, H4_B), 4.36 (2H, q, J = 7.1 Hz,

OC*H*₂CH₃), 4.77 (1H, app t, J = 7.7 Hz, H5), 6.22 (1H, s, H2), 6.82 (2H, d, J = 8.3 Hz, Ar-C*H*), 7.32 (2H, d, J = 8.3 Hz, Ar-C*H*); $\delta_{\rm C}$ (100.6 MHz, CD₂Cl₂): -4.2 (Si(CH₃)₂), 14.6 (OCH₂CH₃), 18.6 (SiC(CH₃)₃), 26.0 (SiC(CH₃)₃), 33.4 (C4), 62.1 (OCH₂CH₃), 62.5 (C2), 66.2 (C5), 120.6, 128.1 (Ar-CH), 133.8, 156.1 (Ar-C), 167.5 (C9), 186.8 (C6); *m/z* (ESI⁻) 434 ([M-H]⁻, 100 %); HRMS (ESI⁻); C₂₁H₂₈O₅NSSi [M-H]⁻; found 434.14657, requires 434.14629.

(-)-Ethyl (2*S*,5*R*)-2-(4-(((*tert*-butyldimethylsilyl)oxy)methyl)phenyl)-6-hydroxy-8-oxo-5,8dihydro-1*H*,3*H*-pyrrolo[1,2-*c*]thiazole-7-carboxylate 25b

Thiazolidine was obtained from the condensation of L-cysteine methyl ester hydrochloride and aldehyde **24b** following the general procedure. Yield (1.89 g, 88 %); colourless oil; 1.6:1 *cis* and *trans* diastereomers; R_f = 0.54 (EtOAc/petrol 1:4); v_{max}/cm^{-1} (neat) 1253 (Si-C), 1742 (C=O), 3311 (N-H); δ_H (400 MHz, CDCl₃) major isomer (*cis*): 0.11 (6H, s, Si(CH₃)₂), 0.95 (9H, s, SiC(CH₃)₃), 2.36 (1H, br. s, NH), 3.12 (1H, dd, *J* = 10.3, 9.1 Hz, H4_A), 3.47 (1H, dd, *J* = 10.3, 7.2 Hz, H4_B), 3.82 (3H, s, CO₂CH₃), 4.00 (1H, dd, *J* = 8.9, 7.2 Hz, H5), 4.75 (2H, s, OCH₂), 5.57

(1H, d, J = 12.2 Hz, H2), 7.34 (2H, d, J = 8.3 Hz, Ar-CH), 7.49 (2H, d, J = 8.3 Hz, Ar-CH); minor isomer (*trans*): 0.10 (6H, s, Si(CH₃)₂), 0.94 (9H, s, SiC(CH₃)₃), 2.36 (1H, br. s., NH), 3.22 (1H, dd, $J = 10.7, 5.8 Hz, H4_A$), 3.40 (1H, dd, $J = 10.7, 7.1 Hz, H4_B$), 3.80 (3H, s, CO₂CH₃), 4.24 (1H, dd, $J = 10.7, 7.1 Hz, H4_B$), 3.80 (3H, s, CO₂CH₃), 4.24 (1H, dd, $J = 10.7, 7.1 Hz, H4_B$), 3.80 (3H, s, CO₂CH₃), 4.24 (1H, dd, $J = 10.7, 7.1 Hz, H4_B$), 3.80 (3H, s, CO₂CH₃), 4.24 (1H, dd, $J = 10.7, 7.1 Hz, H4_B$), 3.80 (3H, s, CO₂CH₃), 4.24 (1H, dd, $J = 10.7, 7.1 Hz, H4_B$), 3.80 (3H, s, CO₂CH₃), 4.24 (1H, dd, $J = 10.7, 7.1 Hz, H4_B$), 3.80 (3H, s, CO₂CH₃), 4.24 (1H, dd, $J = 10.7, 7.1 Hz, H4_B$), 3.80 (3H, s, CO₂CH₃), 4.24 (1H, dd, $J = 10.7, 7.1 Hz, H4_B$), 3.80 (3H, s, CO₂CH₃), 4.24 (1H, dd, $J = 10.7, 7.1 Hz, H4_B$), 3.80 (3H, s, CO₂CH₃), 4.24 (1H, dd, $J = 10.7, 7.1 Hz, H4_B$), 3.80 (3H, s, CO₂CH₃), 4.24 (1H, dd, $J = 10.7, 7.1 Hz, H4_B$), 3.80 (3H, s, CO₂CH₃), 4.24 (1H, dd, $J = 10.7, 7.1 Hz, H4_B$), 3.80 (3H, s, CO₂CH₃), 4.24 (1H, dd, $J = 10.7, 7.1 Hz, H4_B$), 3.80 (3H, s, CO₂CH₃), 4.24 (1H, dd, $J = 10.7, 7.1 Hz, H4_B$), 3.80 (3H, s, CO₂CH₃), 4.24 (1H, dd, $J = 10.7, 7.1 Hz, H4_B$), 3.80 (3H, s, CO₂CH₃), 4.24 (1H, dd, $J = 10.7, 7.1 Hz, H4_B$), 3.80 (3H, s, CO₂CH₃), 4.24 (1H, dd, J)

= 7.1, 5.9 Hz, H5), 4.73 (2H, s, OCH₂), 5.82 (1H, s, H2), 7.29 (2H, d, J = 8.3 Hz, Ar-CH), 7.45 (2H, d, J = 8.3 Hz, Ar-CH); δ_{C} (125.8 MHz, CDCl₃): major isomer (*cis*): -5.3 (Si(CH₃)₂), 18.4 (SiC(CH₃)₃), 25.9 (SiC(CH₃)₃), 39.3 (C4), 52.6 (CO₂CH₃), 64.6 (OCH₂), 65.6 (C5), 72.5 (C2), 126.3, 127.3 (Ar-CH), 136.7, 142.1 (Ar-C), 171.6 (CO₂CH₃); minor isomer (*trans*): -5.3 (Si(CH₃)₂), 15.3 (SiC(CH₃)₃), 25.9 (SiC(CH₃)₃), 38.1 (C4), 52.5 (CO₂CH₃), 64.3 (C5), 64.6 (OCH₂), 70.7 (C2), 126.1, 126.8 (Ar-CH), 139.6, 141.3 (Ar-C), 172.2 (CO₂CH₃); *m/z* (ESI⁺) 368 ([M+H]⁺ 43 %); HRMS (ESI⁺); C₁₈H₃₀O₃NSSi [M+H]⁺; found 368.17144, requires 368.17102.

N-Acylthiazolidine was obtained following the general procedure for *N*-acylation. Yield (2.25 g, 91 %); colourless oil; inseparable 1.7:1 *cis* and *trans* diastereomers; $R_f = 0.20$ (EtOAc/petrol 1:3); v_{max}/cm^{-1} (neat) 1250 (Si-C), 1662 (C=O), 1742 (C=O); δ_H (500 MHz, CDCl₃) major isomer (*cis*, a mixture of two conformers): 0.09 and 0.11 (6H, s, Si(CH₃)₂), 0.94 and 0.95 (9H, s, SiC(CH₃)₃), 1.20 -1.30 (3H, m, OCH₂CH₃), 3.07 - 3.58 (4H, m, H4_A + H4_B + H2"_A + H2"_B), 3.81 and 3.85 (3H, s, CO₂CH₃), 4.06 - 4.25 (2H, m,

 OCH_2CH_3 , 4.70 and 4.75 (OCH_2), 5.08 (1H, app t, J = 6.8 Hz, H5), 6.14 and 6.37 (1H, s, H2), 7.21 - 7.27 (2H, m, Ar-CH minor conformer), 7.32 - 7.38 (2H, m, Ar-CH major conformer), 7.48 (2H, d, J = 8.1 Hz, Ar-CH minor conformer), 7.62 (2H, d, J = 8.2 Hz, Ar-CH major conformer),; minor isomer (trans, a mixture of two conformers: 0.09 and 0.11 (6H, s, Si(CH₃)₂), 0.94 and 0.95 (9H, s, SiC(CH₃)₃), 1.20 - 1.30 (3H, m, OCH₂CH₃), 3.07 - 3.58 (4H, m, H4_A + H4_B + H2"_A + H2"_B), 3.80 and 3.86 (3H, s, CO₂CH₃), 4.06 - 4.25 (2H, m, OCH₂CH₃), 4.70 and 4.74 (OCH₂), 5.20 (1H, app d, J = 5.9 Hz, H5 minor conformer), 5.29 - 5.33 (1H, m, H5 major conformer), 6.18 and 6.33 (1H, s, H2), 7.19 (2H, d, J = 8.2 Hz, Ar-CH major conformer), 7.21 - 7.27 (4H, m, Ar-CH minor conformer), 7.32 - 7.38 (2H, m, Ar-CH major conformer); δ_C (125.8 MHz, CDCl₃): major isomer (cis, a mixture of two conformers): -5.3 (Si(CH₃)₂), 14.0 (OCH₂CH₃), 18.4 (SiC(CH₃)₃), 25.9 (SiC(CH₃)₃), 32.1, 33.8 (C4), 42.1, 43.4 (C2"), 52.7, 53.1 (CO₂CH₃), 61.6, 61.8 (OCH₂CH₃), 63.8, 64.7 (C5), 64.5, 64.6 (OCH₂), 66.2, 67.0 (C2), 125.8, 126.4, 126.6, 127.0 (Ar-CH), 137.2, 138.3, 141.2, 142.1 (Ar-C), 164.4, 165.6 (C1"), 166.8, 167.2 (C3"), 170.2, 170.3 (CO₂CH₃); minor isomer (trans, a mixture of two conformers): -5.3 (Si(CH₃)₂), 14.0, 14.2 (OCH₂CH₃), 18.4 (SiC(CH₃)₃), 25.9 (SiC(CH₃)₃), 31.0, 33.1 (C4), 42.4, 43.0 (C2"), 52.8, 53.4 (CO₂CH₃), 61.5, 61.8 (OCH₂CH₃), 64.0, 64.3 (C5), 64.4, 64.6 (OCH₂), 65.0, 65.6 (C2), 124.6, 124.9, 126.2, 126.8 (Ar-CH), 140.4, 140.6, 140.8, 142.0 (Ar-C), 164.9, 165.4 (C1"), 166.3, 167.2 (C3"), 169.5, 170.2 (CO₂CH₃); m/z (ESI⁺) 482 ([M+H]⁺ 100 %); HRMS (ESI⁺); C₂₃H₃₆O₆NSSi [M+H]⁺; found 482.20171, requires 482.20271.

Tetramate **25b** was obtained following the general procedure for Dieckmann cyclisation. Yield (0.31 g, 15 %); yellow foam, mp 94 -96 °C; $R_f = 0.47$ (EtOAc/MeOH 9:1); $[\alpha]_D^{25} = -172.2$ (c = 0.17, MeOH); ν_{max}/cm^{-1} (neat) 1610 (C=C), 1689 (C=O, br with shoulder towards smaller wavenumber); δ_H (400 MHz, Methanol-*d*₄): 0.07 (6H, s, Si(CH₃)₂), 0.91 (9H, s, SiC(CH₃)₃), 1.31 (3H, t, J = 7.0 Hz, OCH₂CH₃), 2.98 (1H, dd, J = 10.5, 8.8 Hz, H4_A), 3.23 - 3.33 (1H, m, H4_B), 4.29 (2H, q, J = 7.0 Hz, OCH₂CH₃), 4.59 (OCH₂), 4.87 (1H,

app t, J = 7.3 Hz, H5), 6.22 (1H, s, H2), 7.35 (2H, d, J = 8.0 Hz, Ar-C*H*), 7.45 (2H, d, J = 8.0 Hz, Ar-C*H*); $\delta_{\rm C}$ (100.6 MHz, Methanol-*d*₄): -5.6 (Si(CH₃)₂), 14.8 (OCH₂CH₃), 19.3 (SiC(CH₃)₃), 26.5 (SiC(CH₃)₃), 33.7 (C4), 61.7 (OCH₂CH₃), 63.4 (C2), 64.9 (OCH₂), 67.6 (C5), 99.5 (C7), 127.5, 128.2 (Ar-CH), 141.1, 142.7 (Ar-C), 164.9 (C9), 172.8 (C8), 184.9 (C6); *m/z* (ESI⁻) 448 ([M-H]⁻, 100 %); HRMS (ESI⁻); C₂₂H₃₀O₅NSSi [M-H]⁻; found 448.16259, requires 448.16194.

General procedure for silyl ether deprotection

The deprotection of silyl ethers was according to a modified literature procedure. ⁸ To tetramate (1.0 eq) dissolved in THF (2 mL/mmol), tetraethylene glycol (5 eq) and KF (2 eq) were added. The reaction was stirred at rt for 0.5 - 2 h (for the deprotection of **25b**, the reaction mixture was heated at 80 °C for 5 h). Solvent was evapourated *in vacuo* and the residue was purified by silica gel flash column chromatography (eluent: EtOAc/MeOH/1% Et₃N). The product isolated was dissolved in CH₂Cl₂ (a few drops of MeOH was needed to aid solubility) and washed with 0.1 M HCl. The organic fraction was dried over Na₂SO₄, filtered and concentrated *in vacuo* to obtain the required product.

(-)-Ethyl (2*S*,5*R*)-6-hydroxy-2-(4-hydroxyphenyl)-8-oxo-5,8-dihydro-1*H*,3*H*-pyrrolo[1,2*c*]thiazole-7-carboxylate 26a

Yield (88 mg, 30 %); yellow solid, mp 172 °C; $R_f = 0.21$ (EtOAc/ MeOH 9:1); $[\alpha]_D^{25} = -188.9$ (c = 0.13, MeOH); v_{max}/cm^{-1} (neat) 1611 (C=C), 1642 (C=O), 1686 (C=O), 3369 (O-H); δ_H (200 MHz, Acetone- d_6): 1.29 (3H, t, J = 7.1 Hz, OCH₂CH₃), 3.08 (1H, dd, J = 11.0, 8.0 Hz, H4_A), 3.38 (1H, dd, J = 11.0, 7.0 Hz, H4_A), 4.30 (2H, q, J = 7.1 Hz, OCH₂CH₃), 4.96 (1H, app

t, J = 7.6 Hz, H5), 6.18 (1H, s, H2), 6.80 (2H, d, J = 8.5 Hz, Ar-CH), 7.33 (2H, d, J = 8.5 Hz, Ar-CH); $\delta_{\rm C}$ (125.8 MHz, Acetone- d_6): 14.6 (OCH₂CH₃), 33.4 (C4), 61.4 (OCH₂CH₃), 63.1 (C2), 66.6 (C5), 99.3 (C7), 116.0, 128.8 (Ar-CH), 133.0, 158.1 (Ar-C), 166.3 (C9), 169.9 (C8), 186.0 (C6);

m/z (ESI⁻) 320 ([M-H]⁻, 73 %); HRMS (ESI⁻); C₁₅H₁₄O₅NS [M-H]⁻; found 320.06016, requires 320.05982.

