Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2019

<u>Highly Enantioselective Addition of Sulfur-Containing</u> <u>Heterocycles to Isatin-Derived Ketimines</u>

Michael Franc,^[a] Michal Urban,^[a] Ivana Císařová,^[b] and Jan Veselý^{*[a]}

[a] Department of Organic Chemistry, Charles University, Hlavova 8, 12843 Prague, Czech Republic E-mail: jxvesely@natur.cuni.cz http://orgchem.cz/vesely/

[b] Department of Inorganic Chemistry, Charles University, Hlavova 8, 12843 Prague, Czech Republic

Content

1	General information							
2	Preparation	of starting material	4					
	2.1	General procedure for benzo[<i>b</i>]thiophen-2(3 <i>H</i>)-ones 2b.c.d.e. j	4					
	2.2	Characterization data for new compounds $2h c d e i$	4					
	2.2		•••					
3	Screening an	nd Optimization Studies	7					
4	The Enantio	selective Addition of a-Substituted Benzo[b]thiofen-2(3H)-ones to Isatine-						
D	erived Ketim	ines	. 11					
	4.1	General procedure	. 11					
	4.2	Characterization data for new compounds 3a-u	. 11					
5	5 Determination of absolute configuration of 3n 27							
6	5 Literature							
7	NMR Spectra of Compounds							
8	HPLC Analysis of Compounds							

1 General information

Chemicals and solvents were either purchased from commercial suppliers in p.a. purity or purified by standard method. Reactions were monitored by thin-layer chromatography (TLC), silica plates Merck 60 F 254 were used. Compounds were detected by irradiation with UV light and subsequently plates visualized by treatment detection reagent AMC or ninhydrin or vanillin or KMnO₄ followed by heating. The detection reagent AMC was prepared from phosphomolybdic acid (25 g), $Ce(SO_4)_2 \cdot H_2O$ (10 g), conc. H_2SO_4 (60 ml) and H_2O (940 ml). The detection solution of ninhydrin was prepared from ninhydrin (1.5 g) in 100 ml of *n*-butanol and then was added acetic acid (3 ml). The solution of vanilline was prepared from vanilline (15 g) in ethanol (250 ml) and conc. sulfuric acid (2.5 ml). Column chromatography was performed by using silica gel Fluka (40-63 µm). The solvents for column chromatography separation were purified by distillation. ¹H, ¹⁹F and ¹³C NMR spectra were recorded with Varian UNITY INOVA 300, Bruker AVANCE III 400 and Bruker AVANCE III 600. Chemical shifts are given in ppm relative to CDCl₃, and coupling constants J are given in Hz. The NMR spectra were recorded in CDCl₃ as solvent at room temperature, TMS served as internal standard ($\delta =$ 0.0 ppm) for ¹H NMR, CDCl₃ was used as internal standard ($\delta = 77.0$ ppm) for ¹³C NMR, and TFA was used as external standard for ¹⁹F NMR. High-resolution mass spectra were recorded with a LCQ Fleet spectrometer. Chiral HPLC was carried out by using a Shimadzu chromatograph with SPD-M20A spectrophotometric detector. Chiral column Daicel Chiralpak AD was used for separation of enantiomers. Specific optical rotations were measured on AU-Tomatica polarimeter, Autopol III and as solvent was used CHCl₃. Specific optical rotations are given in concentrations c [g/100 mL]. Infrared spectroscopy spectra were measured on a Nicolet Avatar 370 FTIR. The method used for measuring was a diffuse reflectance (DRIFT) in KBr. IR absorptions are given in wavenumbers as cm⁻¹.

2 Preparation of starting material

Ketimines **1a-m** were prepared by published literature¹. Benzothiophenones **2a,f,g,h**, were prepare by published literature². Derivative of rhodanine **4** was synthetized by according literature³. Derivative of thiohydantoin **5** was prepared by following procedure⁴.

2.1 General procedure for benzo[b]thiophen-2(3H)-ones 2b,c,d,e,i

According modified procedure² to the solution of benzo[b]thiophen-2(3H)-one (1.67 mmol, 1 equiv.) in toluene (7 mL) were added corresponding benzaldehyde (2 equiv., 3.33 mmol), morpholine (0.17 mmol, 0.1 equiv.), and acetic acid (0.17 mmol, 0.1 equiv.) and reaction mixture was refluxed with stirring until full conversion (TLC monitoring). After cooling to room temperature, the reaction mixture was filtered through a short pad of silica gel with the aid of EtOAc, and then concentrated. The resulting residue was dissolved in EtOAc (7 mL), and the flask was degassed by alternating vacuum evacuation/Ar backfill. After successive addition of 10% Pd/C (100 mg) at 0 °C, the reaction flask was evacuated again and refilled with H₂ three times. The resulting suspension was stirred for 12 h at room temperature. After flushing the remaining H₂ out with Ar, the mixture was filtered to remove Pd/C. The filtrate was evaporated and the residue was then loaded on silica and afforded the resulting product as described below.

2.2 Characterization data for new compounds 2b,c,d,e,i

3-(2-Bromobenzyl)benzo[b]thiophen-2(3H)-one (2b)

Product **2b** was obtained as oil in 40% yield (205 mg). ¹H NMR (400 MHz, CDCl₃) δ = 7.60 (dd, *J* = 7.9 Hz, *J*' = 1.3 Hz, 1H), 7.36 (dd, *J* = 7.5 Hz, *J*' = 0.8 Hz, 1H), 7.31 – 7.22 (m, 2H), 7.19 – 7.06 (m, 3H), 6.77 (d, *J* = 7.7 Hz, 1H), 4.31 – 4.19 (m, 1H), 3.48 (dd, *J* = 13.9 Hz, *J*' = 6.6 Hz, 1H), 3.17 (dd, *J* = 13.9 Hz, *J*' = 8.4 Hz, 1H) ppm. ¹³C NMR (101 MHz, CDCl₃) δ = 204.9, 136.5, 136.0,

135.6, 133.1, 132.3, 128.8, 128.4, 127.3, 125.8, 125.5, 124.9, 122.9, 56.0, 39.7 ppm. IR (KBr):

 $v/cm^{-1} = 3402, 3067, 3010, 2962, 2929, 2854, 1799, 1700, 1592, 1464, 1449, 1281, 1251, 1159, 1129, 1090.$ **HRMS** (ESI) m/z calcd for C₁₅H₁₁OSBr [M]⁺ = 317.9714, found: 317.9712.

