Supplementary Information

Synthesis and characterization of bent fluorine-containing donor- π -

acceptor molecules as intense luminophores with large Stokes shifts

Shigeyuki Yamada,^{*,a} Akito Nishizawa,^a Masato Morita,^a Takuya Hosokai,^b Yusuke Okabayashi,^b Tomohiro Agou,^c Takaaki Hosoya,^c Toshio Kubota ^c and Tsutomu Konno ^a

^a Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan; Tel: +81-75-724-7517; E-mail: syamada@kit.ac.jp

^b National Metrology Institute of Japan, National Institute of Advanced Industrial Science and Technology, 1-1-1 Umezono, Tsukuba 305-8560, Japan

^c Department of Quantum Beam Science, Graduate School of Science and Engineering, Ibaraki University, 4-12-1 Naka-narusawa, Hitachi, Ibaraki 316-8511, Japan

Table of contents

1. NMR spectra for New Compounds 3a–f	•••••	S2 – S13
2. Quantum Chemical Calculation	•••••	S14 - S23
3. Crystal Structure	•••••	S24
4. Photophysical Property in CH ₂ Cl ₂ Solution	•••••	S25
5. Photophysical Property in Various Solvent	•••••	S26
6. Lippert-Mataga Plot	•••••	S27
7. Photophysical Property in Crystal	•••••	S28
8. Transient PL Measurement	•••••	S29
9. Powder X-ray Diffraction (PXRD) Measurement	•••••	S30

1. NMR Spectra for New Compounds 3a-f

Figure S2. ¹³C NMR Spectrum of 3a (CDCl₃, 100 MHz)

Figure S3. ¹⁹F NMR Spectrum of 3a (CDCI₃, 375 MHz)

Figure S4. ¹H NMR Spectrum of 3b (CDCl₃, 400 MHz)

Figure S5. ¹³C NMR Spectrum of 3b (CDCI₃, 100 MHz)

Figure S6. ¹⁹F NMR Spectrum of 3b (CDCI₃, 375 MHz)

Figure S7. ¹H NMR Spectrum of 3c (CDCl₃, 400 MHz)

Figure S8. ¹³C NMR Spectrum of 3c (CDCI₃, 100 MHz)

Figure S9. ¹⁹F NMR Spectrum of 3c (CDCl₃, 375 MHz)

Figure S10. ¹H NMR Spectrum of 3d (CDCl₃, 400 MHz)

Figure S11. ¹³C NMR Spectrum of 3d (CDCl₃, 100 MHz)

Figure S12. ¹⁹F NMR Spectrum of 3d (CDCl₃, 375 MHz)

Figure S13. ¹H NMR Spectrum of 3e (CDCI₃, 400 MHz)

Figure S14. ¹³C NMR Spectrum of 3e (CDCl₃, 100 MHz)

Figure S15. ¹⁹F NMR Spectrum of 3e (CDCl₃, 375 MHz)

Figure S16. ¹H NMR Spectrum of 3f (CDCI₃, 400 MHz)

Figure S17. ¹³C NMR Spectrum of 3f (CDCl₃, 100 MHz)

Figure S18. ¹⁹F NMR Spectrum of 3f (CDCl₃, 375 MHz)

2. Quantum Chemical Calculation

All computations were carried out using density functional theory (DFT) with the Gaussian 09 (Rev. C.01) package. Geometry optimizations were executed using the CAM-B3LYP hybrid functional and 6-31G(d) basis set. Vertical excitations and optimizations at the excited state were also calculated using a TD-DFT method at the same level of theory.

<Under gas phase>

(a) Optimized structure in S0 state

(b) Electrostatic potential diagram in S0 state

SCF Done: E(RCAM-B3LYP) = -2889.05471951 Dipole moment (Debye): X = -0.1309, Y = 9.1871, Z = 0.0436, Tot = 9.1881

(c) Optimized structure in S1 state

(d) Electrostatic potenstial diagram in S1 state

SCF Done: E(RCAM-B3LYP) = -2889.03647378 Dipole moment (Debye): X = 0.0048, Y = 11.3361, Z = -0.0052, Tot = 11.3361

Figure 19. (a) Optimized structure of **3a** in S_0 state and (b) the electrostatic potential diagram. (c) Optimized structure of **3a** in S_1 state and (d) the electrostatic potential diagram.