(-)-Ethyl (2*S*,5*R*)-6-hydroxy-2-(4-(hydroxymethyl)phenyl)-8-oxo-5,8-dihydro-1*H*,3*H*pyrrolo[1,2-*c*]thiazole-7-carboxylate 26b

Yield (24 mg, 20 %); white foam, mp 78-80 °C; $R_f = 0.18$ (EtOAc/MeOH 9:1); $[\alpha]_D^{25} = -273.7$ (c = 0.11, MeOH); v_{max}/cm^{-1} (neat) 1609 (C=C), 1690 (C=O, br with shoulder towards smaller wavenumber), 3350 (O-H); δ_H (200 MHz, Acetone- d_6): 1.29 (3H, t, J = 7.1 Hz, OCH₂CH₃), 3.12 (1H, dd, J = 11.1, 8.0 Hz, H4_A), 3.39 (1H, dd, J = 11.1, 7.0 Hz, H4_A), 4.30 (2H, q, J = 7.1 Hz, OCH₂CH₃), 4.62

 (OCH_2) , 5.00 (1H, app t, J = 7.6 Hz, H5), 6.25 (1H, s, H2), 7.34 (2H, d, J = 8.3 Hz, Ar-C*H*), 7.45 (2H, d, J = 8.3 Hz, Ar-C*H*); δ_C (125.8 MHz, Acetone-*d*₆): 14.6 (OCH₂CH₃), 33.4 (C4), 61.5 (OCH₂CH₃), 63.2 (C2), 64.4 (OCH₂), 66.6 (C5), 99.4 (C7), 127.2, 127.5 (Ar-CH), 140.8, 143.2 (Ar-C), 166.3 (C9), 169.7 (C8), 186.0 (C6); *m/z* (ESI⁻) 334 ([M-H]⁻, 100 %); HRMS (ESI⁻); C₁₆H₁₆O₅NS [M-H]⁻; found 334.07552, requires 334.07547.

(-)-(2*S*,5*R*)-2-(4-((*tert*-Butyldimethylsilyl)oxy)phenyl)-6-hydroxy-8-oxo-*N*-adamantyl-5,8dihydro-1*H*,3*H*-pyrrolo[1,2-*c*]thiazole-7-carboxamide 27a

Carboxamide tetramate **27a** was obtained by aminolysis of **25a** with 1-adamantylamine according to the general procedure for the synthesis of carboxamides with THF/toluene as solvent. Yield (0.46 g, 54 %); brown foaming solid, mp 158-160 °C; $R_f = 0.78$ (EtOAc/petrol 1:1); $[\alpha]_D^{25} = -144.1$ (c = 0.25, CHCl₃); v_{max}/cm^{-1} (neat) 1262 (Si-C), 1627 (C=C), 1648 (C=O), 1688 (C=O), 3309 (O-H); δ_H (400 MHz, CD₂Cl₂): 0.20 (6H, s, Si(CH₃)₂), 0.98 (9H, s, SiC(CH₃)₃), 1.70 (6H, Adamantyl-CH₂), 2.06 (6H, Adamantyl-

CH₂), 2.10 (3H, br.signal, Adamantyl-CH), 2.97 (1H, dd, J = 11.0, 8.6 Hz, H4_A), 3.25 (1H, dd, J = 11.1, 7.1 Hz, H4_B), 4.70 (1H, H5), 6.18 (1H, s, H2), 6.81 (2H, d, J = 8.6 Hz, Ar-CH), 7.31 (2H, d, J = 8.6 Hz, Ar-CH), 9.74 (1H, br. s., NH/OH); $\delta_{\rm C}$ (125.8 MHz, CD₂Cl₂): -4.2 (Si(CH₃)₂), 18.6 (SiC(CH₃)₃), 26.0 (SiC(CH₃)₃), 30.1 (Adamantyl-CH), 33.1 (C4), 36.6 (Adamantyl-CH₂), 42.1 (Adamantyl-CH₂), 53.4 (Adamantyl-C), 62.2 (C2), 67.8 (C5), 96.2 (C7), 120.6, 128.2 (Ar-CH), 133.9, 156.1 (Ar-C), 166.6 (C9), 172.7 (C8), 188.0 (C6); *m/z* (ESI⁻) 539 ([M-H]⁻, 100 %); HRMS (ESI⁻); C₂₉H₃₉O₄N₂SSi [M-H]⁻; found 539.24045, requires 539.23943.

(-)-(2*S*,5*R*)-2-(4-((*tert*-butyldimethylsilyl)oxy)phenyl)-6-hydroxy-8-oxo-*N*-phenyl-5,8-dihydro-1*H*,3*H*-pyrrolo[1,2-*c*]thiazole-7-carboxamide 27b

Carboxamide tetramate **27b** was obtained by aminolysis of **25a** with aniline according to the general procedure with THF/toluene as solvent. Yield (0.35 g, 27 %); yellow foam, mp 80-84 °C; R_f = 0.68 (EtOAc/MeOH 98:2); $[\alpha]_D^{25} = -174.6$ (c = 0.19, CHCl₃); v_{max}/cm^{-1} (neat) 1261 (Si-C), 1651 (C=O, br with shoulder towards smaller wave number), 1693 (C=O); δ_H (400 MHz, CD₂Cl₂): 0.21 (6H, s, Si(CH₃)₂), 0.99 (9H, s, SiC(CH₃)₃), 3.02

(1H, dd, J = 11.0, 8.8 Hz, H4_A), 3.31 (1H, dd, J = 11.1, 7.0 Hz, H4_B), 4.86 (1H, app t, J = 7.7 Hz, H5), 6.24 (1H, s, H2), 6.84 (2H, d, J = 8.6 Hz, Ar-C*H*), 7.16 (1H, app t, J = 7.4 Hz, Ar-C*H*), 7.32 - 7.40 (4H, m, Ar-C*H*), 7.58 (2H, d, J = 7.8 Hz, Ar-C*H*), 9.20 (1H, br. s, NH/OH), 9.38 (1H, br. s, NH/OH); $\delta_{\rm C}$ (100.6 MHz, CD₂Cl₂): -4.4 (Si(CH₃)₂), 18.2 (SiC(CH₃)₃), 25.6 (SiC(CH₃)₃), 32.3 (C4), 61.5 (C2), 66.3 (C5), 120.2, 120.3, 125.0, 127.8, 129.1 (Ar-CH), 132.3, 136.4, 155.7 (Ar-C), 163.8 (C9), 171.5 (C8), 184.2 (C6); *m/z* (ESI⁻) 481 ([M-H]⁻, 100 %); HRMS (ESI⁻); C₂₅H₂₉O₄N₂SSi [M-H]⁻; found 481.16199, requires 481.16228.

(-)-(2*S*,5*R*)-2-(4-((*tert*-Butyldimethylsilyl)oxy)phenyl)-6-hydroxy-8-oxo-*N*-(tetrahydro-2H-pyran-4-yl)-5,8-dihydro-1*H*,3*H*-pyrrolo[1,2-*c*]thiazole-7-carboxamide 27c

Carboxamide tetramate **27c** was obtained by aminolysis of **25a** with 4-aminotetrahydropyran according to the general procedure for the synthesis of carboxamides with THF/toluene as solvent. Yield (0.33 g, 30 %); yellow foam, 5.4:1 AB:CD tautomers, mp 76-80 °C; $R_f =$ 0.49 (EtOAc/MeOH 9:1); $[\alpha]_D^{25} = -161.3$ (c = 0.25, CHCl₃); v_{max}/cm^{-1} (neat) 1263 (Si-C), 1650 (C=O, br with shoulder towards smaller wavenumber), 1692 (C=O), 3324 (O-H/N-H); δ_H (400 MHz, CDCl₃):

0.18 (6H, s, Si(CH₃)₂), 0.97 (9H, s, SiC(CH₃)₃), 1.49 - 1.70 (2H, m, H11), 1.82 - 1.99 (2H, m, H11), 2.97 (1H, dd, J = 11.0, 8.6 Hz, H4_A), 3.26 (1H, dd, J = 11.0, 7.1 Hz, H4_B), 3.44 - 3.52 (2H, m, H12), 3.87 - 4.10 (3H, m, H10 + H12), 4.45 (1H, app t, J = 7.7 Hz, H5 CD), 4.75 (1H, app t, J = 7.7 Hz, H5 AB), 6.19 (1H, s, H2 AB), 6.29 (1H, s, H2 CD), 6.80 (2H, d, J = 8.6 Hz, Ar-CH), 7.33 (2H, d, J = 8.6 Hz, Ar-CH), 10.87 (1H, br. s, NH/OH); $\delta_{\rm C}$ (100.6 MHz, CDCl₃): -4.5 (Si(CH₃)₂), 18.1 (SiC(CH₃)₃), 25.6 (SiC(CH₃)₃), 32.3 (C4), 32.6 (C11), 45.1 (C10), 61.5 (C2 AB), 62.3 (C2 CD), 66.3 (C12), 66.6 (C5 AB), 70.6 (C5 CD), 97.0 (C7), 120.0, 127.7 (Ar-CH), 132.5, 155.6 (Ar-C), 165.1 (C9 AB), 165.9 (C9 CD), 171.7 (C8 AB), 179.3 (C8 CD), 185.4 (C6 AB), 191.4 (C6 CD);

m/z (ESI⁻) 489 ([M-H]⁻, 100 %); HRMS (ESI⁻); C₂₄H₃₃O₅N₂SSi [M-H]⁻; found 489.18805, requires 489.18740.

(-)-(2*S*,5*R*)-2-(4-Hydroxyphenyl)-6-hydroxy-8-oxo-*N*-adamantyl-5,8-dihydro-1*H*,3*H*pyrrolo[1,2-*c*]thiazole-7-carboxamide 28a

The synthesis of **28a** from **27a** was according to the procedure for silyl ether deprotection outlined in general procedure. Yield (0.16 g, 40 %); yellow solid, mp 220 °C; $R_f = 0.49$ (EtOAc/MeOH 96:4); $[\alpha]_D^{25} = -249.1$ (c = 0.15, DMSO); v_{max}/cm^{-1} (neat) 1612 (C=C), 1637 (C=O), 1676 (C=O), 3333 (O-H); δ_H (500 MHz, Dimethyl sulfoxide- d_6): 1.63 (6H, Adamantyl-C H_2),

1.97 (6H, Adamantyl-C*H*₂), 2.04 (3H, Adamantyl-C*H*), 2.96 (1H, dd, J = 10.9, 8.7 Hz, H4_A), 3.28 (1H, dd, J = 11.0, 6.9 Hz, H4_B), 4.90 (1H, app t, J = 7.7 Hz , H5), 6.03 (1H, s, H2), 6.72 (2H, d, J = 8.6 Hz, Ar-C*H*), 7.24 (2H, d, J = 8.6 Hz, Ar-C*H*), 7.66 (1H, br. s., NH/OH), 9.45 (1H, br. s., NH/OH); $\delta_{\rm H}$ (125.8 MHz, Dimethyl sulfoxide- d_6): 28.8 (Adamantyl-CH), 33.9 (C4), 35.7 (Adamantyl-CH₂), 41.1 (Adamantyl-CH₂), 51.3 (Adamantyl-C), 61.2 (C2), 67.0 (C5), 96.4 (C7), 115.0, 127.7 (Ar-CH), 131.1, 157.0 (Ar-C), 163.3 (C9), 172.9 (C8), 183.5 (C6); *m/z* (ESI⁻) 425 ([M-H]⁻, 100 %); HRMS (ESI⁻); C₂₃H₂₅O₄N₂S [M-H]⁻; found 425.15378, requires 425.15295.

(-)-(2*S*,5*R*)-2-(4-hydroxyphenyl)-6-hydroxy-8-oxo-*N*-phenyl-5,8-dihydro-1*H*,3*H*-pyrrolo[1,2*c*]thiazole-7-carboxamide 28b

The synthesis of **28b** from **27b** was according to the procedure for silyl ether deprotection outlined in general procedure. Yield (75 mg, 45 %); yellow solid, mp 100-104 °C; $R_f = 0.64$ (EtOAc/MeOH 9:1); $[\alpha]_D^{25} = -257.9$ (c = 0.15, CHCl₃); v_{max}/cm^{-1} (neat) 1648 (C=O, br with shoulder towards smaller wave number), 1676 (C=O), 3303 (N-H/O-H); δ_H (500 MHz, Methanol- d_4): 3.02 (1H, dd, J = 11.0, 8.7 Hz, H4_A),

3.33 (1H, dd, J = 11.0, 6.9 Hz, H4_B), 4.97 (1H, dd, J = 8.4, 7.0 Hz, H5), 6.17 (1H, s, H2), 6.77 (2H, d, J = 8.5 Hz, Ar-C*H*), 7.12 (1H, app t, J = 7.4 Hz Ar-C*H*), 7.30 - 7.36 (4H, m, Ar-C*H*), 7.60 (2H, d, J = 7.7 Hz, Ar-C*H*); $\delta_{\rm C}$ (125.8 MHz, Methanol- d_4): 33.3 (C4), 63.1 (C2), 68.4 (C5), 99.7 (C7), 116.4, 121.4, 125.8, 129.2, 130.2 (Ar-CH), 132.6, 138.7, 158.7 (Ar-C), 164.2 (C9), 174.4 (C8), 185.0 (C6); m/z (ESI⁻) 367 ([M-H]⁻, 74 %); HRMS (ESI⁻); C₁₉H₁₅O₄N₂S [M-H]⁻; found 367.07512, requires 367.07580.

(-)-(2*S*,5*R*)-2-(Tetrahydro-2*H*-pyran-4-yl)-6-hydroxy-8-oxo-*N*-phenyl-5,8-dihydro-1*H*,3*H*-pyrrolo[1,2-*c*]thiazole-7-carboxamide 28c

The synthesis of **28c** from **27c** was according to the procedure for silyl ether deprotection outlined in general procedure. Yield (0.11 g, 45 %); yellow solid, mp 200 °C; $R_f = 0.47$ (EtOAc/MeOH 9:1); $[\alpha]_D^{25} = -237.9$ (c = 0.14, DMSO); v_{max}/cm^{-1} (neat) 1639 (C=O), 1691 (C=O), 3295 (O-H); δ_H (500 MHz, DMSO- d_6): 1.42 - 1.54 (2H, m,

H11), 1.68 - 1.81 (2H, m, H11), 2.95 (1H, dd, J = 11.0, 8.4 Hz, H4_A), 3.27 (1H, dd, J = 11.0, 6.9 Hz, H4_B), 3.35 - 3.43 (2H, m, H12), 3.76 - 3.84 (2H, m, H12), 3.86 - 3.98 (1H, m, H10), 4.82 (1H, app t, J = 7.6 Hz, H5), 6.06 (1H, s, H2), 6.72 (2H, d, J = 8.6 Hz, Ar-CH), 7.24 (2H, d, J = 8.6 Hz, Ar-CH), 8.03 (1H, br. s, NH/OH), 9.45 (1H, br. s, NH/OH); $\delta_{\rm C}$ (125.8 MHz, DMSO- d_6): 32.3 (C4), 32.4 (C11), 44.4 (C10), 61.6 (C2), 65.7 (C12), 67.2 (C5), 95.4 (C7), 115.0, 127.7 (Ar-CH), 131.4, 157.0 (Ar-C), 162.8 (C9), 173.4 (C8), 184.1 (C6); m/z (ESI⁻) 375 ([M-H]⁻, 100 %); HRMS (ESI⁻); C₁₈H₁₉N₂O₅S [M-H]⁻; found 375.10159, requires 375.10202.

General procedure for the synthesis of O-aryl ether tetramic acids 29a and 30

To tetramate (1.0 eq) dissolved in THF, K₂CO₃ (2.1 eq) and the relevant alkyl halide (1.5 eq) were added and the reaction stirred at rt for 18 h. Solvents were removed *in vacuo* and water and EtOAc were added to the residue. The aqueous layer was acidifeid with 10 % HCl and extracted with EtOAc. The combined organic layers were dried over Na₂SO₄, filtered and concentrated *in vacuo* to give the crude, which was purified by silica gel flash column chromatography (eluent: EtOAc/petrol to EtOAc/MeOH/1% Et₃N). The product isolated was dissolved in CH₂Cl₂ and washed with 5% citric acid. The organic fraction was dried over Na₂SO₄, filtered and concentrated *in vacuo* to obtain the required ether.

