Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2019

SUPPORTING INFORMATION

Synthesis of α-CF₃-proline derivatives by means of a formal (3+2)-cyclisation between trifluoropyruvate imines and Michael acceptors

Michael Winter,^a Kirill Faust,^b Markus Himmelsbach,^c and Mario Waser^{*a}

a) Institute of Organic Chemistry, Johannes Kepler University Linz, Altenbergerstraße 69, 4040 Linz, Austria. Fax: +43 732 2468 8747; Tel: +43 732 2468 8748; E-mail: Mario.waser@jku.at
b) Institute of Catalysis, Johannes Kepler University Linz, Altenbergerstr. 69, 4040 Linz, Austria
c) Institute of Analytical Chemistry, Johannes Kepler University Linz, Altenbergerstr. 69, 4040 Linz, Austria

1. General Information:	2
1.1. General Methods	2
1.2. X-Ray Analysis	3
2. Asymmetric Phase-Transfer Catalysts	5
2.1 Screening of Different Phase-Transfer Catalysts ^[7,8,9]	5
2.2 Further Cinchona Alkaloid Catalyst Screening	6
2.3 Reaction Condition Screening	7
3. Syntheses	B
3.1 Syntheses of Imines 3	3
3.1.1 Analytical Details of Imines 3	3
3.2 Formal (3+2)-Cycloaddition – Arylidene-Indandione)
3.2.1 Analytical Details of Proline Derivatives 5a-n)
3.3 Formal (3+2)-Cycloaddition – Benzylidene-Malonitrile	6
3.4 Michael Addition – Methyl-Vinyl-Ketone	7
4. Copies of HPLC Chromatograms.	3
5. Copies of NMR-Spectra of new Compounds)

1. General Information:

1.1. General Methods

¹H- and ¹³C-NMR spectra were recorded on a Bruker Avance III 300 MHz spectrometer with a broad band observe probe and a sample changer for 16 samples, on a Bruaker Avance DRX 500 MHz spectrometer, and on a Bruker Avance III 700 MHz spectrometer with an Ascend magnet and TCI cryoprobe, which are both property to the Austro-Czech NMR-Research Center "RERI-uasb". All NMR spectra were referenced on the solvent peak. High resolution mass spectra were obtained using an Agilent 6520 Q-TOF mass spectrometer with an ESI source and an Agilent G1607A coaxial sprayer or a Thermo Fisher Scientific LTQ Orbitrap XL with an Ion Max API Source. Analyses were made in the positive ionization mode if not otherwise stated. Purine (exact mass for $[M+H]^+ = 121.050873$) and 1,2,3,4,5,6-hexakis(2,2,3,3-tetrafluoropropoxy)-1,3,5,2,4,6-triaza-triphosphinane (exact mass for $[M+H]^+ = 922.009798$) were used for internal mass calibration.

Preparative column chromatography was carried out using Davisil LC 60A 70-200 MICRON silica gel. TLC probes were detected at 254 nm or stained with with an appropriate staining solution (compare section 3.1.3).

HPLC was performed using a Dionex Summit HPLC system with a Chiralcel YMC-SB (250 x 4.6 mm, 5 μ m) chiral stationary phase.

All chemicals were purchased from commercial suppliers and used without further purification unless otherwise stated. All reactions were carried out under Argon.

The acceptors **6a-k** and **7** are literature known and were synthesized as described previously.^[1,2]

¹ C.J. Lee, C.N. Sheu, C.C. Tsai, Z.Z. Wu, W. Lin, *Chem. Commun.* **2014**, 50, 5304-5306.

² P. Bobal, J. Bobalova, *Molecules* **2013**, *18*, 2212-2221.

1.2. X-Ray Analysis

X-ray quality crystals were selected in Fomblin® Y H-VAC 140/13 perfluoropolyether at ambient temperature. The data was collected at 296(2) K on a *Bruker* **D8 Quest Eco** diffractometer using graphite monochromated Mo K_a radiation ($\lambda = 0.71073$ Å). The data was processed using APEX3,^[3] the structures were solved by intrinsic phasing (XT, Version 2014/5),^[4] and refined by full matrix least squares procedures on F^2 (SHELXL, Version 2014/7)^[5] using the graphical interface Shelxle^[6] within the SHELXTL suite of programs by Bruker. All non-hydrogen atoms were refined anisotropically. All hydrogen atoms were calculated geometrically, and a riding model was applied in the refinement process.

CCDC 1911986 contains the supplementary crystallographic data for compound **5b**. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre at <u>www.ccdc.cam.ac.uk</u>.

³ Bruker (2016), *APEX3 v2016.9-0*, *SAINT V8.37A*, *SHELXTL-2014*, Bruker AXS Inc.: Madison (WI), USA, **2016**.

⁴ a) G. M. Sheldrick, *SHELXT-2014: Program for the Solution of Crystal Structures*, University of Göttingen, Germany, **2014**. b) G. M Sheldrick, *Acta Crystallogr., Sect. A: Found. Crystallogr.* **2008**, *64*, 112–122. c) G. M. Sheldrick, *Acta Crystallogr., Sect. A: Found. Adv.* **2015**, *71*, 3–8.

⁵ a) G. M. Sheldrick, *SHELXL-2014: Program for the Refinement of Crystal Structures*, University of Göttingen, Germany, **2014**. b) G. M. Sheldrick, *Acta Crystallogr., Sect. C: Struct. Chem.* **2015**, *71*, 3–8.

⁶ C. B. Hübschle, G. M. Sheldrick, B. Dittrich, *Shelxle: a Qt graphical user interface for SHELXL*, *J. Appl. Crystallogr.* **2011**, *44*, 1281–1284.