<Under CPCM (CH₂Cl₂) conditions>

(a) Optimized structure in S₀ state

(b) Electrostatic potential diagram in S₀ state

SCF Done: E(RCAM-B3LYP) = -2889.06662217 Dipole moment (Debye): X = -0.1421, Y = 10.5112, Z = 0.0375, Tot = 10.5123

(c) Optimized structure in S1 state

(d) Electrostatic potential diagram in S1 state

SCF Done: E(RCAM-B3LYP) = -2889.04620574 Dipole moment (Debye): X = -0.0008, Y = 13.5608, Z = 0.0004, Tot = 13.5608

Figure 20. (a) Optimized structure of **3a** calculated by DFT and TD-DFT method with a CPCM (CH_2CI_2) model in S₀ state and (b) the electrostatic potential diagram. (c) Optimized structure of **3a** in S₁ state and (d) the electrostatic potential diagram.

Frontier molecular orbitals

<S₀ state under gas phase> (a)HOMO-1 (-7.21 eV)

(b) HOMO (-7.13 eV)

(c) LUMO (-1.30 eV)

(d) LUMO+1 (-0.61 eV)

Excitation energies and oscillator strengths:

Excited State	1:	Singlet-A	3.7941 eV	326.78 nm	f=1.1158	<s**2>=0.000</s**2>
177 ->184		0.14685				
182 ->184		-0.13074				
182 ->185		0.31761				
183 ->184		0.56017				
183 ->186		0.10379				
This state for op	otimiza	tion and/or sec	ond-order corre	ction.		

Total Energy, E(TD-HF/TD-KS) = -2889.07446098

Copying the excited state density for this state as the 1-particle RhoCl density.

Excited State	2:	Singlet-A	4.0516 eV	306.01 nm	f=1.2985	<s**2>=0.000</s**2>
176 ->184		0.12456				
182 ->184		0.54605				
182 ->186		0.12142				
183 ->185		0.36658				

<S₁ state under gas phase> (e) HOMO-1 (-7.23 eV)

(f) HOMO (-6.85 eV)

(g) LUMO (-2.16 eV)

Excitation energies and oscillator strengths:

Excited State	1:	Singlet-A	2.8237 eV	439.09 nm	f=1.3127	<s**2>=0.000</s**2>
181 ->184		-0.16969				
182 ->185		0.14673				
183 ->184		0.66181				
This state for op	otimiza	tion and/or sec	ond-order corre	ction.		
T I I I E I I I E						

Total Energy, E(TD-HF/TD-KS) = -2888.93270561

Copying the excited state density for this state as the 1-particle RhoCl density.

Excited State	2:	Singlet-A	3.5443 eV	349.81 nm	f=0.9279	<s**2>=0.000</s**2>
176 ->184		0.12997				
182 ->184		0.66171				
183 ->185		0.13363				

<S₀ state under CPCM conditions> (a)HOMO-1 (-7.21 eV)

(b) HOMO (-7.13 eV)

(c) LUMO (-1.37 eV)

A CONTRACT OF CONTRACT

(d) LUMO+1 (-0.66 eV)

Excitation energies and oscillator strengths:

Excited State	1:	Singlet-A	3.7382 eV	331.67 nm	f=1.2521	<s**2>=0.000</s**2>
177 ->184		0.10559				
179 ->184		0.15030				
182 ->184		0.14755				
182 ->185		-0.29659				
183 ->184		0.56643				
183 ->186		0.10190				
This state for op	otimiz	ation and/or secor	nd-order corre	ction.		

Total Energy, E(TD-HF/TD-KS) = -2888.92924492

Copying the excited state density for this state as the 1-particle RhoCl density.