(-)-Ethyl 2-(4-((2*S*,5*R*)-6-((Adamantan-1-yl)carbamoyl)-6-hydroxy-8-oxo-5,8-dihydro-1*H*,3*H*-pyrrolo[1,2-*c*]thiazol-2-yl)phenoxy)acetate 29a

Yield (0.22 g, 70 %); yellow oil; 3.3:1 AB:CD tautomers; $R_f = 0.75$ (EtOAc/MeOH 98:2); $[\alpha]_D^{25} = -184.6$ (c = 0.18, CHCl₃); v_{max}/cm^{-1} (neat) 1624 (C=C), 1648 (C=O), 1688 (C=O), 1737 (C=O), 3311 (N-H/O-H); δ_H (500 MHz, CDCl₃) 1.30 (3H, t, J = 7.1 Hz, OCH₂CH₃), 1.70 (6H, Adamantyl-CH₂), 2.05 (6H, Adamantyl-CH₂), 2.12 (3H,

Adamantyl-C*H*), 2.93 - 3.06 (1H, m, H4_A), 3.25 (1H, dd, *J* = 11.1, 7.2 Hz, H4_B), 4.27 (2H, q, *J* = 7.1 Hz, OC*H*₂CH₃), 4.37 - 4.46 (1H, m, H5 CD), 4.61 (2H, s, OC*H*₂), 4.66 (1H, app t, *J* = 7.7 Hz,

H5 AB), 6.20 (1H, s, H2 AB), 6.30 (1H, s, H2 CD), 6.88 (2H, d, J = 8.6 Hz, Ar-C*H*), 7.40 (2H, d, J = 8.6 Hz, Ar-C*H*), 7.98 (2H, br. s, N-H + O-H); $\delta_{\rm C}$ (125.8 MHz, CDCl₃): 14.1 (OCH₂CH₃), 29.3 (Adamantyl-CH), 32.5 (C4), 36.0 (Adamantyl-CH₂), 41.5 (Adamantyl-CH₂), 53.1 (Adamantyl-C), 61.4 (OCH₂CH₃), 61.6 (C2 AB), 62.2 (C2 CD), 65.5 (OCH₂), 67.3 (C5 AB), 70.6 (C5 CD), 85.4 (C7 CD), 93.7 (C7 AB), 114.7, 127.9 (Ar-C*H*), 133.5, 157.6 (Ar-C), 166.0 (C9 AB), 166.5 (C9 CD), 168.7 (CO₂CH₂CH₃), 172.3 (C8 AB), 178.2 (C8 CD), 188.0 (C6 AB), 191.2 (C6 CD); *m/z* (ESI⁻) 511 ([M-H]⁻, 100 %); HRMS (ESI⁺); C₂₇H₃₃O₆N₂S [M+H]⁺; found 513.20572, requires 513.20538.

(-)-2-(4-((2*S*,5*R*)-6-(Adamantan-1-yl)carbamoyl)-6-hydroxy-8-oxo-5,8-dihydro-1*H*,3*H*-pyrrolo[1,2-*c*]thiazol-2-yl)phenoxy)acetic acid 29b

To tetramate **29a** (1.51 g, 2.95 mmol, 1.0 eq) dissolved in THF:H₂O (1:1) was added LiOH.H₂O (0.25 g, 5.9 mmol, 2 eq) and the reaction stirred at rt for 2 h. Upon completion, the aqueous layer was acidifeid with 10 % HCl and extracted with EtOAc. The combined organic layers were dried over

Na₂SO₄, filtered and concentrated *in vacuo* to give **29b**. Yield (0.14 g, 98 %); yellow solid, mp 128-130 °C; $R_f = 0.06$ (EtOAc/MeOH 3:1); $[\alpha]_D^{25} = -187.9$ (c = 0.17, MeOH); v_{max}/cm^{-1} (neat) 1608 (C=C), 1645 (C=O), 1682 (C=O), 1737 (C=O); δ_H (400 MHz, Methanol- d_4) 1.74 (6H, Adamantyl-CH₂), 2.09 (9H, Adamantyl-CH₂ + Adamantyl-CH), 2.98 (1H, dd, J = 11.1, 8.2 Hz, H4_A), 3.24 - 3.30 (1H, m, H4_B), 4.66 (2H, s, OCH₂), 4.79 (1H, app t, J = 7.6 Hz, H5), 6.18 (1H, s, H2), 6.92 (2H, d, J = 8.6 Hz, Ar-CH), 7.40 (2H, d, J = 8.6 Hz, Ar-CH); δ_C (125.8 MHz, Methanol- d_4): 31.0 (Adamantyl-CH), 33.3 (C4), 37.3 (Adamantyl-CH₂), 42.8 (Adamantyl-CH₂), 54.1 (Adamantyl-C), 63.1 (C2), 66.0 (OCH₂), 69.3 (C5), 95.5 (C7), 115.8, 129.0 (Ar-CH), 135.1, 159.4 (Ar-C), 166.8 (C9), 172.7 (CO₂CH₂CH₃), 175.6 (C8), 189.0 (C6); *m/z* (ESI⁻) 483 ([M-H]⁻, 100 %); HRMS (ESI⁺); C₂₅H₂₉O₆N₂S [M+H]⁺; found 485.17412, requires 485.17408.

(-)-(2*S*,5*R*)-*N*-((Adamantan-1-yl)-2-(4-(but-2-yn-1-yloxy)phenyl)-6-hydroxy-8-oxo-5,8dihydro-1*H*,3*H*-pyrrolo[1,2-*c*]thiazole-7-carboxamide 30

Yield (62 mg, 30 %); brown oil; 2.8:1 AB:CD tautomers; $R_f = 0.66$ (EtOAc/MeOH 98:2); $[\alpha]_D^{25} = -209.4$ (c = 0.14, CHCl₃); v_{max}/cm^{-1} (neat) 1622 (C=C), 1648 (C=O), 1684 (C=O), 3306 (O-H/N-H); δ_H (400 MHz, CDCl₃): 1.64 - 1.74 (6H, m, Adamantyl-CH₂), 1.86 (3H, t, J = 2.3 Hz, -C=C-CH₃), 2.02 - 2.08 (6H, m, Adamantyl-CH₂), 2.09 - 2.18 (3H, m, Adamantyl-CH), 2.94 -

3.04 (1H, m, H4_A), 3.26 (1H, dd, J = 11.0, 7.1 Hz, H4_B), 4.43 (1H, app t, J = 7.7 Hz, H5 CD), 4.64 (2H, q, J = 2.3 Hz, OCH₂-C=C-), 4.68 (1H, dd, J = 8.3, 7.2 Hz, H5 AB), 6.21 (1H, s, H2 AB), 6.30 (1H, s, H2 CD), 6.94 (2H, d, J = 8.8 Hz, Ar-CH), 7.40 (2H, d, J = 8.6 Hz, Ar-CH), 9.79 (2H, br. s., NH + OH); δ_{C} (125.8 MHz, CDCl₃): 3.7 (-C=C-CH₃), 29.3 (Adamantyl-CH), 32.5 (C4 AB), 32.8 (C4 CD), 35.8 (Adamantyl-CH₂ CD), 36.0 (Adamantyl-CH₂ AB), 40.9 (Adamantyl-CH₂ CD), 41.5 (Adamantyl-CH₂ AB), 53.1 (Adamantyl-C), 56.4 (OCH₂-C=C-), 61.6 (C2 AB), 62.2 (C2 CD), 67.3 (C5 AB), 70.6 (C5 CD), 73.8 (-C=C-), 83.8 (-C=C-), 85.4 (C7 CD), 95.1 (C7 AB), 114.8, 127.7 (Ar-CH), 132.8, 157.6 (Ar-C), 166.0 (C9 AB), 166.5 (C9 CD), 172.2 (C8 AB), 178.1 (C8 CD), 187.9 (C6 AB), 191.2 (C6 CD); m/z (ESI⁻) 477 ([M-H]⁻, 100 %); HRMS (ESI⁻); C₂₇H₂₉N₂O₄S [M-H]⁻; found 477.18466, requires 477.18535.

(S)-5-(Hydroxymethyl)-2-pyrrolidinone, 31

Compound **31** was synthesised according to the literature.⁹ $\delta_{\rm H}$ (400 MHz, CDCl₃): 1.74 - 1.86 (1H, m, H6), 2.11 - 2.24 (1H, m, H6), 2.28 - 2.45 (2H, m, H7), 3.47 (1H, dd, *J* = 11.4, 7.0 Hz, H4), 3.69 (1H, dd, *J* = 11.4, 3.2 Hz, H4), 3.77 - 3.85 (1H, m, H5), 4.92 (1H, br.s., OH), 7.56 (1H, br.s., NH); $\delta_{\rm C}$ (100.6 MHz, CDCl₃): 22.4 (C6), 30.1 (C7), 56.3 (C5), 65.3 (C4), 179.4 (C8); *m/z* (ESI⁺) 138 ([M+Na]⁺, 4 %); HRMS (ESI⁺); C₅H₉O₂NNa [M+Na]⁺; found 138.05243, requires 138.05255.

(+)-(2R, 5S)-1-Aza-2-(4-formylphenyl)-3-oxa-8-oxo-bicyclo[3.3.0]octane, 33

A mixture of **33** (0.46 g, 4.0 mmol, 1.0 eq), terephthalaldehyde (1.07 g, 8.0 mmol, 2.0 eq) and *p*-toluenesulphonic acid (8 mg, 0.04 mmol, 0.01 eq) in toluene (25 mL) was refluxed with a Dean-Stark apparatus for 22 h. After cooling to rt, EtOAc (10 mL) and water (10 mL) were added. The aqueous layer was separated and extracted with EtOAc. The combined organic extracts

were dried over MgSO₄ and concentrated *in vacuo*. The crude residue was purified by silica gel flash column chromatography (eluent: EtOAc/petrol). Yield (0.37 g, 40 %); colourless oil; $R_f = 0.28$ (EtOAc/petrol 2:1); $[\alpha]_D^{25} = +245.7$ (c = 1.52, CHCl₃); v_{max}/cm^{-1} (neat) 1699 (C=O); δ_H (400 MHz, CDCl₃): 1.91 - 2.05 (1H, m, H6), 2.35 - 2.45 (1H, m, H6), 2.52 - 2.62 (1H, m, H7), 2.83 (1H, ddd, J = 17.5, 10.0, 9.2 Hz, H7), 3.51 (1H, t, J = 8.3 Hz, H4), 4.07 - 4.16 (1H, m, H5), 4.25 (1H, dd, J = 8.1, 6.4 Hz, H4), 6.35 (1H, s, H2), 7.62 (2H, d, J = 8.5 Hz, Ar-CH), 7.87 (2H, d, J = 8.5, Ar-CH), 10.01 (1H, s, CHO); δ_C (100.6 MHz, CDCl₃): 22.9 (C6), 33.2 (C7), 58.6 (C5), 71.8 (C4), 86.4 (C2), 126.6, 129.8 (Ar-CH), 136.4, 145.3 (Ar-C), 178.3 (C8), 191.8 (CHO); m/z (ESI⁺) 254 ([M+Na]⁺, 50 %); HRMS (ESI⁺); Cl₃Hl₃NO₃NNa [M+Na]⁺; found 254.07888, requires 254.07876.

(-)-Ethyl (2*S*,5*R*)-6-hydroxy-8-oxo-2-(4-((2'*R*,5'*S*)-5-oxotetrahydro-1*H*,3*H*-pyrrolo[1,2*c*]oxazol-2-yl)phenyl)-5,8-dihydro-1*H*,3*H*-pyrrolo[1,2-*c*]thiazole-7-carboxylate 34a

Thiazolidine obtained from the condensation of L-cysteine methyl ester hydrochloride and aldehyde **33** following the general procedure . Yield (1.54 g, 30 %); colourless oil; 1:1 *cis* and *trans* diastereomers; $R_f = 0.24$ (EtOA/petrol 3:1); v_{max}/cm^{-1} (neat) 1704 (C=O), 1734 (C=O), 3305 (N-H); δ_H (400 MHz, CDCl₃) *cis* diastereomer: 1.63 - 1.99 (1H, m, H6), 2.28 - 2.41 (1H, m, H6), 2.44 - 2.59 (1H, m, H7), 2.71 - 2.92 (1H, m, H7), 3.02 - 3.18 (1H, m, H4_A), 3.29 - 3.51 (2H, m, H4_B + H4ⁱ), 3.72 (3H, s,

CO₂C*H*₃), 3.95 (1H, app t, J = 7.8 Hz, H5), 4.03 - 4.23 (2H, m, H5' + H4'), 5.51 (1H, s, H2), 6.26 (1H, s, H2'), 7.34 - 7.51 (4H, m, Ar-C*H*); *trans* diastereomer: 1.63 - 1.99 (1H, m, H6), 2.28 - 2.41 (1H, m, H6), 2.44 - 2.59 (1H, m, H7), 2.71 - 2.92 (1H, m, H7), 3.02 - 3.18 (1H, m, H4_A), 3.29 - 3.51 (2H, m, H4_B + H4'), 3.72 (3H, s, CO₂C*H*₃), 4.03 - 4.23 (3H, m, H5 + H5' + H4'), 5.78 (1H, s, H2), 6.28 (1H, s, H2'), 7.34 - 7.51 (4H, m, Ar-C*H*); δ_{C} (100.6 MHz, CDCl₃) *cis* diastereomer: 23.0 (C6'), 33.2 (C7'), 39.1 (C4), 53.3 (CO₂CH₃), 58.6 (C5'), 65.4 (C5), 71.5 (C4'), 72.1 (C2), 86.6 (C2'), 126.2, 127.4 (Ar-CH), 138.4, 139.3 (Ar-C), 171.4 (CO₂CH₃), 178.0 (C8); *trans* diastereomer: 23.0 (C6'), 33.2 (C7'), 38.0 (C4), 52.2 (CO₂CH₃), 58.6 (C5'), 64.1 (C5), 70.3 (C4'), 71.5 (C2), 86.6 (C2'), 125.9, 126.9 (Ar-CH), 138.4, 141.6 (Ar-C), 172.1 (CO₂CH₃), 178.0 (C8); *m/z* (ESI⁺) 349 ([M+H]⁺, 100 %); HRMS (ESI⁺); C₁₇H₂₁O₄N₂S [M+H]⁺; found 349.12180, requires 349.12165.

N-Acylthiazolidine obtained following the general procedure for *N*-acylation. Yield (0.67 g, 60 %); white foam; $R_f = 0.16$ (EtOAc/petrol 3:1); $[\alpha]_D^{25} = -258.0$ (c = 1.02, CHCl₃); v_{max}/cm^{-1} (neat) 1660 (C=O), 1698 (C=O), 1738 (C=O); δ_H (400 MHz, CDCl₃) a mixture of two conformers: 1.21 (3H, t, J = 7.2 Hz, OCH₂CH₃ major conformer), 1.28 (3H, t, J = 7.2 Hz, OCH₂CH₃ minor conformer), 1.88 - 2.01 (1H, m, H6'), 2.33 - 2.44 (1H, m,

H6'), 2.47 - 2.61 (1H, m, H7'), 2.73 - 2.87 (1H, m, H7'), 3.03 - 3.53 (5H, m, H4_A + H4_B + H2"_A + H2"_B + H4'), 3.78 (3H, s, CO₂CH₃ major conformer), 3.83 (3H, s, CO₂CH₃ minor conformer), 4.05 - 4.27 (4H, m, OCH₂CH₃ + H5' + H4'), 5.19 (1H, app d, J = 5.4 Hz, H5 minor conformer), 5.27 (1H, app d, J = 6.4 Hz, H5 major conformer), 6.18 (1H, s, H2 major conformer), 6.30 (1H, s, H2 minor conformer), 6.26 (1H, s, H2' major conformer), 6.28 (1H, s, H2' minor conformer), 7.20 (2H, d, J = 8.3 Hz, Ar-CH major conformer), 7.25 (2H, d, J = 8.3 Hz, Ar-CH minor conformer), 7.46 (2H, d, J = 8.3 Hz, Ar-CH major conformer); $\delta_{\rm C}$ (100.6 MHz, CDCl₃) a mixture of two conformers: 13.9, 14.0 (OCH₂CH₃), 22.8, 23.0 (C6'), 30.9, 31.9 (C4), 33.3 (C7'), 42.4, 43.3 (C2"), 52.7, 53.4 (CO₂CH₃), 58.5, 58.8 (C5'), 61.4, 61.7 (OCH₂CH₃),

63.9, 64.2 (C5), 64.7, 65.4 (C2), 71.5, 71.8 (C4'), 86.6, 86.7 (C2'), 124.8, 125.0, 126.5, 126.9 (Ar-CH), 139.3, 139.4, 142.1, 142.3 (Ar-C), 164.5, 165.2 (C1"), 166.2, 167.1 (C3"), 169.3, 170.2 (CO₂CH₃), 177.9, 178.0 (C8); *m/z* (ESI⁺) 485 ([M+Na]⁺ 100 %); HRMS (ESI⁺); C₂₂H₂₆O₇N₂NaS [M+Na]⁺; found 485.13478, requires 485.13529.