Compound	5b				
Empirical formula	C ₂₈ H ₂₁ BrF ₃ NO ₄				
Formula weight [g/mol]	572.37				
Color	colorless				
Crystal size [mm]	0.44 × 0.37 × 0.27				
Crystal system	triclinic				
Space group	P-1				
a [Å]	10.1546(3)				
b [Å]	10.8743(4)				
c [Å]	13.3084(5)				
α [°]	85.375(2)				
β [°]	77.474(1)				
γ [°]	63.999(1)				
V [Å ³]	1289.22(8)				
Z	2				
D _{calc} [g/cm ³]	1.474				
$\mu [{\rm mm}^{-1}]$	1.65				
7 [K]	296				
θ range [°]	2.6-23.9				
No. of reflections measured	110108				
No. of independent reflections	4719				
Obs. Reflections with $l > 2\sigma(l)$	3229				
No. of Parameters refined/restraints	339/1				
Absorption correction	multi-scan				
T _{min} , T _{max}	0.58, 0.66				
$\Delta \rho_{min} / \Delta \rho_{max} \ [e \ Å^{-3}]$	-0.35/0.38				
F(000)	580				
R _{int}	0.125				
$R_1 (R[F^2 \ge 2\sigma(F^2)])$	0.047				
$wR_2(wR(F^2))$	0.106				
GooF	1.13				
CCDC no.	1911986				

 Table 1. Crystal data, data collection and structure refinement details for compound 5b.

2. Asymmetric Phase-Transfer Catalysts

2.1 Screening of Different Phase-Transfer Catalysts [7,8,9]

⁷ For early reports on Cinchona-based PTCs: (a) R. Helder, J. C. Hummelen, R. W. P. M. Laane, J. S. Wiering and H. Wynberg, *Tetrahedron Lett.*, **1976**, 17, 1831. (b) U. H. Dolling, P. Davis and E. J. J. Grabowski, *J. Am. Chem. Soc.* **1984**, 106, 446.

⁸ For the seminal report on Maruoka-type catalysts: T. Ooi, M. Kameda and K. Maruoka, *J. Am. Chem. Soc.* 1999, **121**, 6519.

⁹ For cyclohexane diamine-based bifunctional ammonium salts: (a) J. Novacek and M. Waser, Eur. J. Org. Chem. **2014**, 802. (b) M. Tiffner, J. Novacek, A. Busillo, K. Gratzer, A. Massa, and M. Waser *RSC Adv.*, **2015**, *5*, 78941.

2.2 Further Cinchona Alkaloid Catalyst Screening

6a 2 eq. 0.1 eq. KOH (I) DCM (0.05 M) 24h 10mol% **PTC**

OMe H N Br

PTC 2 conv: 79%; yield: 31% dr 79:15:5:1; ee 2%

PTC 1 conv: >99%; yield: 65% dr 65:27:7:1; ee 24%

PTC 12 conv: >99; yield: 62% dr 70:23:6:1; ee -4%

PTC 6 conv: 65%; yield: 52% dr 81:12:6:1; ee 2%

PTC 9 conv: >99%; yield: 62% dr 59:34:6:1; ee 4%

PTC 13 conv: >99; yield: 74% dr 77:17:5:1; ee 14%

PTC 7 conv: 56%; yield: 35% dr 86:7:6:1; ee 2%

PTC 10 conv: >99; yield: 68% dr 66:26:7:1; ee -10%

PTC 14 conv: 0%; yield: dr -; ee -

PTC 8 conv: 74%; yield: 47% dr 76:18:5:1; ee 2%

PTC 11 conv: >99; yield: 40% dr 76:17:6:1; ee -16%

PTC 15 conv: >99; yield: 71% dr 76:17:6:1; ee 4%

2.3 Reaction Condition Screening

 Table 2. Screening of the reaction conditions for the enantioselective (3+2)-cycloaddition of the azaallyl anion precursor 3a and acceptor 6a.

entry	eq. 6a	solvent	base	base eq.	conv. [%]	yield [%]	d.r.	ee
1	1.2	DCM	aq. KOH (50%)	0.1	>99	69	58:34:7:1	16
3	1.2	MeCN	aq. KOH (50%)	0.1	>99	72	91:6:3:0	2
4	1.2	THF	aq. KOH (50%)	0.1	>99	78	68:23:8:1	10
5	1.2	Et ₂ O	aq. KOH (50%)	0.1	>99	65	86:10:3:1	10
6	1.2	EtOAc	aq. KOH (50%)	0.1	>99	70	77:17:6:0	16
7	1.2	CHCl ₃	aq. KOH (50%)	0.1	53	22	79:11:9:1	16
8	1.2	MTBE	aq. KOH (50%)	0.1	>99	60	56:35:7:2	12
9	1.2	dioxane	aq. KOH (50%)	0.1	96	68	45:41:11:3	16
10	1.2	1, 2-DCE	aq. KOH (50%)	0.1	>99	79	51:41:6:2	18
11	1.2	cyclohexane	aq. KOH (50%)	0.1	0	-	-	-
12	1.2	toluene	aq. KOH (50%)	0.1	20	16	65:20:13:2	-
13	2	DCM	aq. KOH (50%)	1	>99	52	91:6:3:0	14
14	2	DCM	aq. KOH (50%)	10	0	-	-	-
15	2	DCM	aq. KOH (10%)	0.1	59	25	74:18:7:1	8
16	2	DCM	aq. KOH (25%)	0.1	68	43	75:17:7:1	12
17	2	DCM	aq. Cs ₂ CO ₃ (50%)	0.1	99	69	78:13:8:1	2
18	2	DCM	DBU	0.1	>99	71	92:2:5:1	4
19	2	DCM	aq. K ₂ CO ₃ (25%)	0.1	98	65	86:6:8:0	6
20	2	DCM	aq. K ₃ PO ₄ (25%)	0.1	93	78	83:8:8:1	8
21	2	DCM	LiOH (s)	1	>99	65	>99:0:0:0	6
22	2	DCM	K ₃ PO ₄ (s)	0.1	99	80	75:17:7:1	6
23	2	DCM	K ₂ CO ₃ (s)	0.1	>99	74	74:18:7:1	6
24	2	DCM	$Cs_2CO_3(s)$	0.1	>99	70	63:30:6:1	12