Excited State	2:	Singlet-A	3.9919 eV	310.59 nm	f=1.4840	<s**2>=0.000</s**2>
176 ->184		0.12953				
182 ->184		0.53794				
182 ->186		0.12795				
183 ->185		-0.37025				

<S₁ state under CPCM conditions > (e) HOMO-1 (-7.20 eV)

(f) HOMO (-6.82 eV)

(g) LUMO (-2.31 eV)

Excitation energies and oscillator strengths:

Excited State	1:	Singlet-A	2.5187 eV	492.25 nm	f=1.5980	<s**2>=0.000</s**2>
181 ->184		-0.18945				
182 ->185		-0.14172				
183 ->184		0.65856				
This state for op	otimiza	ation and/or seco	ond-order corre	ction.		
	· · ·			_		

Total Energy, E(TD-HF/TD-DFT) = -2888.95364459

Copying the excited state density for this state as the 1-particle RhoCl density.

Excited State	2:	Singlet-A	3.2249 eV	384.46 nm	f=1.3527	<s**2>=0.000</s**2>
176 ->184		-0.13969				
182 ->184		0.64468				
183 ->185		-0.20509				

Figure S21. Frontier molecular orbital (HOMO–1, HOMO, LUMO, and/or LUMO+1) in the S_0 and S_1 states and the calculated electronic transition energies (nm) and oscillator strengths.

Ne	Atom	Туре	Coord	inates (Angst	roms)	34	6	0	-7.507736	4.391511	-1.051931
INO.	No.		х	У	z	35	1	0	-8.126164	4.640260	-1.907059
1	9	0	2.728968	-2.980516	2.071780	36	6	0	-8.638882	7.050095	1.150570
2	9	0	0.610046	-1.466845	-1.867888	37	1	0	-8.992106	6.488411	2.023212
3	9	0	4.324548	-0.854511	2.026456	38	1	0	-9.386143	7.794135	0.874900
4	8	0	8.271776	6.504354	-0.060099	39	1	0	-7.699559	7.556325	1.401962
5	9	0	2.193933	0.661767	-1.899205	40	9	0	-2.053468	-5.110084	-1.039269
6	9	0	-0.830733	-1.716876	2.103971	41	9	0	-1.688204	-5.234579	1.105363
7	6	0	4.885729	2.077693	0.009718	42	6	0	-1.127793	-4.904591	-0.083387
8	9	0	-2.232844	-2.776192	-2.271434	43	6	0	2.583640	-2.096413	1.086287
9	6	0	2.333588	-0.221445	-0.912723	44	6	0	5.605811	4.172822	-1.038932
10	9	0	-2.521153	0.346482	2.147288	45	1	0	4.843086	4.038090	-1.798335
11	6	0	6.730926	3.405152	0.949342	46	6	0	-2.317640	-2.039974	-1.165732
12	1	0	6.843536	2.670456	1.739236	47	6	0	-4.186911	0.969192	-0.012655
13	6	0	7.414049	5.458602	-0.108934	48	6	0	-6.826933	4.893104	1.213214
14	6	0	-3.292968	-0.130520	-0.032958	49	1	0	-6.889045	5.494199	2.111537
15	6	0	3.414125	-0.991158	1.065483	50	6	0	-5.954703	3.813556	1.176356
16	6	0	-0.600761	-3.491397	-0.053024	51	1	0	-5.346681	3.584745	2.045001
17	6	0	-1.599225	-1.492532	1.035658	52	6	0	-4.947882	1.906928	0.009329
18	6	0	3.311568	-0.021821	0.064659	53	6	0	-3.189789	-0.966992	-1.147813
19	6	0	-5.845705	3.013011	0.036673	54	6	0	-2.471109	-0.419699	1.059175
20	6	0	5.738743	3.218081	-0.027654	55	6	0	6.432886	5.286767	-1.085847
21	6	0	7.556238	4.509014	0.909136	56	1	0	6.304818	6.008758	-1.882372
22	1	0	8.326236	4.665704	1.656201	57	6	0	-7.608440	5.186274	0.095352
23	6	0	-1.509918	-2.334687	-0.070474	58	6	0	-6.639493	3.320655	-1.080954
24	6	0	4.161884	1.111055	0.038399	59	1	0	-6.563544	2.705962	-1.971328
25	6	0	0.728739	-3.475426	0.112243	60	6	0	0.130349	-5.759224	-0.318710
26	6	0	1.603051	-2.294243	0.115678	61	6	0	1.271641	-4.881091	0.231762
27	9	0	-3.934555	-0.725849	-2.224467	62	9	0	0.304792	-5.935213	-1.642262
28	8	0	-8.488590	6.212232	0.022947	63	9	0	2.415017	-5.049898	-0.460784
29	6	0	1.505963	-1.328174	-0.886872	64	9	0	0.063751	-6.952713	0.282913
30	6	0	8.180556	7.496259	-1.062299	65	9	0	1.504277	-5.233478	1.516081
31	1	0	8.363442	7.077311	-2.058664						
32	1	0	8.954424	8.228384	-0.831949						
33	1	0	7.201267	7.988814	-1.050811						