3-(3-Bromobenzyl)benzo[b]thiophen-2(3H)-one (2c)

Product **2c** was obtained as oil in 41% yield (217 mg). ¹**H NMR** (400 MHz, CDCl₃) δ = 7.36 – 7.31 (m, 1H), 7.31 – 7.25 (m, 2H), 7.21 (t, J = 1.7 Hz, 1H), 7.20 – 7.14 (m, 1H), 7.09 (t, J = 7.8 Hz, 1H), 7.02 – 6.94 (m, 2H), 4.07 (ddd, J = 7.4 Hz, J' = 4.9 Hz, J'' = 0.8 Hz, 1H), 3.37 (dd, J = 13.9 Hz, J' = 4.9 Hz, 1H), 3.16 (dd, J = 13.9 Hz, J' = 7.4 Hz, 1H) ppm. ¹³**C NMR** (101 MHz, CDCl₃) δ = 205.5, 138.8,

135.9, 135.5, 132.5, 130.0, 129.8, 128.6, 128.1, 126.0, 125.2, 123.1, 122.3, 57.8, 38.2 ppm. **IR** (KBr): v/cm⁻¹ = 3396, 3058, 3013, 2929, 2851, 1706, 1682, 1595, 1565, 1467, 1428, 1278, 1213, 1171, 1132, 1090. **HRMS** (ESI) m/z calcd for $C_{15}H_{11}OSBr [M]^+$ = 317.9714, found: 317.9714.

3-(4-Bromobenzyl)benzo[b]thiophen-2(3H)-one (2d)

Product **2d** was obtained as oil in 36% yield (190 mg). ¹H NMR (400 MHz, CDCl₃) δ = 7.35 – 7.30 (m, 2H), 7.29 – 7.24 (m, 2H), 7.20 – 7.13 (m, 1H), 7.00 (dd, *J* = 7.6 Hz, *J*' = 0.9 Hz, 1H), 6.94 – 6.89 (m, 2H), 4.06 (ddd, *J* = 7.1 Hz, *J*' = 4.8 Hz, *J*'' = 0.8 Hz, 1H), 3.34 (dd, *J* = 13.9 Hz, *J*' = 4.9 Hz, 1H), 3.19 (dd, *J* = 13.9 Hz, *J*' = 7.1 Hz, 1H) ppm. ¹³C NMR (101 MHz, CDCl₃) δ = 205.6, 136.0,

135.5, 135.3, 131.3 (2C), 131.2 (2C), 128.5, 125.9, 125.1, 123.0, 120.9, 57.8, 37.9 ppm. **IR** (KBr): v/cm⁻¹ = 3509, 3390, 3064, 2929, 2857, 1900, 1685, 1592, 1413, 1278, 1204, 1183, 1090, 1072. **HRMS** (ESI) m/z calcd for $C_{15}H_{11}OSBr [M]^+ = 317.9714$, found: 317.9721.

3-(4-Nitrobenzyl)benzo[b]thiophen-2(3H)-one (2e)

Product **2e** was obtained as oil in 35% yield (167 mg).¹H NMR (400 MHz, CDCl₃) δ = 1H NMR (400 MHz, CDCl₃) δ = 8.09 – 8.01 (m, 2H), 7.33 – 7.17 (m, 5H), 7.14 – 7.09 (m, 1H), 4.17 (t, *J* = 5.8 Hz, 1H), 3.49 – 3.39 (m, 2H) ppm. ¹³C NMR (101 MHz, CDCl₃) δ = 205.2, 146.9, 143.9, 135.9, 134.9, 130.3 (2C), 128.8, 126.2, 124.9, 123.4 (2C), 123.2, 57.4, 38.0 ppm. **IR** (KBr): v/cm⁻

 1 = 3396, 3111, 3079, 3064, 2962, 2935, 2887, 2842, 1700, 1604, 1341, 1308, 1180, 1108. **HRMS** (ESI) m/z calcd for C₁₅H₁₁NO₃S [M]⁺ = 285.0460, found: 285.0459.

3-Benzyl-5-bromobenzo[b]thiophen-2(3H)-one (2i)

Product **2i** was obtained as oil in 64% yield (340 mg). ¹H NMR (400 MHz, CDCl₃) δ = 7.43 – 7.37 (m, 1H), 7.32 – 7.21 (m, 3H), 7.16 (d, *J* = 8.3 Hz, 1H), 7.11 – 7.06 (m, 2H), 7.03 (dd, *J* = 1.9, *J*' = 1.0 Hz, 1H), 4.07 (dd, J = 7.6, *J*' = 4.9 Hz, 1H), 3.42 (dd, *J* = 13.8, *J*' = 4.8 Hz, 1H), 3.18 (dd, *J* = 13.8, *J*' = 7.7 Hz, 1H) ppm. ¹³C NMR (101 MHz, CDCl₃) δ = 204.53, 137.83, 135.94,

134.92, 131.39, 129.46, 128.47, 128.43, 127.10, 124.14, 119.37, 58.12, 38.64 ppm. **IR** (KBr): $v/cm^{-1} = 3405$, 3088, 3064, 3034, 2926, 2854, 2340, 1879, 1682, 1601, 1440, 1404, 1263, 1183, 1171, 1144, 1090. **HRMS** (ESI) m/z calcd for C₁₅H₁₁OSBr [M]⁺ = 317.9714, found: 317.9713.