3. Syntheses

3.1 Syntheses of Imines 3

General procedure 1: The synthesis was performed according to a modified literature procedure.^[10] Acetic acid (10 mmol, 0.572 mL) was added to a stirred solution of benzylamine **11** (10 mmol) in 40 mL dry toluene at room temperature and the reaction mixture turned turbid/solid. Subsequently ethyl-3,3,3-trifluoropyruvate (**1**) (10 mmol, 1.33 mL) was added and the solution turned clear again. The reaction mixture was stirred at reflux under Dean-Stark conditions for 16 h. The crude product was purified by flash chromatography to yield the imines **3** in the reported yields.

3.1.1 Analytical Details of Imines 3

<u>**3a**</u>: Compound was prepared according to the general procedure 1, starting from benzylamine **11a** (10 mmol, 1.10 mL) and give a yellow oil with an isolated yield of 55%.

HRMS (ESI): m/z calculated for $C_{12}H_{12}F_3NO_2$: 260.0898 [M+H]⁺; found: 260.0896.

¹H-NMR (300 MHz, CDCl₃, 298 K): δ = 8.40 (s, 1H), 7.86-7.82 (m, 2H), 7.51-7.41 (m, 3H), 4.52 (q, J = 7.3 Hz, 1H), 4.30 (q, J = 7.0 Hz, 2H), 1.32 (t, J = 7.5 Hz, 3H) ppm; ¹⁹F-NMR (282 MHz, CDCl₃, 298 K): δ = -71.68 (d, J = 7.1 Hz, 3F) ppm; ¹³C-NMR (75 MHz, CDCl₃, 298 K): δ = 192.5, 169.0, 164.7, 134.9, 132.3, 129.9, 129.1, 128.9, 123.0 (q, J = 280.0 Hz), 73.5 (q, J = 29.5 Hz), 62.6, 14.1 ppm.

¹⁰ H. Ohkura, D. O. Berbasov, V. A. Soloshonok, *Tetrahedron* **2003**, 59, 1647-1656.

<u>**31**</u>: Compound was prepared according to the general procedure 1, starting from 4-chlorobenzylamine **11I** (10 mmol, 1.12 mL) and give a yellow oil with an isolated yield of 32%.

HRMS (ESI): m/z calculated for C₁₂H₁₁ClF₃NO₂: 294.0509 [M+H]⁺; found: 294.0506.

³¹ ¹H-NMR (300 MHz, CDCl₃, 298 K): δ = 8.35 (s, 1H), 7.81-7.69 (m, 2H), 7.47-7.31 (m, 2H), 4.53 (q, J = 7.0 Hz, 1H), 4.28 (q, J = 7.0 Hz, 2H), 1.29 (t, J = 7.5 Hz, 3H) ppm; ¹⁹F-NMR (282 MHz, CDCl₃, 298 K): δ = -71.64 (d, J = 7.1 Hz, 3F) ppm.; ¹³C-NMR (75 MHz, CDCl₃, 298 K): δ = 190.9, 167.6, 164.5, 138.4, 130.9, 130.3, 129.5, 128.1, 122.7 (q, J = 281 Hz), 73.1 (q, J = 31 Hz), 62.6, 14.0 ppm.

<u>**3m**</u>: Compound was prepared according to the general procedure 1, starting from 4-nitrobenzylamine **11m** (10 mmol, 1.50 g) and give a yellow oil with an isolated yield of 35%. The commercial available 4-nitrobenzylamine hydrochloride was dissolved in 25% aq. ammonia solution and extracted three times with DCM. The organic phase was dried with Na₂SO₄, filtered and evaporated to dryness to get the 4-nitrobenzylamine.

HRMS (ESI): m/z calculated for $C_{12}H_{11}F_3N_2O_4$: 305.0749 [M+H]⁺; found: 305.0747.

¹H-NMR (300 MHz, CDCl₃, 298 K): δ = 8.50 (s, 1H), 8.32-8.29 (m, 2H), 8.04-8.01 (m, 2H), 4.61 (q, J = 7.0 Hz, 1H), 4.32 (q, J = 7.0 Hz, 2H), 1.33 (t, J = 7.5 Hz, 3H) ppm; ¹⁹F-NMR (282 MHz, CDCl₃, 298 K): δ = -71.42 (d, J = 7.1 Hz, 3F) ppm.; ¹³C-NMR (75 MHz, CDCl₃, 298 K): δ = 190.2, 166.6, 164.0, 149.9, 139.9, 130.5, 129.8, 123.9, 122.3 (q, J = 281 Hz), 73.0 (q, J = 31 Hz), 62.8, 13.9 ppm.

<u>3n</u>: Compound was prepared according to the general procedure 1, starting from 3,5-bis(trifluoromethyl)benzylamine **11n** (10 mmol, 1.78 mL) and give a yellow oil with an isolated yield of 33%.

HRMS (ESI): m/z calculated for C₁₄H₁₀F₉NO₂: 396.0646 [M+H]⁺; found: 396.0640.

³ⁿ ¹H-NMR (300 MHz, CDCl₃, 298 K): δ = 8.51 (s, 1H), 8.28 (s, 2H), 7.99 (s, 1H), 4.61 (q, J = 7.3 Hz, 1H), 4.32 (dq, J₁ = 7.1 Hz, J₂ = 1.7 Hz, 2H), 1.33 (t, J = 7.5 Hz, 3H) ppm; ¹⁹F-NMR (282 MHz, CDCl₃, 298 K): δ = -63.15 (s, 6H), -71.51 (d, J = 7.3 Hz, 3F) ppm.; ¹³C-NMR (75 MHz, CDCl₃, 298 K): δ = 165.9, 164.1, 136.7, 132.6 (q, J = 33.9 Hz), 129.0, 125.5, 123.3 (q, J = 270 Hz), 122.9 (q, J = 280 Hz), 72.9 (q, J = 29.6 Hz), 63.0, 14.0 ppm.