Tetramate **34a** was obtained following the general procedure for Dieckmann cyclisation. Yield (0.39 g, 70 %); white solid, mp >250 °C; $R_f = 0.30$ (EtOAc/MeOH 4:1); $[\alpha]_D^{25} = -104.8$ (c = 0.15, CHCl₃); v_{max}/cm^{-1} (neat) 1681 (C=O), 1691 (C=O), 1712 (C=O); δ_H (400 MHz, CD₂Cl₂): 1.36 (3H, t, J = 7.2 Hz, OCH₂CH₃), 1.87 -1.98 (1H, m, H6'), 2.36 (1H, dddd, J = 13.5, 10.0, 7.6, 3.7 Hz, H6'), 2.49 (1H, ddd, J = 17.3, 10.0, 3.7 Hz, H7'), 2.71 - 2.83 (1H, m, H7'), 3.01 (1H, dd, J = 11.1, 8.2 Hz, H4_A), 3.28 (1H, dd, J = 11.1,

7.2 Hz, H4_B), 3.46 (1H, app t, J = 8.1 Hz, H4'), 4.08 - 4.16 (1H, m, H5'), 4.21 (1H, dd, J = 8.1, 6.2 Hz, H4'), 4.37 (2H, q, J = 7.1 Hz, OCH₂CH₃), 4.78 (1H, app t, J = 7.6 Hz, H5), 6.23 (1H, s, H2'), 6.27 (1H, s, H2), 7.43, 7.44 (4H, ABq, $J_{AB} = 8.8$ Hz, Ar-C*H*); δ_{C} (100.6 MHz, CD₂Cl₂): 14.5 (OCH₂CH₃), 23.5 (C6'), 33.3 (C4), 33.9 (C7'), 59.4 (C5'), 62.2 (OCH₂CH₃), 62.6 (C2), 66.0 (C5), 72.3 (C4'), 87.3 (C2'), 126.8, 126.9 16.0 (Ar-C*H*), 139.7, 141.4 (Ar-C), 167.4 (C8), 178.6 (C8'), 186.5 (C6); *m/z* (ESI⁻) 429 ([M-H]⁻, 100 %); HRMS (ESI⁻); C₂₁H₂₁O₆N₂S [M-H]⁻; found 429.11295, requires 429.11258.

(-)-(2*S*,5*R*)-7-(Adamantylaminocarbonyl)-1-aza-2-(4-((2'*R*, 5'*S*)-1'-aza-3'-oxa-8'-oxobicyclo[3.3.0]octan-2'-yl)phenyl)-6-hydroxy-8-oxo-3-thiabicyclo[3.3.0]oct-6-ene, 34b

Carboxamide tetramate **34b** was obtained by aminolysis of **34a** with 1-adamantylamine according to the general procedure for the synthesis of carboxamides with THF/toluene as solvent. Yield (44 mg, 50 %); white foam, mp 152 °C; R_f = 0.47 (EtOAc/MeOH 9:1); $[\alpha]_D^{25}$ = -121.8 (*c* = 0.13, CHCl₃); v_{max} /cm⁻¹ (neat) 1625 (C=C), 1648 (C=O), 1691 (C=O), 3306 (N-H); δ_H (400 MHz, DMSO-*d*₆): 1.63 (6H, Adamantyl-CH₂), 1.87 - 1.98 (7H, m, Adamantyl-CH₂ +

H6'), 2.04 (3H, Adamantyl-C*H*), 2.23 - 2.32 (1H, m, H6'), 2.42 (1H, ddd, J = 17.2, 10.1, 4.0 Hz, H7'), 2.72 (1H, ddd, J = 17.2, 10.0, 8.8 Hz, H7'), 3.01 (1H, dd, J = 10.9, 8.4 Hz, H4_A), 3.28 (1H, dd, J = 11.0, 7.1 Hz, H4_B), 3.44 (1H, app t, J = 7.6 Hz, H4'), 4.08 - 4.21 (2H, m, H4' + H5'), 4.90 (1H, app br. t, J = 7.2 Hz, H5), 6.07 (1H, s, H2'), 6.14 (1H, s, H2), 7.36 (2H, d, J = 8.3 Hz, Ar-C*H*), 7.45 (2H, d, J = 8.3 Hz, Ar-C*H*), 7.69 (1H, br. s., NH/OH); $\delta_{\rm C}$ (100.6 MHz, DMSO-*d*₆): 22.0 (C6'), 28.8

(Adamantyl-CH), 32.0 (C4), 32.8 (C7'), 35.8 (Adamantyl-CH₂), 41.2 (Adamantyl-CH₂), 51.2 (Adamantyl-C), 58.6 (C5'), 61.3 (C2), 67.1 (C5), 71.0 (C4'), 86.3 (C2'), 126.2, 126.3 (Ar-CH), 138.9, 141.5 (Ar-C), 163.3 (C9), 173.4 (C8), 178.0 (C8'); *m/z* (ESI⁻) 534 ([M-H]⁻, 20 %); HRMS (ESI⁻); C₂₉H₃₂N₃O₅S [M-H]⁻; found 534.2078, requires 534.20682.

4-Morpholinobenzaldehyde, 35b

4-Bromobenzaldehyde (1.8 g, 9.72 mmol, 1.0 eq), $Pd_2(dba)_3$ (0.13 g, 0.15 mmol, 1.5 mol %), RuPhos (0.14 g, 0.29 mmol, 3 mol %), Cs_2CO_3 (4.43 g, 13.6 mmol, 1.4 eq) and *tert*butanol (40 mL) were placed in a sealed round-bottomed flask and degassed with N₂. Morpholine (2 eq) was added via syringe and heated to reflux for 2 h. The reaction mixture was cooled to rt, diluted with EtOAc and filtered through a Celite plug. The

filtrate was concentrated *in vacuo* and the residue was purified by silica gel flash column chromatography (eluent: EtOAc/petrol) to obtain **35a**. Yield (1.17 g, 63 %); yellow crystalline solid, mp 70 °C; $R_f = 0.26$ (EtOAc/petrol 1:3); v_{max}/cm^{-1} (neat) 1682 (C=O); δ_H (400 MHz, CDCl₃) 3.33 - 3.39 (4H, m, H5), 3.84 - 3.90 (4H, m, H6), 6.93 (2H, d, J = 8.8 Hz, H3), 7.79 (2H, d, J = 8.8Hz, H2), 9.81 (1H, s, CHO); δ_C (100.6 MHz, CDCl₃): 47.1 (C5), 66.4 (C6), 113.3 (C3), 127.5 (C1), 131.7 (C2), 155.0 (C4), 190.4 (CHO); *m/z* (ESI⁺) 192 ([M+H]⁺, 50 %); HRMS (ESI⁺); C₁₁H₁₄O₂N [M+H]⁺; found 192.10154, requires 192.10191.

4-(2-oxoazetidin-1-yl)benzaldehyde, 35c

The synthesis of **35c** is according to a modified literature procedure. ¹⁰ 4-Bromobenzaldehyde (1.6 g, 8.76 mmol, 1.0 eq), 2-azetidinone (0.75 g, 10.5 mmol, 1.2 eq), Pd₂(dba)₃ (0.16 g, 0.18 mmol, 2 mol %), XantPhos (0.30 g, 0.53 mmol, 6 mol %), $C_{s2}CO_{3}$ (4.0 g, 12.3 mmol, 1.4 eq) and 1,4-dioxane (40 mL) were placed in a sealed round-bottomed flask and degassed with N₂. The reaction mixture was heated to reflux for 20 h. The reaction mixture was cooled to rt, diluted with EtOAc and filtered through a Celite plug. The filtrate was concentrated *in vacuo* and the residue was purified by silica gel flash column chromatography (eluent: EtOAc/petrol) to obtain **35c**. Yield (0.92 g, 60 %); yellow solid; mp 108 °C; $R_f = 0.28$ (EtOAc/petrol 1:2); v_{max} /cm⁻¹ (neat) 1690 (C=O), 1747 (C=O); $\delta_{\rm H}$ (400 MHz, CDCl₃) 3.20 (2H, t, J = 4.7 Hz, H5), 3.72 (2H, t, J = 4.7 Hz, H6), 7.48 (2H, d, J = 8.6 Hz, H3), 7.87 (2H, d, J = 8.6 Hz, H2), 9.92 (1H, s, CHO); $\delta_{\rm C}$ (125.8 MHz, CDCl₃): 36.6 (C5), 38.4 (C6), 116.2 (C3), 131.3 (C2), 132.0 (C1), 143.2 (C4), 164.9 (C7), 190.8 (CHO); m/z (ESI⁺) 176 ([M+H]⁺, 38 %); HRMS (ESI⁺); C₁₀H₁₀O₂N [M+H]⁺; found 176.07069, requires 176.07061.

(-)-Ethyl (2*S*,5*R*)-6-Hydroxy-2-(4-morpholinophenyl)-8-oxo-5,8-dihydro-1*H*,3*H*-pyrrolo[1,2*c*]thiazole-7-carboxylate 36a

Thiazolidine was obtained from the condensation of L-cysteine methyl ester hydrochloride and aldehyde **232/35b** following the general procedure. Yield (1.46 g, 78 %); yellow oil; 2.2:1 *cis* and *trans* diastereomers; $R_f = 0.29$ (EtOAc/petrol 1:1); v_{max}/cm^{-1} (neat) 1737 (C=O), 3303 (N-H); δ_H (400 MHz, CDCl₃) major isomer (*cis*): 2.61 (1H, app t, J = 12.2 Hz, NH), 3.11 (1H, dd, J= 10.3, 8.8 Hz, H4_A), 3.14 - 3.20 (4H, m, H1'), 3.46 (1H, dd, J = 10.3, 7.1 Hz, H4_B), 3.81 (3H, s, CO₂CH₃), 3.83 - 3.89 (4H, m, H2'), 3.93 - 4.02 (1H,

m, H5), 5.52 (1H, d, *J* = 12.3 Hz, H2), 6.85 - 6.93 (2H, m, Ar-C*H*), 7.37 - 7.47 (2H, m, Ar-C*H*); minor isomer (*trans*): 2.75 (1H, br. s., NH), 3.14 - 3.20 (4H, m, H1'), 3.24 (1H, dd, *J* = 10.6, 5.5 Hz, H4_A), 3.40 (1H, dd, *J* = 10.6, 7.2 Hz, H4_B), 3.80 (3H, s, CO₂C*H*₃), 3.83 - 3.89 (4H, m, H2'), 4.25 (1H, app t, *J* = 6.0 Hz, H5), 5.76 (1H, s, H2), 6.85 - 6.93 (2H, m, Ar-C*H*), 7.37 - 7.47 (2H, m, Ar-*CH*); δ_C (100.6 MHz, CDCl₃): major isomer (*cis*): 39.3 (C4), 49.0 (C1'), 52.6 (CO₂CH₃), 65.5 (C5), 66.8 (C2'), 72.4 (C2), 115.4, 128.4 (Ar-C*H*), 129.0, 151.5 (Ar-C), 171.7 (CO₂CH₃); minor isomer (*trans*): 38.0 (C4), 49.0 (C1'), 52.5 (CO₂CH₃), 64.2 (C5), 66.8 (C2'), 70.7 (C2), 115.3, 127.9 (Ar-*CH*), 131.9, 151.0 (Ar-C), 172.3 (*C*O₂CH₃); *m/z* (ESI⁺) 309 ([M+H]⁺, 100%); HRMS (ESI⁺); C₁₅H₂₁N₂O₃S [M+H]⁺; found 309.12665, requires 309.12674.

N-Acylthiazolidine was obtained following the general procedure. Yield (1.54 g, 78 %); yellow oil; 2.6:1 *cis* and *trans* diastereomers; $R_f = 0.42$ (*trans*), 0.51 (cis) (EtOAc/petrol 2:1); v_{max}/cm^{-1} (neat) 1659 (C=O), 1738 (C=O); δ_H (400 MHz, CDCl₃): major isomer (*cis*, mixture of two conformers); 1.20 - 1.32 (3H, m, OCH₂CH₃), 3.06 - 3.57 (8H, m, H4_A + H4_B + H2"_A + H2"_B + H1'), 3.81 - 3.88 (7H, m, CO₂CH₃ + H1'), 4.07 - 4.26 (2H, m, OCH₂CH₃), 5.07 (1H, app t, *J* = 6.5 Hz, H5), 6.08 (1H, s, H2 major conformer) and 6.30 (1H, s, H2

minor conformer), 6.81 - 6.93 (2H, m, Ar-C*H*), 7.40 - 7.45 (2H, m, Ar-C*H*, minor conformer), 7.55 (2H, d, J = 8.6 Hz, Ar-C*H*, major conformer); minor isomer (*trans*, mixture of two conformers); 1.20 - 1.32 (3H, m, OCH₂CH₃), 3.06 - 3.57 (4H, m, H4_A + H4_B + H2"_A + H2"_B), 3.81 - 3.88 (7H, m, CO₂CH₃ + H2'), 4.07 - 4.26 (2H, m, OCH₂CH₃), 5.18 (1H, app d, J = 5.6 Hz, H5 minor conformer), 5.26 - 5.31 (1H, m, H5 major conformer), 6.13 (1H, s, H2 major conformer), 6.29 (1H, s, H2 minor conformer), 6.81 - 6.93 (2H, m, Ar-C*H*), 7.11 (2H, d, J = 8.8 Hz, Ar-C*H* major conformer), 7.19 (2H, d, J = 8.8 Hz, Ar-C*H* minor conformer); δ_C (100.6 MHz, CDCl₃) major isomer (*cis*, mixture of two conformers): 13.9 (OCH₂CH₃), 31.9, 33.5 (C4), 41.9, 43.2 (C2"), 48.5, 49.0 (C1'), 52.5, 53.3 (CO₂CH₃), 61.3, 61.5 (OCH₂CH₃), 63.8, 64.0 (C5), 66.0, 66.6 (C2), 66.6 (C2'), 115.3, 115.4, 127.4,

128.2 (Ar-CH), 130.0, 151.1 (Ar-C), 165.4 (C1"), 166.7 (C3"), 170.1 (CO₂CH₃); minor isomer (*trans*, mixture of two conformers): 13.9 (OCH₂CH₃), 30.8, 33.6 (C4), 42.2, 42.8 (C2"), 48.5, 48.8 (C1'), 52.6, 52.9 (CO₂CH₃), 61.2, 61.3 (OCH₂CH₃), 63.5, 64.3 (C5), 64.7, 65.3 (C2), 66.6 (C2'), 114.9, 115.5, 125.6, 125.8 (Ar-CH), 132.2, 151.0 (Ar-C), 165.3 (C1"), 166.3 (C3"), 169.4 (CO₂CH₃); *m/z* (ESI⁺) 423 ([M+H]⁺, 100%); HRMS (ESI⁺); C₂₀H₂₇N₂O₆S [M+H]⁺; found 423.15772, requires 423.15843.