3 Screening and Optimization Studies

Table 1: Catalyst screening

Entry	Organocatalyst	Yield (%)	dr	ee (%)			
1	-	n.r.	-	-	-		
2	QN B	79	20:1	24			
3	CN A	92	20:1	41	CN = cinchonin; CD = cinchonidin,		
4	QD D	75	20:1	18	QN = chinin; QD = chinidin		
5	CD C	88	20:1	22	CPA = chiral phosphoric acid		
6	Soós epi-CD F	51	20:1	80	(BINOL)		
7	Rawal epi-CN G	66	20:1	37	β -ICP = β -isocupreidin		
8	Takemoto E	53	20:1	82			
9	(DHQD) ₂ AQN H	65	20:1	31			
10	CPA J	26	20:1	25			
11	β-ΙϹΡ Ι	40	20:1	11			
12	Soós epi-CN K	44	20:1	72			
13	Soós epi-QD L	49	20:1	73			
14	Soós epi-QN M	45	20:1	66			

Table 2: Additive screening

2,4-DNBA = 2,4-dinitrobenzoic acid

Table 3: Temperature and reaction time screening

Entry	Catalyst	Temperature(°	Yield (%)	dr	ee (%)	
1	Е	0	2	53	20:1	81
2	F	0	2	64	20:1	85
3	CN	0	2	71	20:1	41
4	Е	-50	2	49	20:1	83
5	F	-50	2	67	20:1	87
6	CN	-50	2	86	20:1	70
7	Е	-78	4	45	20:1	22
8	F	-78	4	54	20:1	70
9	CN	-78	4	69	20:1	36

Table 4: Reducing the amount of catalyst

62

20:1

83

4

6

0,5

Ne fragmentaria	N ^{Boc} - + - Bn mol) 2a	Bn -	Catalys Tol	st F (1 m	ol %) C	Boc-N 3a
Entry	2a (equiv.)	Time (h)	Yield (%)	dr	ee (%)	
1	1,0	4	68	20:1	89	
2	1,2	5	62	20:1	91	
3	1,5	5	80	20:1	92	
Entry	conc. 1a (m	<mark>mol)</mark> Time (h)	Yield (%)	dr	ee (%)	-
1	0,2	5	78	20:1	90	-
2	0,1	5	80	20:1	92	
3	0,05	7	77	20:1	91	
4	0,02	7	79	20:1	91	

Table 5: Concentration screening of 1a and influence amount of 2a

Entry	Solvent	Temperature (°C)	Time (h)	Yield (%)	dr	ee (%)
1	toluene	0	5	80	20:1	92
2	CHCI ₃	0	5	78	20:1	85
3	THF	0	5	76	20:1	27
4	MTBE	0	5	76	20:1	72
5	CH_2CI_2	0	5	61	20:1	61
6	CH ₃ CN	0	5	53	20:1	59
7	MeOH	0	5	77	20:1	31
8	DMF	0	6	48	20:1	23
9	toluene	- 25	8	81	20:1	93
10	CHCl ₃	- 25	8	73	20:1	93
11	THF	- 25	8	29	20:1	41
12	MTBE	- 25	8	69	20:1	88
13	MeOH	- 25	8	95	20:1	35

4 The Enantioselective Addition of α-Substituted Benzo[b]thiofen-2(3H)ones to Isatine-Derived Ketimines

4.1 General procedure

In a Schlenk flask, Benzo[b]thiophen-2(3H)-ones **2a-h** (0.15 mmol, 1.5 equiv.) and chiral catalyst Soós's with CD (0.001 mmol, 1 mol%) were placed. After an injection of toluene (0.5 mL) reaction mixture was cold to -25 °C. Then ketamine **1a-k** (0.10 mmol, 1.0 equiv.) was added in 0.5 mL of toluene at -25 °C. After that the mixture was stirred until complete disappearance of the ketamine (monitored by TLC and ¹H NMR), the mixture was purified by flash chromatography (silica gel, hexane/ethyl acetate) and afforded the resulting product as described below.

4.2 Characterization data for new compounds 3a-u

tert-Butyl ((*R*)-*N*-1-benzyl-3-((*R*)-3-benzyl-2-oxo-2,3-dihydrobenzo[*b*]thiophen-3-yl)-2-oxoindolin-3-yl)carbamate (3a)

Adduct **3a** was prepared from 33.6 mg (0.10 mmol, 1.0 equiv) ketimine **1a** and derivative of benzo[*b*]thiophen-2(3*H*)-one **2a** 36.0 mg (0.15 mmol, 1.5 equiv). Product **3a** was obtained as light yellow foam in 82% yield (47.1 mg).

¹**H** NMR (400 MHz, CDCl₃) δ = 7.58 (d, *J* = 7.2 Hz, 1H), 7.44 (s, 1H), 7.32 (td, *J* = 7.8 Hz, *J*' = 1.2 Hz, 1H), 7.23 – 7.03 (m, 7H), 7.02

-6.95 (m, 2H), 6.79 (td, *J* = 7.8 Hz, *J*' = 1.2 Hz, 1H), 6.72 – 6.68 (m, 2H), 6.67 – 6.63 (m, 2H), 6.56 (d, *J* = 7.7 Hz, 1H), 5.91 (d, *J* = 7.8 Hz, 1H), 4.75 (d, *J* = 15.8 Hz, 1H), 4.32 (d, *J* = 15.8 Hz, 1H), 3.87 (d, *J* = 12.8 Hz, 1H), 3.43 (d, *J* = 12.8 Hz, 1H), 1.31 (s, 9H) ppm. ¹³C NMR (101 MHz, CDCl₃) δ = 208.8, 174.7, 154.5, 144.7, 137.0, 135.3, 133.8, 133.2, 130.5 (2C), 129.9, 129.4, 128.5 (2C), 127.8 (2C), 127.1, 127.0 (2C), 126.9, 126.9, 126.3, 125.4, 124.7, 122.8, 122.4, 109.6, 80.5, 67.8, 64.5, 44.3, 40.1, 28.1 (3C) ppm. [*α*]_D^{rt} = +121.6 ° (c = 0.51 in CHCl₃). **IR** (KBr): v/cm⁻¹ = 3360, 3064, 3031, 2977, 2923, 2851, 1718, 1685, 1613, 1494, 1464, 1362, 1278, 1257, 1165, 1105. **HRMS** (ESI) m/z calcd for C₃₅H₃₂N₂O₄S [M + Na]⁺ = 599.1975, found: 599.1984. **HPLC analysis** ee = 93 %, (Daicel Chiracel) AD column, heptane/*iso*-propanol, 80:20, 1.0 mL/min, $\lambda = 190$ nm, retention time: $t_{minor} = 7.141$ min, $t_{major} = 29.166$ min.

tert-Butyl ((*R*)-*N*-1-acetyl-3-((*R*)-3-benzyl-2-oxo-2,3-dihydrobenzo[*b*]thiophen-3-yl)-2-oxoindolin-3-yl)carbamate (3b)

Adduct **3b** was prepared from 28.8 mg (0.10 mmol, 1.0 equiv) ketimine **1b** and derivative of benzo[*b*]thiophen-2(3*H*)-one **2a** 36.0 mg (0.15 mmol, 1.5 equiv). Product **3b** was obtained as light yellow foam in 75% yield (39.6 mg). Product **3b** was obtained as mixture of diastereoisomers, dr = 12:1.