3.2 Formal (3+2)-Cycloaddition – Arylidene-Indandione

General procedure 2: To a stirred solution of the corresponding arylidene-indandione **6a-k** (0.2 mmol) in dry DCM (2 mL), LiOH (0.3 mmol, 7.2 mg), TEBAC (30 mol%, 0.03 mmol, 7.8 mg) and imine **3** (0.1 mmol) were added successively. The reaction mixture was stirred for 24 h at room temperature. The mixture was filtered over a pad of silica and washed with Et₂O. After evaporation of the solvent the product was purified by column chromatography with a gradient of heptanes and ethylacetate (20:1 - 10:1 - 5:1) to yield products **5a-n** with yields and diastereomeric ratios stated below.

3.2.1 Analytical Details of Proline Derivatives 5a-n

<u>5a:</u> The reaction was performed according to the general procedure 2, with imine **3a** (1 mmol, 259.0 mg), arylidene-indandione **6a** (2 mmol, 468.0 mg), LiOH (3 mmol, 72.0 mg) and TEBAC (0.3 mmol, 78.1 mg). The product occurs as orange crystals with a melting range of 155.8-156.9 °C, an isolated yield of 98% and a dr of 100:0:00.

R_f: 0.82 (Heptane/EtOAc: 1/1).

HRMS (ESI): *m*/z calculated for C₂₈H₂₂F₃NO₄: 494.1574 [M+H]⁺; found: 494.1580.

¹H-NMR (300 MHz, CDCl₃, 298 K): δ = 7.76-7.73 (m, 1H), 7.60-7.52 (m, 3H), 7.15-7.06 (m, 10H), 4.93-4.83 (m, 2H), 4.65 (s, 1H), 4.31-4.20 (m, 1H), 3.96-3.86 (m, 1H), 0.94 (t, J = 7.1 Hz, 3H); ¹⁹F-NMR (282 MHz, CDCl₃, 298 K): δ = -74.22 (s, 3F) ppm; ¹³C-NMR (75 MHz, CDCl₃, 298 K): δ = 199.4, 199.4, 166.7, 142.6, 142.1, 135.9, 135.6, 133.5, 133.5, 130.3, 128.4, 128.4, 128.2, 127.9, 126.7, 126.2 (q, J = 298 Hz), 124.1, 122.0, 122.9, 74.6 (q, J = 28 Hz), 72.1, 71.3, 63.0, 60.7, 14.2, 13.4 ppm.

<u>5b</u>: The reaction was performed according to the general procedure 2, with imine **3a** (0.1 mmol, 25.9 mg) and arylidene-indandione **6b** (0.2 mmol, 62.6 mg). The product occurs as yellow crystals with a melting range or 119.2-123.1 °C, an isolated yield of 70% and a dr of 100:0:0:0.

R_f: 0.67 (Heptane/EtOAc: 1/1).

HRMS (ESI): *m*/z calculated for C₂₈H₂₁BrF₃NO₄: 572.0679 [M+H]⁺; found: 572.0690.

¹H-NMR (300 MHz, CDCl₃, 298 K): δ = 7.77-7.74 (m, 1H), 7.63-7.52 (m, 3H), 7.26-7.24 (m, 2H), 7.07-7.01 (m, 7H), 4.89-4.78 (m, 2H), 4.60 (s, 1H), 4.36-4.25 (m, 1H), 4.02-3.91 (m, 1H), 1.02 (t, J = 7.1 Hz, 3H); ¹⁹F-NMR (282 MHz, CDCl₃, 298 K): δ = -74.36 (s, 3F) ppm; ¹³C-NMR (75 MHz, CDCl₃, 298 K): δ = 199.3, 199.0, 166.5, 142.4, 142.1, 142.1, 136.0, 135.8, 133.1, 132.6, 132.0, 131.5, 131.4, 128.4, 127.7, 126.5, 126.2 (q, J = 298 Hz), 123.0, 122.9, 122.5, 74.5 (q, J = 28 Hz), 72.1, 71.6, 63.2, 59.5, 13.5 ppm.

<u>5c</u>: The reaction was performed according to the general procedure 2, with imine **3a** (0.1 mmol, 25.9 mg) and arylidene-indandione **6c** (0.2 mmol, 52.8 mg). The product occurs as yellow oil with an isolated yield of 32% and a dr of 96:4:0:0.

R_f: 0.50 (Heptane/EtOAc: 1/1).

HRMS (ESI): *m*/z calculated for C₂₉H₂₃F₃NO₅: 524.1679 [M+H]⁺; found: 524.1679.

¹H-NMR (300 MHz, CDCl₃, 298 K): δ = 7.76-7.73 (m, 1H), 7.61-7.53 (m, 3H), 7.13-7.02 (m, 7H), 6.67-6.62 (m, 2H), 4.90-4.80 (m, 2H), 4.61 (s, 1H), 4.35-4.24 (m, 1H), 4.01-3.90 (m, 1H), 3.66 (s, 1H), 1.01 (t, J = 7.1 Hz, 3H); ¹⁹F-NMR (282 MHz, CDCl₃, 298 K): δ = -74.26 (s, 3F) ppm; ¹³C-NMR (75 MHz, CDCl₃, 298 K): δ = 199.6, 166.8, 159.4, 142.7, 142.2, 135.9, 135.6, 133.7, 131.4, 128.5, 126.7, 126.4 (q, J = 298 Hz), 125.4, 123.0, 122.9, 113.7, 71.5 (q, J = 30 Hz), 63.0, 60.0, 55.2, 13.5 ppm.