Table S1. Cartesian coordinate for 3a at the ground (S_0) state in gas phase

Na	Atom	Туре	Coordinates (Angstroms)		_	33	1	0	7.627307	7.806202	-0.847806	
INO.	No.		х	У	z		34	6	0	-8.064879	4.116696	-0.666582
1	9	0	3.019804	-3.187648	1.830263	-	35	1	0	-8.947504	4.159584	-1.294760
2	9	0	0.437018	-1.142857	-1.608924		36	6	0	-8.557614	7.281997	1.055486
3	9	0	4.726521	-1.186638	1.706359		37	1	0	-8.566471	6.972118	2.106443
4	8	0	8.736576	6.172185	-0.191667		38	1	0	-9.400697	7.946034	0.867071
5	9	0	2.130829	0.867032	-1.658660		39	1	0	-7.622646	7.810738	0.838627
6	9	0	-0.434650	-1.139510	1.604753		40	9	0	-1.102760	-4.902354	-1.946522
7	6	0	5.157869	1.927210	-0.053543		41	9	0	-2.305231	-5.084333	-0.131986
8	9	0	-3.028007	-3.192498	-1.822086		42	6	0	-1.084550	-4.732726	-0.598401
9	6	0	2.338543	-0.121741	-0.788905		43	6	0	2.782320	-2.219766	0.947270
10	9	0	-2.126976	0.870857	1.653425		44	6	0	5.827591	4.084674	-0.986694
11	6	0	7.193606	3.052953	0.725577		45	1	0	4.954038	4.063530	-1.629127
12	1	0	7.377264	2.231870	1.409722		46	6	0	-2.786401	-2.221955	-0.943174
13	6	0	7.825516	5.179133	-0.214971		47	6	0	-4.381381	0.990848	0.012289
14	6	0	-3.485685	-0.077651	-0.030635		48	6	0	-6.695329	5.162005	1.041216
15	6	0	3.668556	-1.178333	0.896515		49	1	0	-6.493144	5.974449	1.727654
16	6	0	-0.676729	-3.340604	-0.198299		50	6	0	-5.823533	4.089070	0.982569
17	6	0	-1.451043	-1.160486	0.736114		51	1	0	-4.947672	4.069651	1.621908
18	6	0	3.484775	-0.078131	0.031138		52	6	0	-5.157871	1.928459	0.053780
19	6	0	-6.051557	3.014861	0.105247		53	6	0	-3.672215	-1.180130	-0.892463
20	6	0	6.052101	3.013143	-0.105196		54	6	0	-2.337267	-0.119739	0.786362
21	6	0	8.062984	4.116765	0.670456		55	6	0	6.699947	5.157136	-1.045561
22	1	0	8.943335	4.161360	1.301698		56	1	0	6.500510	5.967490	-1.735264
23	6	0	-1.606802	-2.268271	-0.146636		57	6	0	-7.823877	5.181757	0.214635
24	6	0	4.380933	0.989965	-0.011969		58	6	0	-7.196033	3.052439	-0.721518
25	6	0	0.675701	-3.340318	0.198091		59	1	0	-7.382431	2.229270	-1.402403
26	6	0	1.605582	-2.267936	0.146823		60	6	0	0.002277	-5.666298	-0.003362
27	9	0	-4.732893	-1.190705	-1.698737		61	6	0	1.083305	-4.731791	0.600090
28	8	0	-8.734719	6.175033	0.191501		62	9	0	0.542300	-6.443723	-0.957293
29	6	0	1.451834	-1.162053	-0.738458		63	9	0	2.307788	-5.081440	0.142508
30	6	0	8.562893	7.276538	-1.059687		64	9	0	-0.532069	-6.457704	0.942088
31	1	0	8.575427	6.963427	-2.109648		65	9	0	1.091763	-4.901894	1.948354
32	1	0	9.405489	7.940913	-0.870293							