Tetramate **36a** was obtained following the general procedure for Dieckmann cyclisation. Yield (0.24 g, 22 %); brown oil; $R_f = 0.42$ (EtOAc/MeOH 84:16); $[\alpha]_D^{25} = -88.2$ (c = 0.20, CHCl₃); v_{max}/cm^{-1} (neat) 1611 (C=C), 1652 (C=O), 1688 (C=O); δ_H (500 MHz, CD₂Cl₂): 1.37 (3H, t, J = 7.1 Hz, OCH₂CH₃), 2.99 (1H, dd, J = 11.1, 8.3 Hz, H4_A), 3.14 (4H, br. t, J = 4.7 Hz, H1'), 3.28 (1H, dd, J = 11.1, 7.0 Hz, H4_B), 3.82 (4H, br. t, J = 4.7 Hz, H2'), 4.37 (2H, q, J = 7.1 Hz,

OC*H*₂CH₃), 4.79 (1H, app t, J = 7.7 Hz, H5), 6.21 (1H, s, H2), 6.89 (2H, d, J = 8.6 Hz, Ar-C*H*), 7.35 (2H, d, J = 8.6 Hz, Ar-C*H*); $\delta_{\rm C}$ (125.8 MHz, CD₂Cl₂): 14.5 (OCH₂CH₃), 33.3 (C4), 49.7 (C1'), 62.2 (OCH₂CH₃), 62.6 (C2), 65.9 (C5), 67.3 (C2'), 99.8 (C7), 115.9, 127.8 (Ar-CH), 131.9, 151.8 (Ar-C), 167.6 (C9), 168.9 (C8), 186.5 (C6); *m/z* (ESI⁻) 389 ([M-H]⁻, 87 %); HRMS (ESI⁺); C₁₉H₂₃N₂O₅S [M+H]⁺; found 391.13205, requires 391.13222.

(-)-Ethyl (2*S*,5*R*)-6-hydroxy-2-(4-(2-oxoazetidin-1-yl)phenyl)-8-oxo-5,8-dihydro-1*H*,3*H*pyrrolo[1,2-*c*]thiazole-7-carboxylate 36b

Thiazolidine was obtained from condensation of L-cysteine methyl ester hydrochloride and aldehyde **35c** following the general procedure. Yield (0.87 g, 58 %); white solid; 1.7:1 *cis* and *trans* diastereomers; $R_f = 0.23$ (EtOAc/petrol 1:1); v_{max}/cm^{-1} (neat) 1738 (C=O), 3300 (N-H); δ_H (500 MHz, CDCl₃) major isomer (*cis*): 2.61 (1H, br. s, NH), 3.06 - 3.17 (3H, m, H4_A, H2'), 3.47 (1H, dd, J = 10.4, 7.1 Hz, H4_B), 3.61 - 3.66 (2H, m, H3'), 3.82 (3H, s, CO₂CH₃), 3.99 (1H, app t, J = 7.9 Hz, H5), 5.53 (1H, s, H2), 7.36 (2H, d, J

= 8.6 Hz, Ar-C*H*), 7.50 (2H, d, J = 8.6 Hz, Ar-C*H*); minor isomer (*trans*): 2.81 (1H, br. s., NH), 3.06 - 3.17 (2H, m, H2'), 3.22 (1H, dd, J = 10.6, 5.7 Hz, H4_A), 3.40 (1H, dd, J = 10.6, 7.2 Hz, H4_B), 3.61 - 3.66 (2H, m, H3'), 3.81 (3H, s, CO₂C*H*₃), 4.21 (1H, app t, J = 6.5 Hz, H5), 5.79 (1H, s, H2), 7.33 (2H, d, J = 8.5 Hz, Ar-C*H*), 7.47 (2H, d, J = 8.5 Hz, Ar-C*H*); $\delta_{\rm C}$ (125.8 MHz, CDCl₃): major isomer (*cis*): 36.2 (C2'), 38.1 (C1'), 39.3 (C4), 52.6 (CO₂CH₃), 65.5 (C5), 72.2 (C2), 116.3, 128.4 (Ar-C*H*), 133.4, 138.7 (Ar-C), 164.5 (C4'), 171.6 (*C*O₂CH₃); minor isomer (*trans*): 36.2 (C2'), 38.1 (C1'), 39.4 (C2), 116.1, 127.9 (Ar-C*H*), 136.4, 138.1 (Ar-C),

164.4 (C4'), 172.2 (CO₂CH₃); *m/z* (ESI⁺) 293 ([M+H]⁺, 100%); HRMS (ESI⁺); C₁₄H₁₇N₂O₃S [M+H]⁺; found 293.09541, requires 293.09544.

N-Acylthiazolidine was obtained following the general procedure for N-acylation. Yield (0.97 g, 81 %); colourless oil; 1.1:1 cis and trans diastereomers; $R_f = 0.23$ (trans), 0.31 (cis) (EtOAc/petrol 2:1); v_{max}/cm^{-1} (neat) 1659 (C=O), 1734 (C=O); δ_{H} (400 MHz, CDCl₃): major isomer (cis, mixture of two conformers); 1.20 - 1.31 (3H, m, OCH₂CH₃), 3.06 - 3.67 (8H, m, H4_A + H4_B + H2"_A + H2"_B + H2' + H3'), 3.81 (3H, m, CO₂CH₃ minor conformer), 3.84 (3H, m, CO₂CH₃

major conformer), 4.07 - 4.24 (2H, m, OCH₂CH₃), 5.07 (1H, app t, J = 6.7 Hz, H5), 6.11 (1H, s, H2 major conformer), 6.30 (1H, s, H2 minor conformer), 7.28 - 7.33 (2H, m, Ar-CH minor conformer), 7.34 - 7.41 (2H, m, Ar-CH major conformer), 7.50 (2H, d, J = 8.6 Hz, Ar-CH minor conformer), 7.65 (2H, d, J = 8.6 Hz, Ar-CH major conformer); minor isomer (*trans*, mixture of two conformers); 1.20 - 1.31 (3H, m, OCH₂CH₃), 3.06 - 3.67 (8H, m, H4_A + H4_B + H2"_A + H2"_B + H2' + H3'), 3.79 (3H, m, CO₂CH₃ major conformer), 3.85 (3H, m, CO₂CH₃ minor conformer), 4.07 -4.24 (2H, m, OCH₂CH₃), 5.20 (1H, app d, J = 5.4 Hz, H5 minor conformer), 5.27 - 5.32 (1H, m, H5 major conformer), 6.15 (1H, s, H2 major conformer), 6.28 (1H, s, H2 minor conformer), 7.20 (2H, J = 8.3 Hz, Ar-CH major conformer, 7.24 - 7.28 (2H, m, Ar-CH minor conformer), 7.28 - 7.33 (2H, m, Ar-CH minor conformer), 7.34 - 7.41 (2H, m, Ar-CH major conformer); δ_C (125.8 MHz, CDCl₃) major isomer (cis, mixture of two conformers): 14.0, 14.1 (OCH₂CH₃), 32.1, 33.8 (C4), 36.2, 36.3 (C2'), 38.0, 38.1 (C3'), 42.1, 43.0 (C2"), 52.8, 53.2 (CO₂CH₃), 61.6, 61.7 (OCH₂CH₃), 63.7, 64.6 (C5), 66.0, 66.8 (C2), 115.9, 116.6, 127.5, 128.4 (Ar-CH), 134.0, 134.8, 138.7, 138.7 (Ar-C), 164.3, 164.5 (C4'), 165.2, 165.5 (C1"), 166.7, 167.1 (C3"), 170.2, 171.6 (CO₂CH₃); minor isomer (*trans*, mixture of two conformers): 14.0, 14.1 (OCH2CH3), 31.0, 33.1 (C4), 36.1, 36.3 (C2'), 38.0, 38.1 (C3'), 42.4, 43.3 (C2"), 52.8, 53.4 (CO₂CH₃), 61.5, 61.8 (OCH₂CH₃), 64.0, 64.2 (C5), 64.7, 65.4 (C2), 116.3, 116.8, 125.7, 125.9 (Ar-CH), 137.0, 137.6, 138.6, 138.7 (Ar-C), 164.3, 164.5 (C4'), 164.9, 165.3 (C1"), 166.3, 167.2 (C3"), 169.4, 170.2 (CO₂CH₃); *m/z* (ESI⁺) 407 ([M+H]⁺, 85 %); HRMS (ESI⁺); C₁₉H₂₃N₂O₆S [M+H]⁺; found 407.12658, requires 407.12713.

Tetramate **36b** was obtained following the general procedure for Dieckmann cyclisation. Yield (0.23 g, 30 %); yellow solid, mp 124-126 °C; $R_f = 0.32$ (EtOAc/MeOH 84:16); $[\alpha]_{D}^{25} = -182.5$ (c = 0.15, CHCl₃); v_{max}/cm^{-1} (neat) 1610 (C=C), 1658 (C=O), 1739 (C=O, br with shoulder towards lower wavenumber); $\delta_{\rm H}$ (500 MHz, CD₂Cl₂): 1.37 (3H, t, J = 7.1 Hz, OCH₂CH₃), 3.01 (1H, dd, J = 11.2, 8.2 Hz, H4_A), 3.08 (2H, t, J = 4.6 Hz, H2'), 3.29 (1H, dd, J = 11.2, 7.1 Hz, H4_B), 3.61 (4H, t, J = 4.6 Hz, H3'), 4.38 (2H, q, J = 7.1

Hz, OCH₂CH₃), 4.79 (1H, app t, J = 7.5 Hz, H5), 6.24 (1H, s, H2), 7.33 (2H, d, J = 8.5 Hz, Ar-CH), 7.43 (2H, d, J = 8.5 Hz, Ar-CH); $\delta_{\rm C}$ (125.8 MHz, CD₂Cl₂): 14.5 (OCH₂CH₃), 33.3 (C4), 36.8 (C2'), 38.7 (C3'), 62.3 (OCH₂CH₃), 62.6 (C2), 65.9 (C5), 99.7 (C7), 116.6, 127.8 (Ar-CH), 136.1, 139.1 (Ar-C), 165.0 (C4'), 167.6 (C9), 169.0 (C8), 186.6 (C6); *m/z* (ESI⁻) 373 ([M-H]⁻, 100 %); HRMS (ESI⁻); C₁₉H₂₃N₂O₅S [M-H]⁻; found 373.08701, requires 373.08637.

(-)-(2*S*,5*R*)-*N*-(Adamantan-1-yl)-6-hydroxy-8-oxo-2-(4-morpholinophenyl)-5,8-dihydro-1*H*,3*H*-pyrrolo[1,2-*c*]thiazole-7-carboxamide 37a

Carboxamide tetramate **37a** was obtained by aminolysis of **36a** with 1-adamantylamine according to the general procedure for the synthesis of carboxamides with THF/toluene as solvent. Yield (0.23 g, 25 %); brown solid, mp 120-124 °C; 3:1 AB:CD tautomers; $R_f = 0.70$ (EtOAc/MeOH 9:1); $[\alpha]_D^{25} = -144.1$ (c = 0.20, CHCl₃); v_{max}/cm^{-1} (neat) 1613 (C=C), 1647 (C=O), 1685 (C=O), 3310 (N-H/O-H); δ_H (500 MHz, CD₂Cl₂) 1.69 - 1.81 (6H,

m, Adamantyl-CH₂), 2.06 - 2.20 (9H, m, Adamantyl-CH₂, Adamantyl-CH), 2.96 - 3.06 (1H, m, H4_A), 3.18 (4H, br. t, J = 4.7 Hz, H1'), 3.25 - 3.32 (1H, m, H4_B), 3.87 (4H, br. t, J = 4.5 Hz, H2'), 4.01 (2H, br. s, NH + OH AB), 4.47 (1H, app t, J = 7.9 Hz, H5 CD), 4.75 (1H, dd, J = 8.3, 7.2 Hz, H5 AB), 6.20 (1H, s, H2 AB), 6.28 (1H, s, H2 CD), 6.90 - 6.98 (2H, m, Ar-CH), 7.39 (2H, d, J = 8.7 Hz, Ar-CH), 7.93 (1H, br. s, NH/OH, CD); $\delta_{\rm C}$ (125.8 MHz, CD₂Cl₂): 30.1 (Adamantyl-CH), 33.1 (C4 AB), 33.4 (C4 CD), 36.4 (Adamantyl-CH₂ CD), 36.6 (Adamantyl-CH₂ AB), 42.1 (Adamantyl-CH₂ AB), 42.2 (Adamantyl-CH₂ CD), 49.8 (C1'), 53.4 (Adamantyl-C AB), 54.9 (Adamantyl-C CD), 62.3 (C2 AB), 62.9 (C2 CD), 67.2 (C2'), 67.8 (C5 AB), 71.5 (C5 CD), 85.7 (C7 CD), 96.4 (C7 AB), 116.0, 127.9 (Ar-CH), 127.8, 151.6 (Ar-C), 166.6 (C9 AB), 167.2 (C9 CD), 172.7 (C8 AB), 178.9 (C8 CD), 187.9 (C6 AB), 191.6 (C6 CD); m/z (ESI⁺) 496 ([M+H]⁺, 75 %); HRMS (ESI⁺); C₂₇H₃₄O₄N₃S [M+H]⁺; found 496.22607, requires 496.22645.

(-)-(2*S*,5*R*)-*N*-(Adamantan-1-yl)-6-hydroxy-8-oxo-2-(4-(2-oxoazetidin-1-yl)phenyl)-5,8dihydro-1*H*,3*H*-pyrrolo[1,2-*c*]thiazole-7-carboxamide 37b

Carboxamide tetramate **37b** was obtained by aminolysis of **36b** with 1-adamantylamine according to the general procedure 6for the synthesis of carboxamides with THF/toluene as solvent. Yield (47 mg, 30 %); brown solid, mp 148-150 °C; 3:1 AB:CD tautomers; $R_f = 0.62$ (EtOAc/MeOH 9:1); $[\alpha]_D^{25} = -240.0$ (c = 0.19, CHCl₃); v_{max}/cm^{-1} (neat) 1622 (C=C), 1647 (C=O), 1687 (C=O),

1745 (C=O), 3315 (N-H/O-H); $\delta_{\rm H}$ (500 MHz, CD₂Cl₂) 1.65 - 1.76 (6H, m, Adamantyl-CH₂), 2.02 - 2.16 (9H, m, Adamantyl-CH₂ + Adamantyl-CH), 2.96 - 3.03 (1H, m, H4_A), 3.08 (2H, t, *J* = 4.5 Hz, H2'), 3.20 - 3.28 (1H, m, H4_B), 3.60 (2H, t, *J* = 4.5 Hz, H3'), 4.42 (1H, app t, *J* = 7.7 Hz, H5 CD), 4.69 (1H, app t, *J* = 7.7 Hz, H5 AB), 4.98 (2H, br. s, NH + OH), 6.19 (1H, s, H2 AB), 6.28 (1H, s, H2 CD), 7.30 - 7.34 (2H, m, Ar-CH), 7.40 - 7.44 (2H, m, Ar-CH); $\delta_{\rm C}$ (125.8 MHz, CD₂Cl₂): 30.1 (Adamantyl-CH), 33.1 (C4 AB), 33.4 (C4 CD), 36.4 (Adamantyl-CH₂ CD), 36.6 (Adamantyl-CH₂ AB), 36.8 (C2'), 38.7 (C3'), 42.1 (Adamantyl-CH₂ AB), 42.2 (Adamantyl-CH₂ CD), 53.5 (Adamantyl-C AB), 55.0 (Adamantyl-C CD), 62.3 (C2 AB), 62.9 (C2 CD), 67.9 (C5 AB), 71.4 (C5 CD), 85.7 (C7 CD), 96.0 (C7 AB), 116.0, 127.8 (Ar-CH, AB), 116.0, 127.7 (Ar-CH CD), 136.3, 139.0 (Ar-C AB), 136.6, 138.9 (Ar-C CD), 165.0 (C4'), 166.6 (C9 AB), 167.2 (C9 CD), 172.9 (C8 AB), 179.0 (C8 CD), 188.3 (C6 AB), 191.6 (C6 CD); *m/z* (ESI⁻) 478 ([M-H]⁻, 25 %); HRMS (ESI⁻); C₂₆H₂₈O₄N₃S [M-H]⁻; found 478.18107, requires 478.18060.

