Supporting Information

Aryne Insertion into P=O Bond: One-pot Synthesis of Quaternary Phosphonium Triflates

Kashmiri Neog, a,b Dhiraj Dutta, a,b Babulal Das c and Pranjal Gogoi a,b *

a Applied Organic Chemistry Group, Chemical Science and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, India

b Academy of Scientific and Innovative Research (AcSIR), CSIR-NEIST Campus, India

c Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, India

Email: gogoipranj@yahoo.co.uk; gogoipranj@gmail.com

Copies of NMR, HRMS spectra and single crystal X-ray analysis of 3aa
1H and 13C NMR spectra of 3aa

![NMR Spectra of 3aa](image)

1H NMR spectrum

13C NMR spectrum
31P NMR spectrum of 3aa

![NMR spectrum](image)

HRMS spectrum of 3aa

![HRMS spectrum](image)
1H and 13C NMR spectra of 3ab
31P NMR spectrum of 3ab

S spectrum of 3ab
1H and 13C NMR spectra of 3ac
31P NMR spectrum of 3ac

HRMS spectrum of 3ac
1H and 13C NMR spectra of 3ad
31P NMR spectrum of 3ad

HRMS spectrum of 3ad
1H and 13C NMR spectra of 3ae

3ae
31P NMR spectrum of 3ae

HR

MS spectrum of 3ae
1H and 13C NMR spectra of 3af
31P NMR spectrum of 3af

HRMS spectrum of 3af
1H and 13C NMR spectra of 3ag

![NMR spectra diagram]
31P NMR spectrum of 3ag

HRMS spectrum of 3ag
1H and 13C NMR spectra of 3ah
31P NMR spectrum of 3ah

RMS spectrum of 3ah
1H and 13C NMR spectra of 3ba

![NMR Spectra Image]

The image shows the 1H and 13C NMR spectra of 3ba, with detailed spectral data provided in the figure. The spectra are labeled with chemical shifts in ppm, ranging from 0.0 to 8.0 for 1H and from 0.0 to 160.0 for 13C.
^{31}P NMR spectrum of 3ba

HRMS spectrum of 3ba
^{1}H and ^{13}C NMR spectra of 3bb
31P NMR spectrum of 3bb

[Image of 31P NMR spectrum]

HRMS spectrum of 3bb

[Image of HRMS spectrum]
1H and 13C NMR spectra of 3bc
31P NMR spectrum of 3bc

HRMS spectrum of 3bc
1H and 13C NMR spectra of 3bd

![NMR Spectra Diagram]
31P NMR spectrum of 3bd

HRMS spectrum of 3bd
1H and 13C NMR spectra of 3be

3be

C NMR spectra of 3be
31P NMR spectrum of 3be

HRMS spectrum of 3be
1H and 13C NMR spectra of 3bf

![NMR Spectra Image]
31P NMR spectrum of 3bf

HRMS spectrum of 3bf
1H and 13C NMR spectra of 3bg
31P NMR spectrum of 3bg

HRMS spectrum of 3bg
1H and 13C NMR spectra of 3bh
31P NMR spectrum of 3bh

HRMS spectrum of 3bh
1H and 13C NMR spectra of the mixture of 3ca, 3ca', 3c’a and 3c’a’
3P NMR spectra of the mixture of 3ca, 3ca', 3c'a and 3c'a'

HRMS spectrum of 3ca
1H and 13C NMR spectra of 3db

S36
^{31}P NMR spectrum of 3db

MS spectrum of 3db
1H and 13C NMR spectra of 3dg
31P NMR spectrum of 3dg
MS spectrum of 3dg

1H and 13C NMR spectra of 3dh
31P NMR spectrum of 3dh

S41
HRMS spectrum of 3dh
1H and 13C NMR spectra of 3ea

![NMR Spectra Diagram](image-url)
31P NMR spectrum of 3ea

HRMS spectrum of 3ea
HRMS spectrum of 3aa-D
Sample preparation and crystal structure determination of 3aa

The pure compound 3aa as obtained from column chromatography was crystallized from ethyl acetate.

Single crystal X-ray crystallographic data of the colourless block shaped crystals of 3aa was collected at 296 K with Mo Kα radiation (λ = 0.71073 Å) using a Bruker SMART CCD diffractometer equipped with graphite monochromators. The BRUKER SMART software was used for data collection and also for indexing the reflections and determining the unit cell parameters; the collected data were integrated using BRUKER SAINT software. The structures were solved by direct methods and refined by full-matrix least-square calculations using SHELXL 2014/7 software. All the non-H atoms were refined in the anisotropic approximation against F² of all reflections. Crystal data and details of the final refinement parameters are summarized below.