Table S2. Cartesian coordinate for 3a at the excited (S1) state in gas phase

Ne	Atom	Туре	Coordinates (Angstroms)		-	33	1	0	7.235040	7.979143	-1.062372	
INO.	No.		х	у	z		34	6	0	-7.538123	4.366112	-1.046106
1	9	0	2.732271	-2.977051	2.069251	-	35	1	0	-8.169190	4.595237	-1.897678
2	9	0	0.611674	-1.470309	-1.873420		36	6	0	-8.655472	7.051095	1.142089
3	9	0	4.325581	-0.850276	2.020998		37	1	0	-8.990222	6.496357	2.024825
4	8	0	8.286131	6.495490	-0.045351		38	1	0	-9.412609	7.784444	0.866746
5	9	0	2.195740	0.657749	-1.909068		39	1	0	-7.716000	7.565827	1.368942
6	9	0	-0.843444	-1.725479	2.115740		40	9	0	-2.046242	-5.100703	-1.056622
7	6	0	4.888042	2.078733	0.002231		41	9	0	-1.711250	-5.229377	1.092509
8	9	0	-2.219179	-2.757448	-2.275654		42	6	0	-1.132042	-4.897570	-0.087370
9	6	0	2.335079	-0.223885	-0.919799		43	6	0	2.585191	-2.093302	1.081081
10	9	0	-2.528984	0.340657	2.159377		44	6	0	5.628581	4.167439	-1.049706
11	6	0	6.722402	3.406331	0.961345		45	1	0	4.877578	4.033222	-1.820741
12	1	0	6.823313	2.677487	1.758203		46	6	0	-2.308153	-2.025916	-1.164752
13	6	0	7.427214	5.453087	-0.099744		47	6	0	-4.182442	0.977460	-0.007631
14	6	0	-3.287401	-0.121886	-0.028536		48	6	0	-6.827262	4.905944	1.203057
15	6	0	3.414566	-0.988629	1.058722		49	1	0	-6.879510	5.519627	2.093151
16	6	0	-0.600718	-3.487456	-0.051435		50	6	0	-5.948767	3.831671	1.168783
17	6	0	-1.602437	-1.492734	1.042346		51	1	0	-5.327804	3.621980	2.033063
18	6	0	3.312343	-0.021101	0.056803		52	6	0	-4.947582	1.912820	0.013420
19	6	0	-5.851315	3.014673	0.038114		53	6	0	-3.177951	-0.952529	-1.146535
20	6	0	5.744289	3.217347	-0.030121		54	6	0	-2.472554	-0.419083	1.065764
21	6	0	7.551384	4.508199	0.926524		55	6	0	6.459414	5.278597	-1.091008
22	1	0	8.309586	4.663685	1.686023		56	1	0	6.345417	5.996209	-1.893252
23	6	0	-1.507128	-2.328510	-0.067415		57	6	0	-7.627870	5.177460	0.091840
24	6	0	4.162804	1.112146	0.029498		58	6	0	-6.662981	3.300224	-1.073144
25	6	0	0.729424	-3.474230	0.110855		59	1	0	-6.598062	2.674919	-1.956983
26	6	0	1.604651	-2.293924	0.111656		60	6	0	0.123613	-5.760534	-0.307222
27	9	0	-3.916680	-0.704779	-2.227940		61	6	0	1.270248	-4.879790	0.228231
28	8	0	-8.515150	6.194912	0.019059		62	9	0	0.298094	-5.966893	-1.626329
29	6	0	1.507471	-1.329944	-0.892456		63	9	0	2.406983	-5.056269	-0.473332
30	6	0	8.212588	7.485847	-1.059283		64	9	0	0.050409	-6.943044	0.318526
31	1	0	8.408419	7.057323	-2.047722		65	9	0	1.516801	-5.231156	1.512515
32	1	0	8.985589	8.215733	-0.821422							

Table S3. Cartesian coordinate for 3a at the excited (S₀) state with a CPCM (CH₂Cl₂) model