Major diastereoisomer: ¹**H NMR** (400 MHz, CDCl₃) δ = 8.16 (d, *J* = 8.1 Hz, 1H), 7.57 (d, *J* = 7.4 Hz, 1H), 7.51 (td, *J* = 8.0 Hz, *J*' = 1.3 Hz, 1H), 7.37 (td, *J* = 7.5 Hz, *J*' = 0.9 Hz, 1H), 7.32 (s, 1H), 7.21 (td, *J* = 7.7 Hz, *J*' = 1.1 Hz, 1H), 7.15 – 7.04 (m, 2H), 7.03 – 6.96 (m, 2H), 6.93 (td, *J* = 7.7 Hz, *J*' = 1.2 Hz, 1H), 6.67 (d, *J* = 7.2 Hz, 2H), 5.97 (d, *J* = 7.8 Hz, 1H), 3.74 (d, *J* = 12.9 Hz, 1H), 3.37 (d, *J* = 12.9 Hz, 1H), 2.16 (s, 3H), 1.28 (s, 9H) ppm. ¹³**C NMR** (101 MHz, CDCl₃) δ = 208.0, 175.4, 169.4, 141.6, 136.3, 132.9, 132.7, 130.5, 130.5 (2C), 130.3, 130.0, 127.9 (2C), 127.9, 127.1, 126.1, 125.7, 125.0, 124.4, 122.6, 116.9, 81.2, 68.4, 65.0, 39.2, 28.0 (3C), 25.5 ppm. **Mixture of diastereoisomers:** $[a]_D^{T}$ = +40.0 ° (c = 055 in CHCl₃). **IR** (KBr): v/cm⁻¹ = 3372, 3061, 3034, 2980, 2929, 2848, 1772, 1688, 1604, 1473, 1371, 1335, 1305, 1278, 1248, 1168, 1105. **HRMS** (ESI) m/z calcd for C₃₅H₃₂N₂O₄S [M + Na]⁺ = 551.1611, found: 551.1608. **HPLC analysis:** major diastereoisomer: ee = 72 %, (Daicel Chiracel) AD column, heptane/*iso*-propanol, 90:10, 1.0 mL/min, $\lambda = 190$ nm, retention time: $t_{minor} = 6.716$ min, $t_{major} = 20.412$ min, minor diastereoisomer: ee = 69 %, (Daicel Chiracel) AD column, heptane/*iso*-propanol, 90:10, 1.0 mL/min, $\lambda = 190$ nm, retention time: $t_{minor} = 7.961$ min, $t_{major} = 10.864$ min.

tert-Butyl 3-((*R*)-3-benzyl-2-oxo-2,3-dihydrobenzo[*b*]thiophen-3-yl)-3-((*R*)-(*tert*-butoxycarbonyl)amino)-2-oxoindolin-*N*-1-carboxylate (3c)

Adduct **3c** was prepared from 34.6 mg (0.10 mmol, 1.0 equiv) ketimine **1c** and derivative of benzo[*b*]thiophen-2(3*H*)-one **2a** 36.0 mg (0.15 mmol, 1.5 equiv). Product **3c** was obtained as light yellow foam in 98% yield (57.2 mg). Product **3c** was obtained as mixture of diastereoisomers, dr = 2:1.

Major diastereoisomer: ¹H NMR (400 MHz, CDCl₃) $\delta = 7.51 - 100$ 7.44 (m, 1H), 7.42 (d, J = 8.1 Hz, 1H), 7.35 – 7.22 (m, 2H), 7.14 – 6.88 (m, 7H), 6.81 – 6.72 (m, 2H), 6.67 (d, J = 7.1 Hz, 1H), 3.91 (d, J = 13.9 Hz, 1H), 3.74 (d, J = 13.8 Hz, 1H) 1.69 (s, 9H), 1.37 (s, 9H) ppm. ¹³C NMR (101 MHz, CDCl₃) δ = 209.7, 172.3, 154.2, 148.4, 141.2, 139.0, 134.0, 133.0, 130.4 (2C), 129.6, 129.3, 127.7 (2C), 126.6, 125.8, 125.3, 124.1, 123.7, 122.5, 122.4, 115.3, 84.3, 83.4, 67.0, 64.9, 36.7, 28.1 (3C), 27.7 (3C) ppm. Minor diastereoisomer: ¹H NMR (400 MHz, CDCl₃) δ = 7.78 (d, J = 8.0 Hz, 1H), 7.54 (d, J = 7.4 Hz, 1H), 7.51 – 7.44 (m, 1H), 7.35 – 7.22 (m, 2H), 7.18 (td, J = 7.7 Hz, J' = 1.1 Hz, 1H), 7.14 -6.88 (m, 5H), 6.81 - 6.72 (m, 2H), 5.95 (d, J = 7.8 Hz, 1H), 3.72 (d, J = 12.9 Hz, 1H), 3.33(d, J = 12.9 Hz, 1H), 1.27 (s, 9H), 1.09 (s, 9H) ppm.¹³C NMR (101 MHz, CDCl₃) $\delta = 208.0$, 171.3, 153.9, 147.9, 136.5, 135.4, 133.2, 132.7, 130.4 (2C), 130.0, 129.5, 127.8 (2C), 126.9, 126.0, 125.5, 125.2, 124.4, 123.0, 122.6, 114.3, 80.9, 80.6, 68.3, 64.7, 38.9, 28.0 (3C), 27.7 (3C) ppm. Mixture of diastereoisomers: $[\alpha]_D^{rt} = +56.0 \circ (c = 0.63 \text{ in CHCl}_3)$. IR (KBr): v/cm⁻ ¹ = 3381, 2980, 2929, 1802, 1778, 1724, 1679, 1607, 1482, 1470, 1371, 1347, 1293, 1248, 1147, 1099. **HRMS** (ESI) m/z calcd for $C_{35}H_{32}N_2O_4S$ [M + Na]⁺ = 609.2030, found: 609.2028. HPLC analysis: major diastereoisomer: ee = 86 %, (Daicel Chiracel) AD column, heptane/iso-propanol, 95:5, 15 °C, 1.0 mL/min, $\lambda = 190$ nm, retention time: $t_{major} = 97.728$ min, $t_{minor} = 33.596$ min, minor diastereoisomer: ee = 82 %, (Daicel Chiracel) AD column, heptane/iso-propanol, 95:5, 15 °C, 1.0 mL/min, $\lambda = 190$ nm, retention time: $t_{major} = 46.907$ min, $t_{minor} = 30.019 \text{ min.}$

tert-Butyl ((*R*)-*N*-1-allyl-3-((*R*)-3-benzyl-2-oxo-2,3-dihydrobenzo[*b*]thiophen-3-yl)-2-oxoindolin-3-yl)carbamate (3d)

Adduct **3d** was prepared from 28.6 mg (0.10 mmol, 1.0 equiv) ketimine **1d** and derivative of benzo[*b*]thiophen-2(3*H*)-one **2a** 36.0 mg (0.15 mmol, 1.5 equiv). Product **3d** was obtained as light yellow foam in 81% yield (41.3 mg).