<u>5d</u>: The reaction was performed according to the general procedure 2, with imine **3a** (0.1 mmol, 25.9 mg) and arylidene-indandione **6d** (0.2 mmol, 55.8 mg). The product occurs as yellow crystals with a melting range of 100.8 -104.3 °C, an isolated yield of 73% and a dr of 100:0:0:0.

R_f: 0.65 (Heptane/EtOAc: 1/1).

HRMS (ESI): *m*/*z* calculated for C₂₈H₂₀F₃N₂O₆: 539.1424 [M+H]⁺; found: 539.1427.

¹H-NMR (300 MHz, CDCl₃, 298 K): δ = 8.00-7.97 (m, 2H), 7.77-7.73 (m, 1H), 7.65-7.52 (m, 3H), 7.38-7.33 (m, 2H), 7.11-7.05 (m, 5H), 4.91-4.79 (m, 2H), 4.74 (s, 1H), 4.41-4.31 (m, 1H), 4.05-3.94 (m, 1H), 1.04 (t, J = 7.1 Hz, 3H); ¹⁹F-NMR (282 MHz, CDCl₃, 298 K): δ = -74.50 (s, 3F) ppm; ¹³C-NMR (75 MHz, CDCl₃, 298 K): δ = 199.1, 198.4, 166.2, 147.8, 142.3, 141.9, 141.1, 136.3, 136.0, 132.8, 131.5, 128.8, 127.6, 125.8 (q, J = 284 Hz), 123.4, 123.1, 123.1, 74.3 (q, J = 34 Hz), 72.4, 72.1, 59.0, 13.6 ppm.

<u>5e:</u> The reaction was performed according to the general procedure 2, with imine **3a** (0.1 mmol, 25.9 mg) and arylidene-indandione **6e** (0.2 mmol, 53.6 mg). The product occurs as yellow oil with an isolated yield of 68% and a dr of 100:0:0:0.

R_f: 0.73 (Heptane/EtOAc: 1/1).

HRMS (ESI): *m*/*z* calculated for C₂₈H₂₀CIF₃NO₄: 528.1184 [M+H]⁺; found: 528.1192.

¹H-NMR (300 MHz, CDCl₃, 298 K): δ = 7.77-7.74 (m, 1H), 7.64-7.52 (m, 3H), 7.12-7.06 (m, 9H), 4.90-4.78 (m, 2H), 4.62 (s, 1H), 4.36-4.25 (m, 1H), 4.02-3.91 (m, 1H), 1.26 (t, J = 7.2 Hz, 3H); ¹⁹F-NMR (282 MHz, CDCl₃, 298 K): δ = -74.35 (s, 3F) ppm; ¹³C-NMR (75 MHz, CDCl₃, 298 K): δ = 199.4, 199.1, 166.6, 142.5, 142.1, 142.1, 136.1, 135.8, 134.4, 133.2, 132.2, 131.8, 131.8, 128.6, 128.6, 128.5, 126.6, 126.2 (q, J = 298 Hz), 123.0, 123.0, 74.4 (q, J = 34 Hz), 72.2, 71.6, 63.2, 59.5, 13.5 ppm.

<u>5f:</u> The reaction was performed according to the general procedure 2, with imine **3a** (0.1 mmol, 25.9 mg) and arylidene-indandione **6f** (0.2 mmol, 62.0 mg). The product occurs as yellow oil with an isolated yield of 84% and a dr of 100:0:00.

R_f: 0.78 (Heptane/EtOAc: 1/1).

HRMS (ESI): *m*/*z* calculated for C₃₄H₂₆F₃NO₄: 570.1887 [M+H]⁺; found: 570.1893.

¹H-NMR (300 MHz, CDCl₃, 298 K): δ = 7.80-7.75 (m, 1H), 7.62-7.53 (m, 3H), 7.46-7.43 (m, 2H), 7.39-7.28 (m, 5H), 7.22-7.19 (m, 2H), 7.12-7.08 (m, 5H), 4.95-4.85 (m, 2H), 4.70 (s, 1H), 4.33-4.22 (m, 1H), 4.02-3.91 (m, 1H), 0.96 (t, J = 7.1 Hz, 3H); ¹⁹F-NMR (282 MHz, CDCl₃, 298 K): δ = -74.19 (s, 3F) ppm; ¹³C-NMR (75 MHz, CDCl₃, 298 K): δ = 199.4, 199.3, 166.6, 142.5, 142.0, 140.8, 140.1, 135.8, 135.5, 133.3, 132.4, 130.6, 128.8, 128.3, 128.3, 127.5, 126.8, 126.8, 126.5, 125.7 (q, J = 285 Hz), 122.9, 122.8, 74.5 (q, J = 29 Hz), 72.1, 71.3, 63.0, 60.1, 13.3 ppm.

<u>5g</u>: The reaction was performed according to the general procedure 2, with imine **3a** (0.1 mmol, 25.9 mg) and arylidene-indandione **6g** (0.2 mmol, 56.8 mg). The product occurs as yellow crystals with a melting range of 160.4-162.3 °C, an isolated yield of 72% and a dr of 100:0:0:0.

R_f: 0.81 (Heptane/EtOAc: 1/1).

HRMS (ESI): *m*/z calculated for C₃₂H₂₄F₃NO₄: 544.1730 [M+H]⁺; found: 544.1739.