Ne	Atom	Туре	Coordinates (Angstroms)		33	1	0	-7.955019	7.679410	0.853151	
INO.	No.		х	У	Z	34	6	0	8.274182	3.974931	0.662597
1	9	0	-2.999261	-3.138530	-1.882477	35	1	0	9.159868	3.985471	1.287792
2	9	0	-0.467323	-1.032912	1.562630	36	6	0	8.868688	7.120751	-1.076787
3	9	0	-4.758503	-1.190962	-1.748906	37	1	0	8.861648	6.805900	-2.124796
4	8	0	-9.010211	6.003200	0.208411	38	1	0	9.736467	7.752040	-0.891722
5	9	0	-2.214854	0.925455	1.620654	39	1	0	7.954792	7.679470	-0.852820
6	9	0	0.467262	-1.032853	-1.562531	40	9	0	1.034536	-4.824141	1.984798
7	6	0	-5.288200	1.895364	0.036585	41	9	0	2.299170	-5.013009	0.215121
8	9	0	2.999435	-3.138638	1.882311	42	6	0	1.062947	-4.646877	0.633782
9	6	0	-2.398731	-0.067663	0.749446	43	6	0	-2.790217	-2.170324	-0.987101
10	9	0	2.214808	0.925452	-1.620628	44	6	0	-6.024757	4.026028	0.979219
11	6	0	-7.368228	2.943419	-0.726134	45	1	0	-5.146608	4.038431	1.615315
12	1	0	-7.529629	2.117682	-1.410124	46	6	0	2.790297	-2.170388	0.987013
13	6	0	-8.067257	5.046094	0.222913	47	6	0	4.478638	0.984091	0.013423
14	6	0	3.552474	-0.052104	0.065181	48	6	0	6.933728	5.065318	-1.045964
15	6	0	-3.702342	-1.155399	-0.934808	49	1	0	6.758813	5.882022	-1.734146
16	6	0	0.675366	-3.257223	0.216889	50	6	0	6.024765	4.026045	-0.979233
17	6	0	1.486233	-1.082045	-0.697025	51	1	0	5.146619	4.038460	-1.615336
18	6	0	-3.552416	-0.052041	-0.065279	52	6	0	5.288274	1.895294	-0.036739
19	6	0	6.218792	2.946564	-0.096789	53	6	0	3.702448	-1.155481	0.934665
20	6	0	-6.218751	2.946587	0.096707	54	6	0	2.398736	-0.067681	-0.749452
21	6	0	-8.274179	3.974930	-0.662612	55	6	0	-6.933753	5.065263	1.046014
22	1	0	-9.159870	3.985479	-1.287799	56	1	0	-6.758864	5.881939	1.734236
23	6	0	1.612744	-2.198925	0.181556	57	6	0	8.067225	5.046140	-0.222861
24	6	0	-4.478547	0.984169	-0.013579	58	6	0	7.368263	2.943384	0.726054
25	6	0	-0.675368	-3.257201	-0.216853	59	1	0	7.529689	2.117614	1.409998
26	6	0	-1.612736	-2.198911	-0.181531	60	6	0	-0.000107	-5.579043	0.000131
27	9	0	4.758685	-1.191106	1.748659	61	6	0	-1.062962	-4.646848	-0.633778
28	8	0	9.010153	6.003281	-0.208301	62	9	0	-0.568089	-6.367938	0.931045
29	6	0	-1.486256	-1.082045	0.697070	63	9	0	-2.299284	-5.012924	-0.215408
30	6	0	-8.868855	7.120568	1.077053	64	9	0	0.567658	-6.368397	-0.930514
31	1	0	-8.861775	6.805569	2.125016	65	9	0	-1.034216	-4.824119	-1.984793
32	1	0	-9.736703	7.751789	0.892079						

Table S4. Cartesian coordinate for 3a at the excited (S₁) state with a CPCM (CH₂Cl₂) model

3. Crystal Structure

Single crystals were obtained by purification of column chromatography, followed by recrystallization (CH₂Cl₂/MeOH = 1/1). The X-ray diffraction measurement was carried out at 293 or 173 K. Crystal data of 3a and 3c obtained were listed in Table S5 have been indexed, and are included in the Cambridge Crystallographic Center (CCDC) database with the following numbers: CCDC 1902233 for 3a and 1902234 for 3c. The indexed database contains additional supplementary crystallographic data for this paper and may be accessed without charge at http://www.ccdc.cam.ac.uk/conts/retrieving.html. The CCDC may be contacted by mail at 12 Union Road, Cambridge CB2 1EZ, U.K., by fax at (44) 1223-336-033, or by e-mail at deposit@ccdc.cam.ac.uk.