¹**H NMR** (400 MHz, CDCl₃) δ = 7.55 (d, *J* = 7.3 Hz, 1H), 7.41 (td, *J* = 7.8 Hz, *J*' = 1.2 Hz, 1H), 7.32 (s, 1H), 7.23 – 7.15 (m, 2H), 7.09 –

7.02 (m, 2H), 7.01 – 6.95 (m, 2H), 6.85 (td, J = 7.7 Hz, J' = 1.2 Hz, 1H), 6.71 (d, J = 7.8 Hz, 1H), 6.69 – 6.64 (m, 2H), 5.89 (d, J = 7.8 Hz, 1H), 4.97 – 4.79 (m, 3H), 4.20 (dd, J = 16.2 Hz, J' = 3.0 Hz, 1H), 3.82 (d, J = 12.9 Hz, 1H), 3.67 (dd, J = 15.9 Hz, J' = 4.9 Hz, 1H), 3.39 (d, J = 12.9 Hz, 1H), 1.29 (s, 9H) ppm. ¹³**C** NMR (101 MHz, CDCl3) $\delta = 208.7$, 173.7, 154.3, 144.4, 137.0, 133.8, 133.3, 131.3, 130.5 (2C), 129.8, 129.2, 127.8 (2C), 126.9, 126.6, 126.2, 125.2, 124.7, 122.8, 122.3, 117.6, 109.3, 80.5, 68.0, 64.6, 42.5, 39.7, 28.1 (3C) ppm. [α]_D^{rt} = +114.0 ° (c = 0.61 in CHCl₃). **IR** (KBr): v/cm⁻¹ = 3363, 3064, 3031, 3010, 2977, 2920, 2854, 1718, 1682, 1616, 1488, 1470, 1359, 1275, 1254, 1162, 1102. **HRMS** (ESI) m/z calcd for C₃₅H₃₂N₂O₄S [M + Na]⁺ = 549.1818, found: 549.1820. **HPLC analysis** *ee* = 95 %, (Daicel Chiracel) AD culumn, heptane/*iso*-propanol, 80:20, 1.0 mL/min, $\lambda = 190$ nm, retention time: *t_{minor}* = 5.380 min, *t_{major}* = 11.261 min.

tert-Butyl (3-((*R*)-3-benzyl-2-oxo-2,3-dihydrobenzo[*b*]thiophen-3-yl)- (*R*)-1-(methoxymethyl)-2-oxoindolin-3-yl)carbamate (3e)

Adduct **3e** was prepared from 29.0 mg (0.10 mmol, 1.0 equiv) ketimine **1e** and derivative of benzo[*b*]thiophen-2(3*H*)-one **2a** 36.0 mg (0.15 mmol, 1.5 equiv). Product **3e** was obtained as light yellow foam in 82% yield (43.4 mg).

¹**H NMR** (400 MHz, CDCl₃) δ = 7.58 (d, *J* = 7.4 Hz, 1H), 7.46 (td, *J* = 7.8 Hz, 1.2 Hz, 1H), 7.42 (s, 1H), 7.29 - 7.22 (m, 1H), 7.16 (td, *J*

= 7.7 Hz, 1.2 Hz, 1H), 7.09 – 7.03 (m, 2H), 7.02 – 6.87 (m, 4H), 6.72 – 6.59 (m, 2H), 5.94 (d, J = 7.8 Hz, 1H), 4.70 (s, 2H), 3.82 (d, J = 12.8 Hz, 1H), 3.41 (d, J = 12.8 Hz, 1H), 2.77 (s, 3H), 1.30 (s, 9H) ppm. ¹³**C NMR** (101 MHz, CDCl₃) $\delta = 208.7$, 175.0, 154.4, 143.8, 136.9, 133.8, 133.1, 130.5 (2C), 130.2, 129.5, 127.8 (2C), 127.0, 126.3, 126.2, 125.3, 124.8, 122.9, 122.7,

110.0, 80.6, 71.7, 68.2, 64.4, 55.9, 39.9, 28.1 (3C) ppm. $[\alpha]_D^{\text{rt}} = +96.6 \circ (\text{c} = 0.60 \text{ in CHCl}_3)$. **IR** (KBr): v/cm⁻¹ = 3357, 3064, 3031, 2980, 2929, 1718, 1691, 1616, 1491, 1461, 1350, 1278, 1245, 1165, 1120. **HRMS** (ESI) m/z calcd for C₃₅H₃₂N₂O₄S [M + Na]⁺ = 553.1768, found: 553.1765. **HPLC analysis** *ee* = 95 %, (Daicel Chiracel) AD column, heptane/*iso*-propanol, 80:20, 1.0 mL/min, $\lambda = 190$ nm, retention time: $t_{minor} = 5.149$ min, $t_{major} = 9.379$ min.

tert-Butyl ((*R*)-1-benzyl-3-((*R*)-3-benzyl-2-oxo-2,3-dihydrobenzo[*b*]thiophen-3-yl)-5-bromo-2-oxoindolin-3-yl)carbamate (3h)

Adduct **3h** was prepared from 39.4 mg (0.10 mmol, 1.0 equiv) ketimine **1h** and derivative of benzo[*b*]thiophen-2(3*H*)-one **2a** 36.0 mg (0.15 mmol, 1.5 equiv). Product **3h** was obtained as light yellow foam in 63% yield (41.4 mg).