(-)-(*R*)-*N*-(Adamantan-1-yl)-6-hydroxy-5-(mercaptomethyl)-2-oxo-2,5-dihydro-1*H*-pyrrole-3carboxamide, 38¹¹

9a (84 mg, 0.20 mmol, 1 eq) was added to a solution of 2 % HCl in trifluoroethanol (3.3 mL). 1,3-Propanedithiol (0.082 mL, 0.82 mmol, 4 eq) was added to this solution and heated at 50 °C for 7 h. The reaction flask was cooled and solvents removed *in vacuo*. The crude residue

was purified by silica gel flash column chromatography (eluent: EtOAc/ Methanol/1 % citric acid). The product isolated was dissolved in CH₂Cl₂ and washed with 5 % citric acid. The organic layer was dried over Na₂SO₄, filtered and concentrated *in vacuo* to obtain **38**. Yield (46 mg, 70 %); yellow solid, mp 84 °C; 2.1:1 AB:CD tautomers; $R_f = 0.068$ (EtOAc/MeOH 4:1); $[\alpha]_D^{25} = -39.0$ (c = 0.4, CHCl₃); v_{max}/cm^{-1} (neat) 1620 (C=C), 1650 (C=O), 1682 (C=O), 3294 (N-H/O-H); δ_H (400 MHz, CDCl₃): 1.66 - 1.76 (6H, m, Adamantyl-CH₂), 2.04 - 2.09 (6H, m, Adamantyl-CH₂), 2.12 (3H, Adamantyl-CH), 2.59 - 2.74 (1H, m, H4_A), 2.99 - 3.12 (1H, m, Hz, H4_B), 3.92 (1H, dd, J = 8.0, 3.6 Hz, H5 CD), 4.19 (1H, dd, J = 7.5, 3.6 Hz, H5 AB), 5.78 (1H, br. s., NH/OH/SH), 6.78 (2H, br. s., NH/OH/SH), 7.44 (1H, br. s., NH/OH/SH AB), 7.80 (1H, br. s., NH/OH/SH), δ_C (125.8 MHz, CDCl₃): 26.2 (C4 AB), 26.5 (C4 CD), 29.3 (Adamantyl-CH), 35.9 (Adamantyl-CH₂ CD), 52.8 (Adamantyl-CH₂ AB), 41.6 (Adamantyl-CH₂ AB), 41.7 (Adamantyl-CH₂ CD), 52.8 (Adamantyl-C AB), 54.2 (Adamantyl-C CD), 59.0 (C5 AB), 63.1 (C5 CD), 85.2 (C7 CD), 96.4 (C7 AB), 166.0 (C9 AB), 166.9 (C9 CD), 171.4 (C8 AB), 177.4 (C8 CD), 186.6 (C6 AB), 191.1 (C6 CD); m/z (ESI⁺) 321 ([M-H]⁺, 100%); HRMS (ESI⁺); C₁₆H₂₃N₂O₃S [M+H]⁺; found 323.14259, requires 323.14239.

Tatuaraata	Energy (kcal/mol)						
Tetramate	Α	В	С	D			
9a	16.0804	35.7000	22.6440	34.9795			
9b	16.7081	36.3741	24.2766	35.7101			
9d	16.0565	35.7281	22.4102	35.0636			
9e	15.4563	34.8543	32.5050	34.1261			
9f	18.9332	39.8570	26.8331	39.3211			
9g	24.2832	43.2331	31.7748	42.6276			
9h	2.4254	27.1156	8.8662	26.4327			
9i	2.3728	27.1569	8.6121	26.5199			
9j	4.0037	26.4523	17.2149	25.8123			
9k	6.9345	31.2785	13.0366	30.7538			
91	1.8602	22.5116	8.4903	21.9308			
9m	1.8348	22.5793	8.2859	22.0365			
9n	0.2847	20.3548	10.2257	19.7059			
9q	0.7964	25.5440	7.0510	26.2300			
9r	17.6489	42.2161	23.9121	41.5968			
98	25.2820	49.0382	32.6301	48.4710			
9t	7.6126	28.1248	13.8858	27.4426			
9u	3.0170	23.7384	9.6134	23.0097			
9v	7.5538	27.9121	13.7305	27.3651			

 Table 1 (SI). Minimum energies for tautomers A-D of tetramates 9a-9u (calculated using MM2 method of Chem3D version 15.).

Table 2 (SI): INDUCTIVELY COUPLED PLASMA MASS SPECTROMETRY for 9a

Compound 9a					Metal (n	eg/g)				
	Li7 (LR)	B11 (LR)	Na23 (LR)	Mg24 (LR)	Rb85 (LR)	Sr88 (LR)	Y89 (LR)	Zr90 (LR)	Nb93 (LR)	Mo97 (LR)
Acid washed (Avg)	Below DL	Below DL	18,754.99	15,863.64	Below DL	296.03	Below DL	2959.60	Below DL	651.56
Metal- chelated (Avg)	Below DL	Below DL	3,385,564.10	7,039,607.83	Below DL	9988.28	624.16	1957.61	Below DL	96.28
	Ru101 (LR)	Rh103 (LR)	Pd105 (LR)	Ag107 (LR)	Cd111 (LR)	In115 (LR)	Sn118 (LR)	Sb121 (LR)	Te128 (LR)	Cs133 (LR)
Acid washed (Avg)	Below DL	Below DL	880.38	44.72	Below DL	Below DL	3968.59	43.22	Below DL	Below DL
Metal- chelated (Avg)	Below DL	Below DL	1597.71	Below DL	Below DL	Below DL	86.46	Below DL	Below DL	808.77
	Ba138 (LR)	La139 (LR)	Ce140 (LR)	Pr141 (LR)	Nd143 (LR)	Sm147 (LR)	Eu151 (LR)	Gd157 (LR)	Tb159 (LR)	Dy161 (LR)
Acid washed (Avg)	35.92	Below DL	5.64	Below DL	6.04	Below DL				
Metal- chelated (Avg)	1303.43	1092.41	449.46	249.85	962.36	186.46	29.76	151.34	24.32	138.35

Compound 9a	Metal (ng/g)									
	Ho165 (LR)	Er166 (LR)	Tm169 (LR)	Yb172 (LR)	Lu175 (LR)	Hf178 (LR)	Ta181 (LR)	W184 (LR)	Re187 (LR)	Os190 (LR)
Acid washed (Avg)	Below DL	Below DL	Below DL	Below DL	Below DL	29.32	Below DL	52.44	Below DL	Below DL
Metal- chelated (Avg)	24.57	68.19	6.66	62.81	10.93	15.05	Below DL	Below DL	Below DL	Below DL
	Ir193 (LR)	Pt195 (LR)	Au197 (LR)	Hg200 (LR)	TI205 (LR)	Pb208 (LR)	Bi209 (LR)	Th232 (LR)	U238 (LR)	AI27 (MR)
Acid washed (Avg)	2067.40	Below DL	Below DL	10547.90	Below DL	133.01	Below DL	259.39	154.64	11,435.19
Metal- chelated (Avg)	Below DL	Below DL	Below DL	7829.05	Below DL	207.83	24.95	265.58	210.46	17,885.66
	Si28 (MR)	P31 (MR)	S32 (MR)	Ca44 (MR)	Sc45 (MR)	Ti47 (MR)	V51 (MR)	Cr52 (MR)	Mn55 (MR)	Fe56 (MR)
Acid washed (Avg)	Below DL	11,675.02	77,109,829.82	24,763.37	Below DL	608.87	1062.15	1945.30	Below DL	34,756.06
Metal- chelated (Avg)	Below DL	12,375.36	84,926,735.11	20,483,701.53	Below DL	1101.77	1006.78	1282.95	3088.25	38,189.35

Compound 9a	Metal (ng/g)									
	Co59 (MR)	Ni60 (MR)	Cu63 (MR)	Zn66 (MR)	Ga69 (MR)	Ge72 (MR)	K39 (HR)	Ge72 (HR)	As75 (HR)	Se78 (HR)
Acid washed (Avg)	291.10	2627.81	2586.13	9955.93	Below DL	24.65	Below DL	45.65	Below DL	12,234.66
Metal- chelated (Avg)	220.79	2784.16	2916.85	71,155.08	Below DL	Below DL	26,703.53	Below DL	38.46	21,974.08

DL = Detection Limit

MODE OF ACTION STUDIES^{12, 13}

E. COLI GYRASE SUPERCOILING AND *M*.*TUBERCULOSIS* GYRASE SUPERCOILING INHIBITION ASSAYS

Assay Set Up

In all assays, the activity of the enzyme was determined prior to the testing of the compounds and 1 U defined as the amount of enzyme required to just fully supercoil or decatenate the substrate. Compounds were tested at 100 μ M. Final DMSO concentration in the assays was 1% (v/v). Assays were carried out based on methods described previously.^{12, 13}

E. coli gyrase supercoiling

1 U of DNA gyrase was incubated with 0.5 μ g of relaxed pBR322 DNA in a 30 μ l reaction at 37°C for 30 minutes under the following conditions: 35 mM Tris.HCl (pH 7.5), 24 mM KCl, 4 mM MgCl₂, 2 mM DTT, 1.8 mM Spermidine, 1 mM ATP, 6.5% (w/v) glycerol and 0.1 mg/ml BSA. Each reaction was stopped by the addition of 30 μ l chloroform/iso-amyl alcohol (26:1) and 20 μ l Stop Dye (40% sucrose, 100 mM Tris.HCl (pH 7.5), 10 mM EDTA, 0.5 μ g/ml bromophenol blue), before being loaded on a 1.0% TAE (Tris.acetate 0.04 mM, EDTA 0.002 mM) gel run at 80V for 2 h.

M. tuberculosis gyrase supercoiling

1 U of *M. tuberculosis* gyrase (final concentration in assay 13nM) was incubated with 0.5 μ g of relaxed pBR322 DNA in a 30 μ l reaction at 37 °C for 30 minutes under the following conditions: 50 mM HEPES. KOH (pH 7.9), 6 mM magnesium acetate, 4 mM DTT, 1 mM ATP, 100 mM potassium glutamate, 2 mM spermidine and 0.05 mg/ml albumin. Each reaction was stopped by the addition of 30 μ l chloroform/iso-amyl alcohol (26:1) and 20 μ l Stop Dye and analysed as described above.

S.aureus topo IV decatenation

1 U of *S. aureus* topo IV was incubated with 200 ng kDNA DNA in a 30 µl reaction at 37 °C for 30 minutes under the following conditions: 50 mM Tris.HCl (7.5), 5 mM MgCl₂, 5 mM DTT, 1.5 mM ATP, 350 mM potassium glutamate and 0.05 mg/ml BSA.

Each reaction was stopped by the addition of 30 μ l chloroform/iso-amyl alcohol (26:1) and 20 μ l Stop Dye and analysed as described above.

Data acquisition and analysis

Bands were visualised by ethidium staining for 10 minutes, destained for 10 minutes in water and analysed by gel documentation equipment (Syngene, Cambridge, UK) and quantitated using

S- 64

Syngene Gene Tools software. Raw gel data (fluorescent band volumes) collected from Syngene, GeneTools gel analysis software were converted to a % of the 100% control (the fully supercoiled or decatenated DNA band). These were analyzed using SigmaPlot Version 12.5 (2014).

Table 3 (SI). Results for enzyme inhibition of *E. coli* gyrase, *M. tuberculosis* gyrase and *S. aureus* topo IV supercoiling activity. CFX (ciprofloxacin) was used as a standard. No inhibition of *E. coli* gyrase supercoiling was observed. Average of two determinations.

Compound	M. tuberculosis gyrase	S. aureus topo IV decatenation		
Compound	supercoiling activity (%)	activity (%)		
Enzyme alone	100	100		
DMSO	93.95	99.32		
CFX	2.96	0.00		
8 a	107.85	102.53		
8b	100.86	6.61		
8d	104.64	92.36		
8e	67.22	28.04		
8 f	94.94	65.86		
8g	77.44	14.14		
9a	26.70	16.39		
9b	19.42	7.47		
9d	12.87	12.40		
9e	21.42	12.12		
9f	26.66	10.36		
9g	15.85	3.04		
9h	20.74	12.88		
9i	15.80	13.31		
9j	18.06	10.38		
9k	20.08	20.88		
91	14.29	7.72		
9m	31.29	21.82		
9n	13.26	5.47		
9q	11.75	8.67		
9r	7.77	9.34		
9s	10.04	5.14		
9w	52.07	19.00		
9d'	7.19	51.23		
9e'	81.84	105.70		
14a	29.98	21.90		
16	63.73	69.35		
17	83.33	102.85		
18	17.71	29.44		
19	0	4.15		

	IC ₅₀ (µM)				
Compound Number	<i>M. tuberculosis</i> gyrase supercoiling	S. aureus topo IV decatenation			
CFX	29.6	4.11			
9a	nd	3.8			
9d	48.9	3.0			
9i	54.1	1.22			
9m	nd	61.0			
9q	65.4	4.9			
9r	60.3	10.3			
9d'	78.0	nd			
19	52.4	25.3			

Table 4 (SI). IC₅₀ values for *M. tuberculosis* gyrase and *S. aureus* topo IV inhibition (nd = not determined).

E. coli RNAP and S. aureus RNAP inhibition assays.

Fluorescence-detected RNAP-inhibition assays were performed as in Zhang et al., 2014. Reaction mixtures contained (20 µl): 0-100 µM test compound, bacterial RNAP holoenzyme (75 nM E. coli RNAP holoenzyme or E. coli RNAP holoenzyme derivative or 75 nM Staphylococcus aureus RNAP core enzyme and 300 nM S. aureus σA ; prepared as in Maffioli et al., 2017), 20 nM DNA fragment containing the bacteriophage T4 N25 promoter [positions -72 to +367; prepared by PCR from plasmid pARTaqN25-340-tR2 (Liu, 2007)], 100 µM ATP, 100 µM GTP, 100 µM UTP, and 100 µM CTP, in TB (50 mM Tris-HCl, pH 8.0, 100 mM KCl, 10 mM MgCl2, 1 mM DTT, 10 µg/ml bovine serum albumin, 5% methanol, and 5.5% glycerol). Reaction components other than DNA and NTPs were preincubated 10 min at 37°C. Reactions were carried out by addition of DNA and incubation 15 min at 37°C, followed by addition of NTPs and incubation 60 min at 37°C. DNA was removed by addition of 1 µl 5 mM CaCl2 and 2 U DNase I (Ambion, Grand Island, NY), followed by incubation 90 min at 37°C. RNA was quantified by addition of 100 µl Quant-iT RiboGreen RNA Reagent (Life Technologies, Grand Island, NY; 1:500 dilution in 10 mM Tris-HCl, pH 8.0, 1 mM EDTA), followed by incubation 10 min at 22°C, followed by measurement of fluorescence intensity (excitation wavelength = 485 nm and emission wavelength = 535 nm; GENios Pro microplate reader [Tecan, Männedorf, Switzerland]).

Compound number	<i>E. coli</i> RNAP	S. aureus RNAP
9a	43	8.8
9h	61	5.9
9m	63	13.0

Table 5 (SI). IC₅₀ (µM) values for *E. coli* RNAP and *S. aureus* RNAP inhibition.