Bistolane	3a	3с
CCDC #	1902233	1902234
Empirical Formula	$C_{35}H_{14}F_{14}O_2$	C ₃₉ H ₂₂ F ₁₄ O ₂
Formula Weight	732.46	788.56
Temperature [K]	293(2)	173(2)
Crystal Color / Habit	Yellow / Platelet	Yellow / Platelet
Crystal Size [mm]	0.15 x 0.14 x 0.10	0.16 x 0.15 x 0.09
Crystal System	P 212121	P-1
Space Group	orthorhombic	triclinic
<i>a</i> [Å]	6.2739(8)	7.6458(4)
<i>b</i> [Å]	20.464(3)	7.7616(3)
<i>c</i> [Å]	23.723(3)	31.5448(10)
<i>α</i> [°]	90	86.116(3)
β[°]	90	83.893(3)
γ [°]	90	66.440(4)
<i>V</i> [ų]	3045.8(7)	1705.55(13)
Z	4	2
$R[F^2 > 2\sigma(F^2)]^{[a]}$	0.0816	0.0462
$wR(F^2)$ [b]	0.1748	0.1108

Table S5	Crystallographic Data	l

[a] $R = \Sigma ||F_0| - |F_c|| / \Sigma |F_0|$. [b] $wR = \{[\Sigma w(|F_0| - |F_c|)]/\Sigma w|F_0|\}^{1/2}$.

4. Photophysical Property in CH₂Cl₂ Solution

UV-Vis absorption spectra were recorded using a JASCO V-500 absorption spectrometer. Steady-state photoluminescence (PL) spectra and PL quantum yields were obtained using a Hamamatsu Photonics C11347-01 Absolute PL Quantum Yield Measurement System. Absorption and PL spectra obtained are shown in Figure S21.

Figure S21. Absorption (blue) and PL spectra (red) of **3a–f** in CH₂Cl₂ solution (concentration: 1.0x10[–] ⁵ M).

5. Photophysical Property in Various Solution

UV-Vis absorption spectra were recorded using a JASCO V-500 absorption spectrometer. Steady-state photoluminescence (PL) spectra and PL quantum yields were obtained using a Hamamatsu Photonics C11347-01 Absolute PL Quantum Yield Measurement System. Absorption and PL spectra obtained are shown in Figure S22.

Figure S22. Absorption (dotted line) and PL spectra (solid line) of **3e** in various solution (concentration: 1.0x10⁻⁵ M).

6. Lippert-Mataga Plot

The Lippert-Mataga plot was constructed by using the relation

$$v_{abs} - v_{PL} = [2(\mu_e - \mu_g)^2 / hca^3] \Delta f + (v_{abs} - v_{PL})^\circ$$
 (Eq. 1)

where $v_{abs} - v_{PL}$ is the Stokes' shift, the superscript "o" indicates the absence of solvent, μ_g and μ_e are dipole moments in the ground and the excited states, respectively, D (1D = $1.0 \times 10^{-18} \text{ cm}^{5/2} \text{ g}^{1/2} \text{ s}^{-1}$); *h* is the Planck constant (*h* = $6.626 \times 10^{-27} \text{ erg s}$); *c* is the rate of light in vacuum (*c* = $2.998 \times 10^{-10} \text{ cm s}^{-1}$). *a* is Onsager cavity radius. The Onsagar radius (*a*) was estimated by DFT calculation using Gaussian 09 with CAM-B3LYP/6-31G(d) level of theory: *a* = 6.77 Å for **3e**. The orientation polarizability Δf is defined as

$$\Delta f = [(\varepsilon - 1)/(2\varepsilon + 1)] - [(n^2 - 1)/(2n^2 + 1)]$$
 (Eq. 2)

where ε and *n* are solvent dielectric constant and refractive index, respectively.