Crystal data for 3aa: C₃₁H₂₄F₃O₄PS, M = 580.53 gmol⁻¹, Monoclinic, space group P 2₁/n, a = 9.5734(4) Å, b = 15.0468(7) Å, c = 19.4977(9) Å, β (°) = 92.992(3), V = 2804.8(2) Å³, Z = 4, F000 = 1200, μ = 0.228 mm⁻¹, T = 296 (2) K, 30535 reflections collected, 4938 unique reflections (Rint = 0.0491), 3084 observed reflections [I > 2σ(I)], R₁(obs) = 0.0725, wR₁(obs) = 0.1785, R₂(all) = 0.1100, wR₂(all) = 0.2035, 361 parameters refined, Final GOF= 0.982. Completeness to 2θ = 99.9%.

Crystallographic data for the structure reported in this paper have been deposited with the CCDC as supplementary publication no. CCDC-1888261. Copies of data can be obtained free of charge on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK [E-mail: deposit@ccdc.cam.ac.uk].
Figure 1: X-ray crystal of structure of 3aa. Thermal ellipsoids are drawn at the 30% probability.

CIF check Report of 3aa:

<table>
<thead>
<tr>
<th>Bond precision:</th>
<th>C-C = 0.0067 Å</th>
<th>Wavelength=0.71073</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell:</td>
<td>a=9.5734(4)</td>
<td>b=15.0468(7)</td>
</tr>
<tr>
<td></td>
<td>c=19.4977(9)</td>
<td>alpha=90</td>
</tr>
<tr>
<td></td>
<td>beta=92.992(3)</td>
<td>gamma=90</td>
</tr>
<tr>
<td>Temperature:</td>
<td>296 K</td>
<td></td>
</tr>
<tr>
<td>Volume</td>
<td>2804.8(2)</td>
<td>2804.8(2)</td>
</tr>
<tr>
<td>Space group</td>
<td>P 21/n</td>
<td>P 21/n</td>
</tr>
<tr>
<td>Hall group</td>
<td>-P 2yn</td>
<td>-P 2yn</td>
</tr>
<tr>
<td>Moiety formula</td>
<td>C30 H24 O P, C F3 O3 S</td>
<td>?</td>
</tr>
<tr>
<td>Sum formula</td>
<td>C31 H24 F3 O4 P S</td>
<td>C31 H24 F3 O4 P S</td>
</tr>
<tr>
<td>Mr</td>
<td>580.53</td>
<td>580.53</td>
</tr>
<tr>
<td>Dx, g cm⁻³</td>
<td>1.375</td>
<td>1.375</td>
</tr>
<tr>
<td>z</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Mu (mm⁻¹)</td>
<td>0.228</td>
<td>0.228</td>
</tr>
</tbody>
</table>
F000 1200.0 1200.0
F000' 1201.57
h,k,lmax 11,17,23 11,17,23
Nref 4941 4938
Tmin,Tmax 0.947,0.971
Tmin' 0.938

Correction method= Not given

Data completeness= 0.999
Theta(max)= 24.999
R(reflections)= 0.0725(3084)
wR2(reflections)= 0.2035(4938)
S = 0.982
Npar= 361

The following ALERTS were generated. Each ALERT has the format
\textbf{test-name_ALERT_alert-type_alert-level}.
Click on the hyperlinks for more details of the test.

\textbf{Alert level C}
PLAT094_ALERT_2_C Ratio of Maximum / Minimum Residual Density 2.32
Report
PLAT231_ALERT_4_CHirshfeld Test (Solvent) S1 --O4 . 8.5
s.u.
PLAT231_ALERT_4_CHirshfeld Test (Solvent) S1 --C31 . 6.2
s.u.
PLAT244_ALERT_4_C Low 'Solvent' Ueq as Compared to Neighbors of
Check
S1
PLAT260_ALERT_2_C Large Average Ueq of Residue Including S1 0.164
Check
PLAT331_ALERT_2_C Small Aver Phenyl C-C Dist C1 --C6 . 1.37
Ang.
PLAT340_ALERT_3_C Low Bond Precision on C-C Bonds 0.00673
Ang.
PLAT906_ALERT_3_C Large K Value in the Analysis of Variance 5.409
Check
PLAT911_ALERT_3_C Missing FCF ReflBetweenThmin&STh/L= 0.595 3
Report

\textbf{Alert level G}
PLAT244_ALERT_4_G Low 'Solvent' Ueq as Compared to Neighbors of C31
Check
PLAT883_ALERT_1_G No Info/Value for _atom_sites_solution_primary . Please
Do!
PLAT978_ALERT_2_G Number C-C Bonds with Positive Residual Density.1 Info

0 \textbf{ALERT level A} = Most likely a serious problem - resolve or explain
0 **ALERT level B** = A potentially serious problem, consider carefully
9 **ALERT level C** = Check. Ensure it is not caused by an omission or oversight
3 **ALERT level G** = General information/check it is not something unexpected

1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data
4 ALERT type 2 Indicator that the structure model may be wrong or deficient
3 ALERT type 3 Indicator that the structure quality may be low
4 ALERT type 4 Improvement, methodology, query or suggestion
0 ALERT type 5 Informative message, check