¹**H NMR** (400 MHz, CDCl₃) δ = 7.70 (d, *J* = 16.8 Hz, 1H), 7.43 (dd, J = 8.4 Hz, J' = 1.9 Hz, 2H), 7.25 - 7.20 (m, 1H), 7.20 -

7.04 (m, 5H), 7.00 (m, 2H), 6.87 (td, J = 7.8 Hz, J' = 1.0 Hz, 1H), 6.74 – 6.60 (m, 4H), 6.43 (d, J = 8.3 Hz, 1H), 6.04 (d, J = 7.7 Hz, 1H), 4.68 (d, J = 15.9 Hz, 1H), 4.34 (d, J = 15.8 Hz, 1H), 3.82 (d, J = 12.8 Hz, 1H), 3.38 (d, J = 12.8 Hz, 1H), 1.35 (s, 9H) ppm. ¹³C NMR (151 MHz, CDCl₃) $\delta = 208.3$, 174.3, 154.5, 143.8, 137.0, 134.8, 133.5, 132.9, 132.7, 130.5 (2C), 129.6, 129.0, 128.6 (2C), 127.9 (2C), 127.7, 127.3, 127.06, 127.0 (2C), 126.1, 125.5, 123.0, 115.1, 111.0, 80.9, 67.7, 64.2, 44.4, 40.0, 28.2 (3C) ppm. $[\alpha]_D^{\text{rt}} = +129.5 \circ (\text{c} = 0.56 \text{ in CHCl}_3)$. IR (KBr): v/cm⁻¹ = 3360, 3064, 3028, 2980, 2926, 2857, 1724, 1685, 1610, 1479, 1452, 1425, 1344, 1278, 1254, 1162, 1114. HRMS (ESI) m/z calcd for C₃₅H₃₂N₂O₄NaS [M + Na]⁺ = 677.1080, found: 677.1080. HPLC analysis ee = 90 %, (Daicel Chiracel) AD column, heptane/*iso*-propanol, 80:20, 1.0 mL/min, $\lambda = 190$ nm, retention time: $t_{minor} = 5.775$ min, $t_{major} = 17.036$ min.

tert-Butyl ((*R*)-1-benzyl-3-((*R*)-3-benzyl-2-oxo-2,3-dihydrobenzo[*b*]thiophen-3-yl)-6bromo-2-oxoindolin-3-yl)carbamate (3i)

Adduct **3i** was prepared from 39.4 mg (0.10 mmol, 1.0 equiv) ketimine **1i** and derivative of benzo[*b*]thiophen-2(3*H*)-one **2a** 36.0 mg (0.15 mmol, 1.5 equiv). Product **3i** was obtained as light yellow foam in 46% yield (30.0 mg).

¹**H NMR** (400 MHz, CDCl₃) δ = 7.43 (d, *J* = 5.6 Hz, 1H), 7.41 (s, 1H), 7.32 (dd, *J* = 7.9 Hz, *J*' = 1.6 Hz, 1H), 7.22 (td, *J* = 7.7

Hz, J' = 1.2 Hz, 1H), 7.18 – 7.02 (m, 5H), 6.98 (t, J = 7.4 Hz, 2H), 6.88 (td, J = 7.8 Hz, J' = 1.1 Hz, 1H), 6.72 – 6.58 (m, 5H), 6.05 (d, J = 7.8 Hz, 1H), 4.71 (d, J = 15.9 Hz, 1H), 4.29 (d, J = 15.9 Hz, 1H), 3.82 (d, J = 12.8 Hz, 1H), 3.35 (d, J = 12.8 Hz, 1H), 1.33 (s, 9H). ppm. ¹³C **NMR** (101 MHz, CDCl₃) $\delta = 208.5$, 174.7, 154.5, 146.1, 136.9, 134.7, 133.5, 132.9, 130.5 (2C), 129.6, 128.7 (2C), 127.9 (2C), 127.3, 127.0, 126.9 (2C), 126.1, 125.9, 125.8, 125.6, 125.4, 123.6, 123.0, 112.9, 80.8, 67.5, 64.2, 44.4, 40.0, 28.2 (3C) ppm. **[a]**_D^{rt} = +136.9 ° (c = 0.84 in CHCl₃). **IR** (KBr): v/cm⁻¹ = 3357, 3064, 3034, 2980, 2932, 2857, 1715, 1685, 1601, 1488, 1452, 1434, 1368, 1350, 1281, 1257, 1165, 1102. **HRMS** (ESI) m/z calcd for C₃₅H₃₁O₄N₂BrNaS [M + Na]⁺ = 677.1080, found: 677.1082. **HPLC analysis** *ee* = 91 %, (Daicel Chiracel) AD column, heptane/*iso*-propanol, 80:20, 1.0 mL/min, $\lambda = 190$ nm, retention time: *t_{minor}* = 5.330 min, *t_{major}* = 15.654 min.

tert-Butyl ((*R*)-1-benzyl-3-((*R*)-3-benzyl-2-oxo-2,3-dihydrobenzo[*b*]thiophen-3-yl)-7-bromo-2-oxoindolin-3-yl)carbamate (3j)

Adduct **3j** was prepared from 39.4 mg (0.10 mmol, 1.0 equiv) ketimine **1j** and derivative of benzo[*b*]thiophen-2(3*H*)-one **2a** 36.0 mg (0.15 mmol, 1.5 equiv). Product **3j** was obtained as light yellow foam in 67% yield (43.9 mg).

¹**H NMR** (400 MHz, CDCl₃) δ = 7.60 – 7.50 (m, 2H), 7.43 (s, 1H), 7.29 (td, *J* = 7.7 Hz, 1.2 Hz, 1H), 7.15 – 7.04 (m, 6H), 7.04 – 6.96

(m, 3H), 6.77 - 6.69 (m, 2H), 6.68 - 6.61 (m, 2H), 5.95 (d, J = 7.8 Hz, 1H), 4.98 - 4.80 (m, 2H), 3.81 (d, J = 12.8 Hz, 1H), 3.35 (d, J = 12.8 Hz, 1H), 1.36 (s, 9H) ppm. ¹³**C NMR** (101 MHz, CDCl₃) $\delta = 208.4$, 175.7, 154.6, 142.3, 137.1, 137.0, 135.7, 133.4, 133.0, 130.5 (2C), 130.3, 129.8, 128.1 (2C), 127.9 (2C), 127.0, 126.4, 126.1 (2C), 126.0, 125.4, 123.6, 123.4, 133.0, 130.5, 123.4, 133.0, 130.5, 123.4, 133.0, 130.5, 123.4, 133.0, 130.5, 123.4, 133.0, 130.5, 123.4, 133.0, 130.5, 123.4, 133.0, 130.5, 123.4, 133.0, 130.5, 123.4, 133.0, 130.5, 123.4, 133.4, 133.0, 130.5, 123.4, 134.4, 134.