Calculated values for Δf and Stokes shifts ($\nu_{abs} - \nu_{PL}$) for **3e** are summarized in Table S4, and the relationship was shown in Figure S23.

					3e	
	ε	п	Δf	V _{abs} [Cm ^{−1}]	<i>v</i> ₽L [CM⁻¹]	V _{abs} −V _{PL} [CM ⁻¹]
Hexane	1.88	1.37	-0.0014	29762	21834	7928
Toluene	2.38	1.50	0.014	29326	19841	9485
CHCl₃	4.81	1.44	0.149	29940	19305	10635
AcOEt	6.02	1.37	0.200	30030	17544	12486
CH_2CI_2	8.93	1.42	0.217	29674	17699	11975
THF	7.58	1.41	0.209	29674	16892	12782

Table S6. Polarizability and Stokes' shift obtained from general solvent effect.

Figure S23. Lippert-Mataga Plot

7. Photophysical Property in Crystal

Excitation spectra, steady-state photoluminescence (PL) spectra, and PL quantum yields were acquired using a Hitachi F-7000 fluorescence spectrometer or a Hamamatsu Photonics C11347-01 Absolute PL Quantum Yield Measurement System. Excitation and PL spectra obtained are shown in Figure S24.

Figure S24. Excitation (blue) and PL spectra (red) of 3a-f in crystalline state.

8. Transient PL measurement

Figure S25. PL decay profiles of 3e in (a) hexane, (b) CH₂Cl₂, and (c) THF.

Solvent	Φ_{PL}	τ [ns]	<i>k</i> _f [10 ⁸ , s ^{−1}] ^a	<i>k</i> nr [10 ⁸ , s ^{−1}] ^a					
Hexane	0.71	2.0	3.6	1.5					
CH ₂ Cl ₂	0.76	3.6	2.1	0.66					
THF	0.21	1.8	1.2	4.5					

Table S7. Photophysical properties of 3e in various solution.

 Φ_{PL} : Quantum yield, τ : PL lifetime, k_f : Fluorescence rate constant, k_{nr} : non-radiative rate constant. ^aDetermined by the following equations: $\Phi_{PL} = k_f/(k_f + k_{nr})$, $\tau = 1/(k_f + k_{nr})$.

Figure S26. PL decay profiles of (a) 3a, (b) 3c, and (c) 3e in crystal.

Table S	58.	Photo	bh∖	/sical	pro	perties	of	3a.	3c.	and	3e	in	crvs	stal.
			~ • • • •		~ • •		••••		,					

			1 1	, ,		,		
	Φ_{PL}	$ au_1$ [ns]	<i>τ</i> ₂ [ns]	$ au_{\sf ave} [{\sf ns}]$	Weight coefficient		<i>k</i> f [10 ⁸ , s⁻¹] ^a	<i>k</i> nr [10 ⁸ , s ^{−1}] ^a
					B ₁	B ₂		
3a	0.43	1.8	6.8	2.4	0.094	0.0039	1.8	2.3
3c	0.55	1.5	2.7	2.0	0.074	0.027	2.8	2.3
3e	0.30	1.9	3.7	2.4	0.080	0.016	1.3	2.9

 Φ_{PL} : Quantum yield, τ : PL lifetime, k_f : Fluorescence rate constant, k_{nr} : non-radiative rate constant. ^aDetermined by the following equations: $\Phi_{PL} = k_f/(k_f + k_{nr})$, $\tau = 1/(k_f + k_{nr})$.

9. Powder X-Ray Diffraction Measurement

Powder XRD measurements for **3a–f**, were recorded on a Rigaku RAXIS RAPID II imaging plate area detector using monochromated with Cu*K* α radiation ($\lambda = 1.5406$ Å) by rotating samples along the ϕ -axis and transformed to 2 θ –I plot by software. The obtained XRD patterns were shown in Figure S27.

Figure S27. Powder XRD pattern for (a) **3a**, (b) **3c** simulated from single crystal X-ray crystallographic analysis, and (c) **3a**, (d) **3c**, (e) **3b**, (f) **3d**, (g) **3e**, and (h) **3f** obtained experimentally.