Supporting Information

NIR fluorescent Probe for Detection of Viscosity and lysosome imaging in live cells

Tong Chen\(^a\), Zikang Chen\(^b\), Ruixuan Liu\(^{a*}\), Shaobing Zheng\(^{a*}\)

\(^a\) Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, P.R. China.
\(^b\) Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, P.R. China.

\(^{#}\)Corresponding author:
Ruiyuan Liu, Ph.D, Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, 510515, P.R. China. E-mail: ruiyliu@smu.edu.cn;
Shaobing Zheng, Ph.D, Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, P.R. China, Email: uro@fimmu.com
Fig. S1. 1H NMR spectrum of Lyo-BTC in CDCl$_3$
Fig. S2. 13C NMR spectrum of Lyo-BTC in CDCl$_3$
Fig. S3. IR spectrum of Lyo-BTC
Fig. S4. ESI-MS spectrum of Lyo-BTC
Fig. S5 UV-spectra of Lyso-BTC in DMSO/glycerol mixed solvents
Fig. S6 (A) Fluorescence spectra of Lyso-BTC at different pH conditions (10 μM, Ex = 505 nm). (B) Fluorescence intensity of Lyso-BTC at different pH at 685 nm (10 μM, Ex = 505 nm).
Fig. S7 Mulliken charge densities numbering on atoms of Lyso-BTC. The values of charges on N1, N2 and N3 are -0.543, -0.520 and -0.512 respectively.
Fig. S8 (A) Fluorescent spectra of Lyso-BTC in DMSO/glycerol mixtures with different viscosity. (B) Dependence between Log (I_{max}) and Log (viscosity).
Fig. S9 (a) Photostability of Lyso-BTC compare with Lyso-Tracker Green under continuous scanning at 488 nm. (b) Photostability of Lyso-BTC and Lyso-Tracker Green under continuous scanning at 488 nm, where I_0 is the initial fluorescence intensity and I is the fluorescence intensity of each sample at various time points.
Fig. S1. 1H NMR spectrum of Lyo-BTC in CDCl$_3$

Fig. S2. 13C NMR spectrum of Lyo-BTC in CDCl$_3$
Fig. S3. IR spectrum of Lyo-BTC

Figure S4. MS spectrum of Lyo-BTC
Fig. S5 UV-spectra of Lyso-BTC in DMSO/glycerol mixed solvents

Fig. S6 (A) Fluorescence spectra of Lyso-BTC at different pH conditions (10 μM, Ex = 505 nm).
(B) Fluorescence intensity of Lyso-BTC at different pH at 685 nm (10 μM, Ex = 505 nm).
Fig S7. Mulliken charge densities numbering on atoms of Lyso-BTC. The values of charges on N1, N2 and N3 are -0.543, -0.520 and -0.512 respectively.

Fig. S8 (A) Fluorescent spectra of Lyso-BTC in DMSO/glycerol mixtures with different viscosity. (B) Dependence between Log (I_{max}) and Log (viscosity).
Fig. S9 (A) Photostability of Lyso-BTC compared with Lyso-Tracker Green under continuous scanning at 488 nm. (B) Photostability of Lyso-BTC and Lyso-Tracker Green under continuous scanning at 488 nm, where I_0 is the initial fluorescence intensity and I is the fluorescence intensity of each sample at various time points.