123.0, 103.1, 80.9, 67.3, 64.5, 45.3, 39.6, 28.1 (3C) ppm. $[\alpha]_D^{rt} = +66.3 \circ (c = 0.95 \text{ in CHCl}_3)$. **IR** (KBr): v/cm⁻¹ = 3375, 3354, 3067, 3031, 2974, 2929, 1736, 1718, 1682, 1607, 1583, 1494, 1452, 1392, 1371, 1356, 1275, 1257, 1219, 1168, 1114. **HRMS** (ESI) m/z calcd for C₃₅H₃₁O₄N₂BrNaS [M + Na]⁺ = 677.1080, found: 677.1083. **HPLC analysis** *ee* = 89 %, (Daicel Chiracel) AD column, heptane/*iso*-propanol, 80:20, 1.0 mL/min, $\lambda = 190$ nm, retention time: $t_{minor} = 6.433 \text{ min}, t_{major} = 22.043 \text{ min}.$

tert-Butyl ((*R*)-1-benzyl-3-((*R*)-3-benzyl-2-oxo-2,3-dihydrobenzo[*b*]thiophen-3-yl)-5-chloro-2-oxoindolin-3-yl)carbamate (3k)

Adduct **3k** was prepared from 37.1 mg (0.10 mmol, 1.0 equiv) ketimine **1k** and derivative of benzo[*b*]thiophen-2(3*H*)-one **2a** 36.0 mg (0.15 mmol, 1.5 equiv). Product **3k** was obtained as light yellow foam in 67% yield (41.1 mg).

¹**H NMR** (400 MHz, CDCl₃) δ = 7.55 (s, 1H), 7.44 (s, 1H), 7.28 (dd, *J* = 8.4 Hz, *J*' = 2.1 Hz, 1H), 7.23 (td, *J* = 7.7 Hz, *J*' = 0.8

Hz, 1H), 7.20 – 7.04 (m, 5H), 7.00 (t, *J* = 7.5 Hz, 2H), 6.86 (t, *J* = 7.7 Hz, 1H), 6.70 (d, *J* = 7.0 Hz, 2H), 6.66 (d, *J* = 7.4 Hz, 2H), 6.47 (d, *J* = 8.4 Hz, 1H), 6.04 (d, *J* = 7.8 Hz, 1H), 4.68 (d, *J* = 15.9 Hz, 1H), 4.34 (d, *J* = 15.8 Hz, 1H), 3.83 (d, *J* = 12.8 Hz, 1H), 3.38 (d, *J* = 12.8 Hz, 1H), 1.35 (s, 9H) ppm. ¹³C NMR (151 MHz, CDCl₃) δ = 208.4, 174.4, 154.5, 143.3, 137.0, 134.8, 133.5, 132.9, 130.5 (2C), 129.8, 129.7, 129.6, 128.6 (2C), 127.9, 127.9 (2C), 127.3, 127.1, 126.9 (2C), 126.1, 125.5, 125.0, 123.0, 110.5, 80.9, 67.8, 64.2, 44.4, 40.0, 28.2 (3C) ppm. [*α*]_Dr^t = +119.7 ° (c = 0.64 in CHCl₃). **IR** (KBr): v/cm⁻¹ = 3360, 3067, 3037, 2974, 2923, 2851, 1727, 1682, 1610, 1482, 1455, 1428, 1365, 1281, 1257, 1162, 1096. **HRMS** (ESI) m/z calcd for C₃₅H₃₂N₂O₄S [M + Na]⁺ = 633.1585, found: 633.1586. **HPLC analysis** *ee* = 89 %, (Daicel Chiracel) AD column, heptane/*iso*-propanol, 80:20, 1.0 mL/min, λ = 190 nm, retention time: *t*_{minor} = 5.718 min, *t*_{major} = 17.727 min.

tert-Butyl ((*R*)-1-benzyl-3-((*R*)-3-benzyl-2-oxo-2,3-dihydrobenzo[*b*]thiophen-3-yl) 5methyl-2-oxoindolin-3-yl)carbamate (3l)

Adduct **31** was prepared from 35.0 mg (0.10 mmol, 1.0 equiv) ketimine **11** and derivative of benzo[*b*]thiophen-2(3*H*)-one **2a** 36.0 mg (0.15 mmol, 1.5 equiv). Product **31** was obtained as light yellow foam in 78% yield (45.8mg).

¹**H NMR** (600 MHz, CDCl₃) δ = 7.41 (d, J = 16.2 Hz, 2H), 7.19 (td, J = 7.7 Hz, J' = 1.2 Hz, 1H), 7.16 - 7.04 (m, 6H), 7.02 - 6.96

(m, 2H), 6.81 (td, J = 7.8 Hz, J' = 1.2 Hz, 1H), 6.71 (d, J = 6.5 Hz, 2H), 6.66 (d, J = 7.1 Hz, 2H), 6.44 (d, J = 8.0 Hz, 1H), 5.94 (d, J = 7.8 Hz, 1H), 4.67 (d, J = 15.8 Hz, 1H), 4.32 (d, J = 15.8 Hz, 1H), 3.84 (d, J = 12.8 Hz, 1H), 3.43 (d, J = 12.8 Hz, 1H), 2.42 (s, 3H), 1.32 (s, 9H) ppm. ¹³C NMR (101 MHz, CDCl₃) $\delta = 208.9$, 174.6, 154.5, 142.3, 137.0, 135.4, 133.9, 133.3, 131.9, 130.5 (2C), 130.3, 129.4, 128.5 (2C), 127.8 (2C), 127.1, 127.0 (2C), 126.9, 126.8, 126.4, 125.5, 125.3, 122.8, 109.4, 80.5, 67.9, 64.5, 44.3, 40.1, 28.2 (3C), 21.4 ppm. [α]_D^{rt} = +121.4 ° (c = 0.56 in CHCl₃). **IR** (KBr): v/cm⁻¹ = 3360, 3067, 3034, 2980, 2923, 2851, 1718, 1688, 1622, 1601, 1500, 1452, 1371, 1281, 1245, 1159, 1099. **HRMS** (ESI) m/z calcd for C₃₅H₃₂N₂O4S [M + Na]⁺ = 613.2131, found: 613.2137. **HPLC analysis** *ee* = 95 %, (Daicel Chiracel) AD column, heptane/*iso*-propanol, 80:20, 1.0 mL/min, $\lambda = 190$ nm, retention time: *t_{minor}* = 5.376 min, *t_{major}* = 21.0305 min.