¹H-NMR (300 MHz, CDCl₃, 298 K): δ = 8.34 (d, 8.7 Hz, 1H), 7.73 (d, J = 8.1 Hz, 1H), 7.65-7.60 (m, 3H), 7.52-7.45 (m, 4H), 7.42-7.38 (m, 1H), 7.22-7.08 (m, 6H), 5.87 (s, 1H), 5.11-5.00 (m, 2H), 4.30-4.20 (m, 1H), 3.95-3.84 (m, 1H), 0.88 (t, J = 7.1 Hz, 3H); ¹⁹F-NMR (282 MHz, CDCl₃, 298 K): δ = -73.79 (s, 3F) ppm; ¹³C-NMR (75 MHz, CDCl₃, 298 K): δ = 199.6, 199.5, 167.1, 142.8, 141.8, 135.8, 135.5, 134.1, 133.6, 132.3, 129.7, 128.9, 128.9, 128.4, 127.9, 127.2, 126.7, 126.1 (q, J = 284 Hz), 125.9, 124.3, 123.0, 122.9, 122.8, 75.4 (q, J = 28 Hz), 72.6, 71.6, 63.1, 52.5, 13.4 ppm.

<u>5h:</u> The reaction was performed according to the general procedure 2, with imine **3a** (0.1 mmol, 25.9 mg) and arylidene-indandione **6h** (0.2 mmol, 44.8 mg). The product occurs as orange crystals with a melting range of 153.7-156.1 °C, an isolated yield of 61% and a dr of 100:0:0:0.

R_f: 0.67 (Heptane/EtOAc: 1/1).

HRMS (ESI): *m*/*z* calculated for C₂₆H₁₉F₃NO₅: 484.1366 [M+H]⁺; found: 484.1371.

¹H-NMR (300 MHz, CDCl₃, 298 K): δ = 7.80-7.78 (m, 1H), 7.66-7.56 (m, 3H), 7.11-7.07 (m, 6H), 6.14-6.11 (m, 2H), 4.87-4.74 (m, 3H), 4.33-4.23 (m, 1H), 4.11-4.00 (m, 1H), 1.10 (t, J= 7.3 Hz, 3H); ¹⁹F-NMR (282 MHz, CDCl₃, 298 K): δ = -74.98 (s, 3F) ppm; ¹³C-NMR (75 MHz, CDCl₃, 298 K): δ = 198.9, 198.0, 166.1, 146.8, 142.6, 142.5, 141.9, 136.0, 135.5, 133.3, 128.5, 128.5, 126.7, 125.8 (q, J = 284 Hz), 123.0, 123.0, 110.7, 110.6, 73.2 (q, J = 33 Hz), 70.8, 69.3, 63.4, 52.5, 13.7 ppm.

<u>5i:</u> The reaction was performed according to the general procedure 2, with imine **3a** (0.1 mmol, 25.9 mg) and arylidene-indandione **6i** (0.2 mmol, 48.0 mg). The product occurs as red crystals with a melting range of 147.1-150.2 °C, an isolated yield of 56% and a dr of 100:0:0:0.

R_f: 0.60 (Heptane/EtOAc: 1/1).

HRMS (ESI): *m*/*z* calculated for C₂₆H₂₀F₃NO₄S: 500.1138 [M+H]⁺; found: 500.1143.

¹H-NMR (300 MHz, CDCl₃, 298 K): δ = 7.79-7.76 (m, 1H), 7.65-7.55 (m, 3H), 7.11-7.05 (m, 5H), 7.04-7.02 (m, 1H), 6.89-6.88 (m, 1H), 6.80-6.77 (m, 1H), 5.00 (s, 1H), 4.88-4.79 (m, 2H), 4.31-4.20 (m, 1H), 4.03-3.92 (m, 1H), 1.02 (t, J= 7.2 Hz, 3H); ¹⁹F-NMR (282 MHz, CDCl₃, 298 K): δ = -74.20 (s, 3F) ppm; ¹³C-NMR (75 MHz, CDCl₃, 298 K): δ = 199.4, 198.8, 166.2, 142.7, 142.3, 136.0, 135.6, 135.0, 133.2, 129.4, 128.6, 128.5, 126.8, 126.6, 125.8, 125.4 (q, J = 284 Hz), 123.1, 123.0, 74.8 (q, J = 26 Hz), 71.8, 71.4, 63.3, 54.4, 13.5 ppm.

<u>5i</u>: The reaction was performed according to the general procedure 2, with imine **3a** (0.1 mmol, 25.9 mg) and arylidene-indandione **6j** (0.2 mmol, 50.4 mg). The product occurs as yellow crystals with a melting range of 180.9-184.1 $^{\circ}$ C, an isolated yield of 40% and a dr of 50:50:0:0:0.

R_f: 0.75 (Heptane/EtOAc: 1/1).

HRMS (ESI): *m*/*z* calculated for C₂₈H₂₀F₄NO₄: 512.1479 [M+H]⁺; found: 512.1484.

¹H-NMR (700 MHz, CDCl₃, 298 K): δ = 7.56-7.50 (m, 3H), 7.35-7.34 (m, 1H), 7.22-7.20 (m, 1H), 7.16-7.10 (m, 21H), 4.91-4.85 (m, 4H), 4.64/4.61 (2s, 2H), 4.29-4.23 (m, 2H), 3.96-3.89 (m, 2H), 0.95 (2t, J = 7.2 Hz, 6H); ¹⁹F-NMR (282 MHz, CDCl₃, 298 K): δ = -74.26 (s, 3F), -74.33 (s, 3F), -110.56 - -110.60 (m, 1F), -111.35 - -111.39 (m, 1H) ppm; ¹³C-NMR (176 MHz, CDCl₃, 298 K): δ = 198.4, 198.4, 166.7, 166.5, 158.4, 158.1, 156.9, 156.6, 143.9, 143.7, 138.0, 137.8, 137.7, 133.3, 133.2, 133.2, 133.2, 130.3, 130.3, 129.0, 128.8, 128.8, 128.7, 126.7, 125.8 (q, J = 283 Hz), 123.5, 123.4, 123.1, 123.0, 119.0, 119.0, 74.5 (q, J = 30 Hz), 72.7, 72.6, 71.8, 71.6, 63.1, 60.7, 60.6, 13.4, 13.4 ppm (mixture of 2 diastereomers).