EVALUATION OF ANTIBACTERIAL ACTIVITY

Hole-plate antibacterial assay

The assessment of the antibiotic activity of tetramic acids against *Staphylococcus aureus* DS267, a Gram-positive bacterium and *Escherichia coli* X580, a Gram-negative bacterium, was made using the hole plate method (diameter of well; 10 mm) with Cephalosporin C as a positive control.

Bioassay for drug candidates in the absence of serum albumin

The samples were prepared as 4 mg/mL solutions of 70 % DMSO in MeOH, with serial dilution to the desired concentrations where necessary. A 100 μ L aliquot of each sample solution to be tested was loaded into 10 mm wells in agar plates and incubated overnight (18 h) at 37 °C. The assays were repeated in triplicates and the diameters of the resultant inhibition zones were measured (±1 mm) along two perpendicular axes and then averaged to obtain the zone of inhibition. A 'blank' was run with solvent alone, to ensure the solvent made no contribution to the zone of inhibition. The relative potency was estimated by reference to standards prepared with cephalosporin C.

Bioassay for drug candidates in the presence of serum albumin

The albumin binding assay for drug candidates were carried out, in the presence of human serum albumin (HSA) at 10 % the albumin concentration in human serum. A stock solution of 8 mg/mL of HSA was prepared by dissolving in H₂O. Solutions of the required concentration of compounds to be tested were prepared in 70 % DMSO in MeOH. A 50 μ L aliquot of each sample solution was

loaded into 10 mm wells in agar plates along with a 50 μ L aliquot of an aqueous stock solution of HSA (8 mg/mL) and incubated overnight at 37 °C. The final concentration of HSA in the well was 4 mg/mL, which is 10 % of the physiological serum albumin concentration. The assays were repeated in triplicates and the diameters of the resultant inhibition zones were measured (±1 mm) along two perpendicular axes and then averaged to obtain the zone of inhibition. These data were compared with the bioactivity of each sample in the absence of HSA. The bactericidal effect of a given sample was compared with that of the Ceph C standard by determining the concentration of Ceph C required to confer the same zone of inhibition as the test compound. This is expressed as the 'relative potency' (rel. potency), where rel. potency = equivalent no. of moles of Ceph C/no. of moles of sample. The equivalent no. of moles of Ceph C for a given zone size was calculated from the calibration curves in Figures G.1-2.

Compound	Concentration (µg/mL)	Inhibition zone diameter (mm)	Relative potency
8 a	4000	na	-
8b	4000	na	-
8d	4000	na	-
8e	4000	na	-
8f	4000	12	0.1
8g	4000	na	-
9a	1	19.3	980
9b	1	18	76
9c	1	19	91
9d	1	19.7	1100
9e	1	19.3	1100
9f	1	19.7	1200
9g	50	24.7	43
9h	2	18.3	450
9i	10	20	121
9j	50	12.7	8.6
9k	10	17	83
91	25	20.7	48

Table 6 (SI). Antibacterial activity of tetramates against *S. aureus* determined by hole-plate method (na = not active).

9m	50	21	26
9n	100	14	4.9
90	1	23	188
9q	25	19.7	46
9r	4000	23.3	0.6
9s	4000	18	0.2
9w	500	26	4.6
38	1000	19	0.7

Table 7 (SI). Antibacterial activity of tetramates against *E. coli* determined by hole-plate method (other tetramates were not active).

Compound	Concentration (µg/mL)	Inhibition zone diameter (mm)	Relative potency
38	4000	19.3	4.70x10 ⁻⁴

Table 8 (SI). Antibacterial activity of tetramates against *S. aureus* compared in the presence/absence of HSA by hole-plate method.

Compound	Concentration	H	ISA	Inhibition zone	
	(µg/mL)	with	without	diameter (mm)	
0	1			19.3	
9a	5			18.7	
Oh	10			22	
90	10			20	
0.0	5			21	
90	5			17	
64	1			19.7	
9 u	5			19.7	
9.0	1			19.3	
96	5			14	
Of	1			19.7	
	5			15.7	
90	50			24.7	
, yg	50			20.7	
0h	2			18.3	
711	50			21	
0;	10			20	
91	50			20	
0;	50			12.7	
⁹ J	100			20 (H)	
9k	10			17	

	50		18
01	25		20.7
91	100		18
0	50		21
9111	250		17.3
0	100		14
911	500		14.7
0.0	100		30
90	500		28
0	25		19.7
9r	250		22
0	4000		23.3
91	4000		21.7
0 g	4000		18
28	4000		16.7
0	500		26
9w	500		24.7
29	1000		19
30	1000		18.7

Table 9 (SI). Antibacterial activity of tetramate **38** against *E.coli* compared in the presence/absence of HSA by hole-plate method.

Compound	Concentration	HS	SA	Inhibition zone	
	(μg/mL)	with	without	diameter (mm)	
29	4000			19.3	
38	4000			18.7	

Data from broth dilution assay to determine MICs

The extracts were tested in a primary 96 well plate-screening assay, according to SOP 0906. The substances were diluted in "MHB" for bacterial screening to a stock solution of 1000 μ g/mL, serial diluted and overlaid with a microbe solution in a concentration of 10⁴ CFU/ml. The plates were incubated for 24 h at 35°C. Assays were conducted with Gram-positive (Multi-drug resistant *Staphylococcus aureus (MRSA), Enterococcus faecalis, Streptococcus pneumoniae*) and Gramnegative (*Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae*) strains. Compounds tested were either only weakly active or not active against Gram-negative strains. Toxicity studies on some candidates were done on HaCat mammalian cell line. Data is given in Table 7, SI.

Compound	MIC (µg/mL)						Toxicity
	Escherichia coli	Pseudomonas aeruginosa	Klebsiella pneumoniae	MRSA	Enterococcus feacalis	Streptococcus pneumoniae	(µg/mL)
9a	na	na	na	0.98	0.98	0.98	1
9b	na	na	na	1.95	0.49	0.49	3
9d	na	na	na	1.95	0.49	0.49	5
9e	na	na	na	1.95	0.49	0.49	20
9f	na	na	na	1.95	0.49	0.98	15.6
9g	na	na	na	1.95	1.95	1.95	65
9h	na	na	na	7.81	0.49	0.98	16
9i	na	na	na	na	na	na	35
9j	na	na	na	na	na	na	6
9k	na	na	na	na	na	na	31
91	na	na	na	1.95	0.49	1.95	16
9m	na	na	na	0.49	0.49	0.49	10
9n	na	na	na	31.25	0.98	31.25	31
9р	na	na	na	1.95	0.49	3.9	16
9q	na	na	na	na	na	na	250
9r	na	na	na	na	na	na	

Table 10	SI. MICs of tetramate	es determined by bro	th dilution method	(na = not active)

Compound	MIC (µg/mL)					Toxicity				
	Escherichia coli	Pseudomona s aeruginosa	Klebsiella pneumoniae	MRSA	Enterococcu s feacalis	Streptococcus pneumoniae	(µg/mL)			
98	na	na	na	125	62.5	125	50			
9t	na	na	-	0.49	0.49	-	-			
9u	na	na	-	0.49	0.98	-	-			
9v	250	250	250	na	125	125	16			
9w	250	250	-	250	250	-	-			
9x	na	na	-	na	-	-	-			
9y	na	na	-	250	-	-	-			
9z	250	250	-	0.49	0.49	-	-			
9a'	na	-	-	na	-	-	-			
9b'	na	-	-	na	-	-	-			
9c'	na	-	-	na	-	na	-			
9d'	na	na	na	na	na	na	200			
9e'	na	na	na	na	na	na	125			
9f'	250	-	-	125	-	250	-			
9g'	na	-	-	3.91	-	0.98	-			
14a	na	na	na	15.63	0.49	7.81	30			
14b	na	na	na	3.91	3.91	3.91	1			
14c	na	na	na	62.5	15.63	15.63	3.9			
14d	na	na	-	0.49	0.49	-	-			
14e	na	na	-	31.25	-	-	-			
Compound	MIC (µg/mL)									
----------	---------------------	----------------------------	--------------------------	-------	---------------------------	-----------------------------	---------	--	--	--
	Escherichia coli	Pseudomona s aeruginosa	Klebsiella pneumoniae	MRSA	Enterococcu s feacalis	Streptococcus pneumoniae	(µg/mL)			
14f	na	na	-	1.95	-	-	-			
14g	na	na	-	na	na	-	-			
14h	na	na	-	0.49	0.49	-	-			
14i	na	na	-	na	na	-	-			
14j	na	-	-	na	na	-	-			
14k	na	na	-	0.49	0.98	-	-			
141	na	na	na	na	na	na	150			
16	na	na	na	15.63	1.95	7.81	125			
17	na	na	na	na	na	na	250			
18a	na	na	na	na	na	na	50			
18b	250	250	-	na	na	-	-			
19	na	na	na	na	na	na	31			
21	na	na	na	na	na	na	31			
23	250	250	-	0.49	0.49	-	-			
26b	250	250	-	0.49	0.49	-	-			
28a	na	250	-	0.49	0.49	-	-			
28b	na	250	-	31.25	31.25	-	-			
28c	250	250	-	na	na	-	-			
29a	na	na	-	31.25	-	-	-			
220/30	na	na	-	1.95	1.95	-	-			

Compound		Toxicity					
	Escherichia coli	Pseudomonas aeruginosa	Klebsiella pneumoniae	MRSA	Enterococcus feacalis	Streptococcus pneumoniae	(µg/mL)
29b	na	na	-	250	-	-	-
34b	na	na	-	3.91	-	-	-
3 6a	na	-	-	250	-	-	-
36b	na	-	-	na	-	-	-
37a	na	-	-	0.98	1.95	-	-
37b	na	-	-	1.95	3.91	-	-

Tetramate	MW	clogP	clogD _{7.4}	PSA	MSA	%PSA	H-bond	H-bond
							donor	acceptor
Reutericyclin	349	5.21	1.68	74.7	578.3	12.9	1	4
Epicoccarine A	386	4.69	2.36	86.6	604.5	14.4	3	4
Vancoresmycin	134 4	2.55	0.31	422.6	2174.4	19.4	17	22
Virgineone	750	4.82	1.57	223.3	1191.7	18.7	8	12
Virgineone aglycone	588	6.59	3.34	144.2	983.4	14.7	5	7
Equisetin	376	3.03	0.44	77.8	589.0	13.2	2	4
Altersetin	428	4.14	0.82	86.6	657.7	13.2	3	4
Zopfiellamide A	446	3.15	-1.84	115.1	658.2	17.5	3	6
Zopfiellamide B	460	3.60	-1.35	115.1	688.2	16.7	3	6
Signermycin	390	3.22	0.81	86.6	614.1	14.1	3	4
Kibdelomycin	940	3.67	0.73	258.5	1282.5	20.2	6	12
Amycolamycin	940	3.67	0.73	258.5	1280.0	20.2	6	12
Streptolydigin	601	2.09	-0.01	147.2	867.1	17.0	3	9
Tirandamycin A	417	1.61	-0.47	114.5	578.65	19.8	2	7
Tirandamycin B	433	0.56	-1.52	134.7	588.6	22.9	3	8

Table 11: Physicochemical and structure properties of some tetramate natural products.

Compound	MW	clogP	clogD7.4	PSA	MSA	%PSA	H-bond donor count	H-bond acceptor count
9a	410.5	2.57	0.28	69.64	542.39	12.83947	2	3
b	489.4	3.33	0.7	69.64	562.99	12.36967	2	3
9c	489.4	1.64	0.7	69.64	563.54	12.36	2	3
9d	428.5	2.71	0.12	69.64	549.61	12.6708	2	4
9e	455.5	2.51	-0.15	112.78	580.84	19.41671	2	5
9f	463	3.31	0.47	69.64	565.09	12.3237	2	4
9g	400.5	1.63	-0.98	82.78	515.13	16.06973	2	3
9h	434.6	4.61	3.96	69.64	587.77	11.84817	2	3
9i	452.5	4.75	3.82	69.64	594.51	11.71385	2	4
9j	479.6	4.55	3.57	112.78	626.99	17.98753	2	5
9k	487	5.35	4.16	69.64	611.07	11.3964	2	4
91	400.9	3.61	2.77	69.64	482.25	14.44064	2	3
9m	418.9	3.75	2.64	69.64	489.6	14.22386	2	4
9n	445.9	3.35	2.39	112.78	520.6	21.66347	2	5

Table 12. Physicochemical and structure properties of the tetramate library.

							H-bond	H-bond
Compound	MW	clogP	clogD7.4	PSA	MSA	%PSA	donor	acceptor
							count	count
90	476.9	4.38	2.99	69.64	563.54	12.36	2	4
9р	476.9	4.36	2.99	69.64	503.69	13.82	2	4
9q	516.4	3.15	2.17	69.64	503.62	13.82	2	5
9r	427.5	1.44	0.46	95.25	541.85	17.57867	2	5
9s	439.3	1.2	-1.55	78.87	488.94	16.13081	2	4
9t	358.46	2.27	-0.01	69.64	482.97	14.41912	2	3
9u	410.9	3.02	0.12	69.64	505.13	13.78655	2	4
9v	352.4	2.49	1.9	69.64	434	16.04608	2	3
9x	430.5	1.33	0.29	103.78	528.49	19.63708	2	5
9y	499.6	2.4	1.36	107.02	645.64	16.5758	2	5
9z	501.6	1.33	0.29	116.25	631.18	18.41788	2	6
9d'	698.7	1.68	0.91	193.3	909.07	21.26349	2	9
9e'	530.6	-0.08	-0.85	169.02	651.78	25.93206	6	9
9w	410.1	2.13	-1.66	106.94	503.73	21.22963	3	5
9a'	729.8	6.49	5.43	142.11	916.35	15.50827	3	7
9b'	507.6	2.62	1.58	129.8	619.13	20.9649	3	6
9c'	578.5	3.16	1.87	107.02	665.71	16.07607	2	5
9f'	396.9	2.29	-0.67	60.85	478.85	12.70753	1	4
9g'	515	5.05	2.14	60.85	678.38	8.969899	1	4
14a	476.6	3.27	0.86	82.78	623.28	13.28135	2	3
14b	514.6	3.92	1.63	86.71	679.05	12.76931	2	4
14c	558.7	4.2	1.91	88.1	747.73	11.78233	2	4

Compound	MW	clogP	clogD7.4	PSA	MSA	%PSA	H-bond donor	H-bond acceptor
-		U	U				count	count
14d	450.6	3.66	1.35	69.64	606.88	11.47509	2	3
14e	564.7	3.05	0.74	103.78	744.08	13.94743	2	5
14f	505.6	2.91	0.46	95.67	679.37	14.08216	2	4
14g	530.6	3.84	1.5	88.1	687.28	12.81865	2	5
14h	490.6	2.64	0.31	87.46	655.48	13.34289	2	4
14i	548.66	3.25	0.82	113.88	730.56	15.58804	2	7
14j	527.6	3.4	1.08	99.83	675.42	14.78043	2	5
14k	560.7	3.46	1.1	96.69	759.82	12.72538	2	5
14l	426.5	1.14	-1.37	92.01	547.43	16.80763	2	4
16	651.6	0.99	-2.52	190.5	865.53	22.00964	1	9
17	483.5	-0.78	-4.28	166.22	608.11	27.33387	5	9
26a	321.4	1.49	-2.01	87.07	400.5	21.74032	2	4
18 a	756.8	1.76	-0.73	193.3	1018.15	18.98541	2	9
18b	756.7	1.32	-3.08	230.6	977.83	23.58283	2	11
19	588.7	-0.01	-2.49	169.02	759.97	22.24035	6	9
21	939.9	0.54	-2.96	287.86	1264.01	22.77355	1	14
23	665.7	1.02	-2.47	190.5	899.02	21.18974	1	9
26b	335.4	1.03	-2.47	87.07	432.12	20.1495	2	4
28 a	426.5	2.26	-0.17	89.87	554.98	16.19338	3	4
28b	368.4	2.19	1.47	89.87	446.54	20.12586	3	4
28c	376.4	0.13	-2.41	99.1	480.67	20.61706	3	5
29 a	512.6	2.39	-0.09	105.17	696.78	15.09372	2	5
30	478.6	3.47	0.99	78.87	642.1	12.28313	2	4

Compound	MW	clogP	clogD7.4	PSA	MSA	%PSA	H-bond donor count	H-bond acceptor count
29b	484.6	1.89	-4	116.17	628.51	18.4834	3	6
34b	535.7	2.13	-0.31	99.18	709.13	13.98615	2	5
36a	390.5	1.54	-1.81	79.31	525.28	15.09861	1	5
36b	374.4	0.83	-2.66	87.15	479	18.19415	1	4
37a	495.6	2.45	0.07	82.11	676.54	12.13675	2	5
37b	479.6	1.61	-0.83	89.95	630.41	14.26849	2	4

Physicochemical and structure properties calculated for the tetramate library are listed in Table J.1. Calculator Plugins were used for physicochemical and structure property prediction and calculation, Marvin (16.4.18.0), 2016 ChemAxon (http://www.chemaxon.com).