<u>5k</u>: The reaction was performed according to the general procedure 2, with imine **3a** (0.1 mmol, 25.9 mg) and arylidene-indandione **6a** (0.2 mmol, 55.8 mg). The product occurs as yellow oil with an isolated yield of 46% and a dr of 60:40:0:0:0.

R_f: 0.66 (Heptane/EtOAc: 1/1).

HRMS (ESI): *m*/*z* calculated for C₂₈H₂₀F₃N₂O₆: 539.1424 [M+H]⁺; found: 539.1427.

¹H-NMR (300 MHz, CDCl₃, 298 K): δ = 7.98-7.95 (m, 1H), 7.89-7.86 (m, 1H), 7.82-7.79 (m, 1H), 7.75-7.72 (m, 2H), 7.67-7.65 (m, 1H), 7.16-7.10 (m, 20H), 4.98-4.84 (m, 4H), 4.69, 4.63 (2s, 2H), 4.32-4.22 (m, 2H), 3.99-3.87 (m, 2H), 0.96 (2t, J = 7.1 Hz, 6H); ¹⁹F-NMR (282 MHz, CDCl₃, 298 K): δ = -74.33 (s, 3F), -74.35 (s, 3F) ppm; ¹³C-NMR (75 MHz, CDCl₃, 298 K): δ = 197.1, 196.7, 193.5, 193.2, 166.7, 166.3, 144.4, 143.4, 143.0, 136.4, 136.2, 133.1, 132.8, 130.3, 129.8, 129.5, 129.0, 128.8, 128.7, 128.6, 128.6, 128.6, 128.5, 127.8 (q, J = 281 Hz), 126.7, 126.5, 126.4, 74.3 (q, J = 30 Hz), 73.3, 72.5, 72.4, 72.0, 63.2, 61.1, 60.2, 13.3 ppm (mixture of 2 diastereomers).

<u>51:</u> The reaction was performed according to the general procedure 2, with imine **31** (0.1 mmol, 29.4 mg) and arylidene-indandione **6a** (0.2 mmol, 46.8 mg). The product occurs as yellow oil with an isolated yield of 69% and a dr of 100:0:0:0.

R_f: 0.65 (Heptane/EtOAc: 1/1).

HRMS (ESI): *m*/*z* calculated for C₂₈H₂₀ClF₃NO₄: 528.1184 [M+H]⁺; found: 528.1188.

¹H-NMR (300 MHz, CDCl₃, 298 K): δ = 7.77-7.74 (m, 1H), 7.65-7.58 (m, 3H), 7.10-7.04 (m, 9H), 4.90-4.78 (m, 2H), 4.61 (s, 1H), 4.30-4.19 (m, 1H), 3.95-3.84 (m, 1H), 0.93 (t, J = 7.2 Hz, 3H); ¹⁹F-NMR (282 MHz, CDCl₃, 298 K): δ = -74.21 (s, 3F) ppm; ¹³C-NMR (75 MHz, CDCl₃, 298 K): δ = 199.4, 199.3, 166.7, 142.6, 142.0, 136.2, 135.9, 135.9, 134.3, 133.3, 132.3, 130.1, 128.7, 128.4, 128.4, 128.3, 128.1, 125.8 (q, J = 298 Hz), 123.1, 123.1, 74.6 (q, J = 28 Hz), 71.7, 70.3, 63.1, 61.0, 13.3 ppm.

<u>5m:</u> The reaction was performed according to the general procedure 2, with imine **3m** (0.1 mmol, 30.5 mg) and arylidene-indandione **6a** (0.2 mmol, 46.8 mg). The product occurs as yellow oil with an isolated yield of 74% and a dr of 100:0:0:0.

R_f: 0.58 (Heptane/EtOAc: 1/1).

HRMS (ESI): *m*/*z* calculated for C₂₈H₂₀F₃N₂O₆: 539.1424 [M+H]⁺; found: 539.1428.

¹H-NMR (300 MHz, CDCl₃, 298 K): δ = 8.00-7.97 (m, 2H), 7.80-7.78 (m, 1H), 7.67-7.56 (m, 3H), 7.33-7.30 (m, 2H), 7.13-7.06 (m, 5H), 5.04-4.88 (m, 2H), 4.63 (s, 1H), 4.30-4.19 (m, 1H), 3.94-3.83 (m, 1H), 0.92 (t, J = 7.1 Hz, 3H); ¹⁹F-NMR (282 MHz, CDCl₃, 298 K): δ = -74.17 (s, 3F) ppm; ¹³C-NMR (75 MHz, CDCl₃, 298 K): δ = 199.2, 199.1, 166.5, 147.7, 142.5, 141.8, 141.3, 136.5, 136.2, 132.8, 130.0, 128.6, 127.7, 126.2 (q, J = 298 Hz), 123.6, 123.3, 123.2, 74.6 (q, J = 28 Hz), 71.5, 69.6, 63.3, 61.6, 32.0, 29.2, 22.8, 14.3, 13.3 ppm.

<u>**5n**</u>: The reaction was performed according to the general procedure 2, with imine **3n** (0.1 mmol, 25.9 mg) and arylidene-indandione **6a** (0.2 mmol, 39.6 mg). The product occurs as yellow oil with an isolated yield of 31% and a dr of 100:0:0:0.

R_f: 0.75 (Heptane/EtOAc: 1/1).

HRMS (ESI): *m*/*z* calculated for C₃₀H₁₉F₉NO₄: 630.1321 [M+H]⁺; found: 630.1321.

¹H-NMR (300 MHz, CDCl₃, 298 K): δ = 7.83-7.81 (m, 1H), 7.69-7.57 (m, 4H), 7.55-7.52 (m, 2H), 7.14-7.09 (m, 5H), 5.04-4.86 (m, 2H), 4.65 (s, 1H), 4.30-4.19 (m, 1H), 3.93-3.83 (m, 1H), 0.93 (t, J = 7.1 Hz, 3H); ¹⁹F-NMR (282 MHz, CDCl₃, 298 K): δ = -63.18 (s, 6H), -74.15 (s, 3F) ppm; ¹³C-NMR (75 MHz, CDCl₃, 298 K): δ = 199.1, 198.9, 166.4, 142.5, 141.8, 136.9, 136.5, 136.2, 135.8, 132.8, 131.8 (q, J = 34 Hz), 130.0, 129.6 (q, J = 270 Hz), 128.5, 126.8, 123.4, 123.3, 123.1 (q, J = 271 Hz), 122.3, 121.1, 74.4 (J = 28 Hz), 71.4, 69.4, 63.4, 61.2, 54.7, 13.3 ppm.

3.3 Formal (3+2)-Cycloaddition – Benzylidene-Malonitrile

General procedure 3: To a stirred solution of benzylidene-malonitrile **7** (0.2 mmol, 30.8 mg) in dry DCM (2 mL), LiOH (3 eq., 7.2 mg), TEBAC (30 mol%, 7.8 mg) and imine **3a** (0.1 mmol, 25.9 mg) were added successively. The reaction mixture was stirred for 24 h at room temperature. The mixture was filtered over a pad of silica and washed with Et₂O. After evaporation of the solvent the product was purified by column chromatography with a gradient of heptane and ethylacetate (20:1 - 10:1 - 5:1) to yield product **8** with yield and diastereomeric ratio stated below.

<u>8</u>: The reaction was performed according to the general procedure 3. The product occurs as white oil with an isolated yield of 60% (mixture of the two main diastereomers) and a dr of 49:33:16:2.

R_f: 0.82 (Heptane/EtOAc: 1/1).

HRMS (ESI): *m*/*z* calculated for C₂₂H₁₈F₃N₃O₂: 414.1424 [M+H]⁺; found: 414.1423.

¹H-NMR (500 MHz, CDCl₃, 298 K): δ = 7.76-7.74 (m, 2H), 7.50-7.46 (m, 6H), 7.31-7.29 (m, 2H), 5.32 (d, J = 4.11 Hz, 1H), 4.49 (s, 1H), 3.96-3.89 (m, 1H), 3.58-3.51 (m, 1H), 3.40 (d, J = 4.11 Hz, 1H), 0.76 (t, J = 7.2 Hz, 3H) ppm; ¹⁹F-NMR (282 MHz, CDCl₃, 298 K): δ = -74.03 (s, 3F) ppm; ¹³C-NMR (125 MHz, CDCl₃, 298 K): δ = 167.6, 134.8, 133.8, 133.2, 130.9, 130.6, 130.1, 129.5, 129.3, 129.2, 127. 6, 124.0 (q, J = 287.2 Hz), 113.2, 112.1, 74.7 (q, J = 30.4 Hz), 70.4, 63.8, 57.8, 48.7, 13.2 ppm (main diastereomer).

3.4 Michael Addition – Methyl-Vinyl-Ketone

General procedure 4: To a stirred solution of methyl-vinyl-ketone **9** (0.2 mmol, 16.7 μ L) in dry DCM (2 mL), TEBAC (10 mol%, 2.6 mg), imine **3m** (0.1 mmol, 30.4 mg) and aq. KOH (50%, 0.1 eq., 1.2 μ L) were added successively. The reaction mixture was stirred for 24 h at room temperature. The mixture was filtered over a pad of Na₂SO₄ and washed with Et₂O. After evaporation of the solvent the product was purified by column chromatography with a gradient of heptane and ethylacetate (2:1 – 1:1) to yield product **10** with 60% isolated yield.

<u>10</u>: The reaction was performed according to the general procedure 4. The product occurs as white oil with an isolated yield of 60%.

HRMS (ESI): m/z calculated for C₁₆H₁₇F₃N₂O₅: 375.1162 [M+H]⁺; found: 375.1164.

¹H-NMR (500 MHz, CDCl₃, 298 K): δ = 8.51 (s, 1H), 8.31-8.29 (m, 2H), 7.98-7.97 (m, 2H), 4.33 (q, J = 7.1 Hz, 2H), 2.63-2.60 (m, 2H), 2.50-2.46 (m, 2H),

2.15 (s, 3H), 1.33 (t, J = 7.1 Hz, 3H); ¹⁹F-NMR (282 MHz, CDCl₃, 298 K): δ = -71.90 (s, 3F) ppm; ¹³C-NMR (125 MHz, CDCl₃, 298 K): δ = 206.5, 163.6, 163.3, 149.9, 140.7, 130.6, 129.7, 124.4 (q, J = 286.7 Hz), 124.1, 73.6 (q, J = 25.2), 63.0, 37.8, 30.2, 27.9, 14.1 ppm.

4. Copies of HPLC Chromatograms

default/Integration

Chromeleon (c) Dionex 1996-2006 Version 6.80 SR12 Build 3578 (207169)

Operator:Admin Timebase:U-3000_DAD Sequence:WAS_20180726_WIN

Page 1-2 9.5.2019 3:16 PM

No.	Ret.Time	Peak Name	Height mAU	Area mAU*min	Rel.Area %	Amount	Туре
1	29.01	na	675,427	614,643	38,27	n.a.	BMB*
2	38.82	na	437,777	991,465	61,73	n.a.	BMB*
Total:	00,02	11.00	1113,204	1606,108	100,00	0,000	

default/Integration

Chromeleon (c) Dionex 1996-2006 Version 6.80 SR12 Build 3578 (207169)

5. Copies of NMR-Spectra of new Compounds