¹H and ¹³C NMR Spectra

ΗΟ

0

6

5

2'

Вr

3'

Acquisition Time (sec)	4.0894	Comment	Instrument AVN400 Ch	emist sarosh Group MGM	SI-19 (R-1) AGAIN h1acq.crl CD2Cl2 {C:\NMR} mg	Jmgrp 38
Date	03 Jun 2013 17:40:32	Date Stamp	03 Jun 2013 17:40:32			
File Name	F:\mass+nmr record of	lab work at oxf\SI-019\CO	RRECT SPECTRA\Jun03	3-2013-38\1\PDATA\1\1r		
Frequency (MHz)	400.25	Nucleus	1H	Number of Transients	16	
Origin	avn400	Original Points Count	32768	Owner	dp-nmrgroup	
Points Count	32768	Pulse Sequence	zg60	Receiver Gain	16.56	
SW(cyclical) (Hz)	8012.82	Solvent	DICHLOROMETHANE	-d2		
Spectrum Offset (Hz)	2345.3064	Spectrum Type	STANDARD	Sweep Width (Hz)	8012.58	
Temperature (degree C) 21.735					
Jun03-2013-38.	^{001.001.} V ଶ୍ ୩calScale	Factor = 1			2 	

9c

9d

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 Chemical Shift (ppm)

13C NMR (100.6 MHz, CDCl3)

1H NMR (500 MHz, CD2 C2)

9g

9g

9i

1H NMR (400 MHz, CD2 C2)

HO

120 110 100 90 Chemical Shift (ppm) -10 -20 220 210 200 190 180 170 160 150 140 130 **S-** 98

9j

91

9m

9n

6/11/2013 9:19:56 PM

Acquisition Time (sec)	4.0894	Comment	Instrument AVN400 Ch	emist sarosh Group MGM	SI-22 (1 M ACID WASH) h1acq.crl CD2Cl2 {C:\NMR} mgmgrp 16
Date	25 May 2013 14:58:24	Date Stamp	25 May 2013 14:58:24		
File Name	F:\mass+nmr record of	lab work at oxf\si-22\corre	ct spectra\May24-2013-1	6\1\PDATA\1\1r	
Frequency (MHz)	400.25	Nucleus	1H	Number of Transients	16
Origin	avn400	Original Points Count	32768	Owner	dp-nmrgroup
Points Count	32768	Pulse Sequence	zg60	Receiver Gain	93.00
SW(cyclical) (Hz)	8012.82	Solvent	DICHLOROMETHANE-	-d2	
Spectrum Offset (Hz)	2349.8572	Spectrum Type	STANDARD	Sweep Width (Hz)	8012.58
Temperature (degree C) 21.868					

90

Acquisition Time (sec)	0.6291	Comment	Instrument AVN400 Che	mist sarosh Group MGM S	SI-22 (1 M ACID WASH) c13acq.crl CD2Cl2 {C:\NMR} mgmgrp 16			
Date	25 May 2013 15:06:56	Date Stamp	25 May 2013 15:06:56					
File Name	F:\mass+nmr record of la	ab work at oxf\si-22\correct	rk at oxf\si-22\correct spectra\May24-2013-16\2\PDATA\1\1r					
Frequency (MHz)	100.64	Nucleus	13C	Number of Transients	256			
Origin	avn400	Original Points Count	16384	Owner	dp-nmrgroup			
Points Count	32768	Pulse Sequence	zgpg30	Receiver Gain	205.43			
SW(cyclical) (Hz)	26041.67	Solvent	DICHLOROMETHANE-	d2				
Spectrum Offset (Hz)	10064.2930	Spectrum Type	STANDARD	Sweep Width (Hz)	26040.87			

Temperature (degree C) 23.050

• • • • • • • • •							
Acquisition Time (sec)	4.0894	Comment	Instrument AVN400 C	hemist sarosh Group N	IGM si-21 h1acq.crl CD2C	I2 {C:\NMR} mgmgrp 35	
Date File News	19 Jul 2013 13:39:28	Date Stamp	19 JUI 2013 13:39:28			F	400.05
File Name		Number of Transiente	16	Origin	ov:n400	Criginal Points Count	400.25
Owner		Reinte Count	20769	Drigini Bulaa Saguanaa		Popoivor Coin	02.00
SW/(evolice/) /Hz)		Points Count		Fuise Sequence	2900	Speetrum Offeet (Hz)	2240.0840
Sw(cyclical) (Hz)		Supern Width (Hz)	2012 58	-uz Tomporaturo (dogra	a Cl 22 210	Spectrum Onset (HZ)	2349.9849
		Sweep Width (112)	0012.00	Temperature (degre	e cj 22.210		m
Jul18-2013-35.0 1.00 0.95 0.90 0.85 0.80 0.75 0.70 0.65 0.60 0.55 0.60 0.55 0.60 0.55 0.40 0.35 0.30 0.25 0.20 0.15 0.20 0.15 0.20 0.15 0.20 0.45 0.30 0.45 0.40 0.55 0.20 0.45 0.45 0.40 0.55 0.20 0.45 0.45 0.45 0.40 0.55 0.20 0.55 0.20 0.55 0.20 0.45 0	OH S N Br	PeFactor = 1	5 1.00	26.0 26.0		2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6	
						·····	
9.5	9.0 8.5 8	3.0 7.5 7.0	6.5 6.0 Ch	5.5 5.0 emical Shift (ppm)	4.5 4.0 3.	5 3.0 2.5	2.0 1.5 1.0

Acquisition Time (sec)	0.6291	Comment	Instrument AVN400 Ch	nemist sarosh Group MGN	A si-21 c13acq.crl CD2C	I2 {C:\NMR} mgmgrp 35	
Date	19 Jul 2013 19:35:44	Date Stamp	19 Jul 2013 19:35:44				
File Name	F:\mass+nmr record of	lab work at oxf\si-21\corre	ect spectra\Jul18-2013-3	5\2\PDATA\1\1r		Frequency (MHz)	100.64
Nucleus	13C	Number of Transients	256	Origin	avn400	Original Points Count	16384
Owner	dp-nmrgroup	Points Count	32768	Pulse Sequence	zgpg30	Receiver Gain	205.43
SW(cyclical) (Hz)	26041.67	Solvent	DICHLOROMETHANE	-d2		Spectrum Offset (Hz)	10064.2930
Spectrum Type	STANDARD	Sweep Width (Hz)	26040.87	Temperature (degree C	C) 23.813		
SW(cyclical) (Hz) Spectrum Type Jul18-2013-35.0 0.50 0.45 0.45 0.40 0.35 0.30 0.30 0.25 0.20 0.15	26041.67 STANDARD 002.001. VefticalScale	Solvent Sweep Width (Hz) eFactor = 1 O H H H_{3C}	DICHLOROMETHANE 26040.87	-d2 Temperature (degree C	C) 23.813	Spectrum Offset (Hz) 747 75 687 687 597 687 597 687 597 687 597 687 597 687 597 687 597 687 597 687 597 687 597 687 597 687 597 687 597 687 597 687 597 687 597 687 597 697 597 697 597 697 597 697 597 697 597 697 597 697 597 697 597 697 597 697 597 697 597 697 597 697 597 697 597 69	10064.2930
			n	1. Martin adverting to a supplement of the standard standard standard standard standard standard standard stand	In section of the sector of th		-28.94 -23.75 -22.98 -13.82
יייזאראיזאראיזאראיזאראיזאראיזאראיזאראיז	180 170 160	ריין איז	130 120 110 Che	100 90 8 mical Shift (ppm)	תו איז	50 40 30	مرية مرية مرية المعرفة المعرفة 20 10 0 S-11

9q

9q

9r

5'

9u

9w

9x

13C NMR (100.6 MHz, CDCl3)

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -2**5**-132 Chemical Shift (ppm)

9ď

9d'

13C NMR (125.8 MHz, D2 O)

9e'

9f'

9f'

9g'

7 6 5 Chemical Shift (ppm) -2

-1

-3

S-147

-4

galactopyranosyloxy)phenyl)carbamate

0

(+)-9-Fluorenylmethyl (4-(2,3,4,6-tetra-*O*-acetyl-β-D-galactopyranosyloxy)phenyl)carbamate

170.81 170.76 170.57 169.91 <15005 13361 - 141.87

L12629 L12639 L12539 L12539 L12539 L12539 -100.71

8876668 776668 -47.70

13C NMR (100.6 MHz, CD2Cl2)

OAc OAc ACO 3 OAc 1

14b

14c

14d

11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1.0 -1.5 -2. Chemical Shift (ppm)

14e

14f

HO

13C NMR (100.6 MHz, CDCl3)

 \sim 178.17 \int 172.38 \int 166.54 166.01 165.34 — 158.61

8

1H NMR (400 MHz, CD2Cl2)

S-167

HO

14g

12 11 10 9 8 7 6 5 4 3 2 1 0 -1 -2 -3 Chemical Shift (ppm)

15

14

13

S-169

-4

14h

13C NMR (125.8 MHz, CDCl3)

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 Chemical Shift (ppm)

1H NMR (400 MHz, CD2Cl2)

HO

/2'

110 100 90 Chemical Shift (ppm) 220 210 200 190 180 170 160 150 140 130 120 80 70 60 50 40 30 20 10 -10 -20 0

O

14|

2-(4-(1,3-dioxolan-2-yl)phenyl)-1,3,2-dioxaborolane

2-(4-(1,3-dioxolan-2-yl)phenyl)-1,3,2-dioxaborolane

(+)-2,3,4,6-Tetra-*O*-acetyl-α-D-galactopyranosyl bromide 15b

1H NMR (400 MHz, CDCl3)

17

17

(+)-4-O-(2,3,4,6-Tetra-O-acetyl-β-D-galactopyranosyl)-2,3,6-tri-O-acetyl-D-glucopyranosyl bromide, 20b

(+)-4-(4-O-(2,3,4,6-tetra-O-acetyl- β -D-galactopyranosyl)-2,3,6-tri-O-acetyl-D-glucopyranosyloxy)benzaldehyde, 20c

13C NMR (100.6 MHz, CDCl3)

CDCI3 CDCI3

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 Chemical Shift (ppm) **S-**196

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 Chemical Shift (ppm)

S-198

-20

T

220 210 200 190 180 170 160 150 140 130 120 110 100 90 Chemical Shift (ppm)

-10 -20

1H NMR (200 MHz, Acetone-d6)

HO

13C NMR (100.6 MHz, CDCl3)

80 70

60

50

40

30

20

10 0

-10 -20

HO

27c

HO

 \cap

12

11

220 210 200 190 180 170 160 150 140 130 120 110 100 90 Chemical Shift (ppm) -10 -20

-

13C NMR (125.8 MHz, DMSO-d6)

— 172.85

1H NMR (500 MHz, Methanol-d4)

28b

S-221

28c

13C NMR (125.8 MHz, DMSO-d6)

 HO_{65}

ΗΟ

29b

ΗΟ

 \cap

6

0

6'

ΗΟ

 \cap

6

110 100 90 Chemical Shift (ppm) 180 170 160 150 140 130 120 30 20 -10 -20 220 210 200 190 80 70 60 50 40 10 0

34b

4-Morpholinobenzaldehyde, 35b

0

2

4-Morpholinobenzaldehyde, 35b														C	1										
13C NMR (100.6 N	1Hz, CE	— 190. 20 0			156.15			— 131.82 — 127.61		C+/STI				66.51		47.27								2 3 (
												~~~~~								A			······································		
220 210	200	190	180	170	160	150	140	130	120	110 Chemi	100 cal Shift	90 (ppm)	80	70	60	50	40	30	20	10	0	-10	-20		

## 4-(2-oxoazetidin-1-yl)benzaldehyde, 35c



**S-**238

r

2

## 4-(2-oxoazetidin-1-yl)benzaldehyde, 35c



**S-**239

C



1H NMR (500 MHz, CD2Cl2)





ſ

 $< \frac{7.35}{7.34}$ 

ſ

6.21



(-)-(2*S*,5*R*)-1-Aza-7-ethoxycarbonyl-6-hydroxy-2-(4-(2-oxoazetidin-1-yl)phenyl)-8-oxo-3-thiabicyclo[3.3.0]oct-6-ene, 239/36b

7.44 7.42 7.34 7.32 6.24

 $\begin{array}{c}
HO \\
O \\
9 \\
7 \\
0 \\
0 \\
4 \\
3'
\end{array}$ 

1H NMR (500 MHz, CD2Cl2)



**S-**242







**S-**244



HO



1H NMR (500 MHz, CD2Cl2)





HO









**S-**248

HO

SН







## References

- 1. T. D. Panduwawala, S. Iqbal, R. Tirfoin and M. G. Moloney, *Org. Biomol. Chem.*, 2016, 14, 4464-4478.
- 2. C. D. Spicer and B. G. Davis, *Chem. Commun.*, 2013, 49, 2747–2749.
- 3. H. P. Kleine, D. V. Weinberg, R. J. Kaufman and R. S. Sidhu, *Carbohydrate Research*, 1985, 142, 333-337.
- 4. Y. Iwai, K. M. Gligorich and M. S. Sigman, *Angewandte Chemie International Edition*, 2008, 47, 3219-3222.
- 5. J.-L. Montero, J.-Y. Winum, A. Leydet, M. Kamal, A. A. Pavia and J.-P. Roque, *Carbohydr. Res.*, 1997, 297, 175–180.
- 6. M. Hongu, K. Saito and K. Tsujihara, *Synth. Commun.*, 1999, 29, 2775–2781.
- 7. N. M. Loim and E. S. Kelbyscheva, *Russ. Chem. Bull.*, 2004, 53, 2080–2085.
- 8. H. Yan, J.-S. Oh and C. E. Song, *Org. Biomol. Chem.*, 2011, 9, 8119-8121.
- 9. M. J. Beard, J. H. Bailey, D. T. Cherry, M. G. Moloney, S. B. Shim, K. Statham, M. Bamford and R. B. Lamont, *Tetrahedron*, 1996, 52, 3719-3740 and corrigenda 1997, 37**53**, 1177.
- 10. J. Yin and S. L. Buchwald, *Organic Letters*, 2000, 2, 1101-1104.
- 11. E. J. Corey and G. A. Reichard, *J. Am. Chem. Soc.*, 1992, 114, 10677-10678.
- 12. S. Karkare, F. Yousafzai, L. A. Mitchenall and A. Maxwell, *Nucleic Acids Res.*, 2012, 40, 9774-9787.
- 13. R. J. Reece and A. Maxwell, *J Biol Chem*, 1989, 264, 19648-19653.
- •