tert-Butyl ((*R*)-1-benzyl-3-((*R*)-3-benzyl-2-oxo-2,3-dihydrobenzo[*b*]thiophen-3-yl)-5nitro-2-oxoindolin-3-yl)carbamate (3m)

Adduct **3m** was prepared from 38.1 mg (0.10 mmol, 1.0 equiv) ketimine **1m** and derivative of benzo[*b*]thiophen-2(3*H*)-one **2a** 36.0 mg (0.15 mmol, 1.5 equiv). Product **3m** was obtained as light yellow foam in 98 % yield (61.6 mg). Product **3m** was obtained as mixture of diastereoisomers, dr = 2:1.

Major diastereoisomer: ¹**H NMR** (600 MHz, CDCl₃) $\delta = \delta$ 8.15 (d, J = 2.2 Hz, 1H), 7.90 (d, J = 7.8 Hz, 1H), 7.50 (s, 1H), 7.46 (d, J = 6.7 Hz, 2H), 7.41 – 7.30 (m, 2H), 7.29 – 7.11 (m, 3H), 7.11 – 6.96 (m, 3H), 6.82 – 6.72 (m, 3H), 6.71 – 6.62 (m, 1H), 6.40 (d, J = 8.1 Hz, 1H), 5.32 (d, J = 15.4 Hz, 1H), 4.62 (d, J = 15.5 Hz, 1H), 4.03 (d, J =13.9 Hz, 1H), 3.78 (d, J = 13.9 Hz, 1H), 1.41 (s, 9H) ppm. ¹³**C NMR** (600 MHz, CDCl₃) $\delta =$ 209.1, 173.6, 153.8, 148.3, 142.7, 135.2, 134.1, 134.0, 132.4, 130.5 (3C), 129.4, 128.8 (2C), 128.0, 127.8 (3C), 126.9, 126.8, 126.3, 125.9, 125.5, 122.7, 118.4, 108.0, 81.2, 66.1, 64.3, 44.8, 36.6, 28.2 (3C) ppm. Minor diastereoisomer: ¹H NMR (600 MHz, CDCl₃) δ = 8.42 (s, 1H), 8.27 (dd, J = 8.7 Hz, J' = 2.2 Hz, 1H), 7.41 – 7.30 (m, 2H), 7.29 – 7.11 (m, 3H), 7.11 – 6.96 (m, 4H), 6.96 – 6.85 (m, 2H), 6.82 – 6.72 (m, 3H), 6.71 – 6.62 (m, 1H), 6.09 (s, 1H), 4.72 (d, J = 15.9 Hz, 1H), 4.47 (d, J = 15.9 Hz, 1H), 3.92 (d, J = 12.8 Hz, 1H), 3.40 (d, J = 12.8 Hz, 1H), 1.37 (s, 9H) ppm. ¹³C NMR (600 MHz, CDCl₃) δ = 207.8, 175.1, 154.6, 150.2, 143.1, 137.0, 133.7, 133.0, 132.8, 130.4 (3C), 129.9, 128.7 (2C), 127.9 (3C), 127.7, 127.6, 127.1, 126.8, 125.7, 125.6, 123.3, 120.0, 109.1, 81.3, 67.2, 64.1, 44.6, 39.9, 28.1 (3C) ppm. Mixture of diastereoisomers: $[\alpha]_D^{rt} = +51.2 \circ (c = 0.63 \text{ in CHCl}_3)$. IR (KBr): v/cm⁻¹ = 3384, 3067, 3034, 2974, 2932, 1736, 1718, 1685, 1613, 1601, 1521, 1488, 1452, 1392, 1368, 1335, 1275, 1251, 1162, 1102. **HRMS** (ESI) m/z calcd for $C_{35}H_{32}N_2O_4S$ [M + Na]⁺ = 644.1825, found: 644.1831. **HPLC analysis:** major diastereoisomer: ee = 23 %, (Daicel Chiracel) AD column, heptane/isopropanol, 80:20, 1.0 mL/min, $\lambda = 250$ nm, retention time: $t_{major} = 10.589$ min, $t_{minor} = 13.466$ min. ee = 17 %, minor diastereoisomer: ee = 99 % (Daicel Chiracel) AD column, heptane/iso-propanol, 80:20, 1.0 mL/min, $\lambda = 250$ nm, retention time: $t_{major} = 18.539$ min, t_{minor} = 28.616 min.

tert-Butyl ((*R*)-1-benzyl-3-((*R*)-3-(4-bromobenzyl)-2-oxo-2,3-dihydrobenzo[*b*]thiophen-3-yl)-2-oxoindolin-3-yl)carbamate (3n)

Adduct **3n** was prepared from 33.6 mg (0.10 mmol, 1.0 equiv) ketimine **1a** and derivative of benzo[b]thiophen-2(3*H*)-one **2d** 47.9 mg (0.15 mmol, 1.5 equiv). Product **3n** was obtained as light yellow foam in 80% yield (52,5 mg).

¹**H** NMR (400 MHz, CDCl₃) δ = 7.55 (d, *J* = 7.3 Hz, 1H), 7.38 (s, 1H), 7.32 (td, *J* = 7.8 Hz, *J*' = 1.0 Hz, 1H), 7.24 – 7.07 (m,

8H), 6.79 (td, J = 7.9 Hz, J' = 1.0 Hz, 1H), 6.69 (d, J = 6.9 Hz, 2H), 6.57 (d, J = 7.8 Hz, 1H), 6.52 (d, J = 8.4 Hz, 2H), 5.88 (d, J = 7.8 Hz, 1H), 4.74 (d, J = 15.8 Hz, 1H), 4.32 (d, J = 15.8 Hz, 1H), 3.82 (d, J = 12.9 Hz, 1H), 3.36 (d, J = 12.9 Hz, 1H), 1.30 (s, 9H) ppm. ¹³C NMR (101 MHz, CDCl₃) $\delta = 208.7$, 174.6, 154.4, 144.7, 136.9, 135.2, 133.4, 132.3, 132.1 (2C), 130.9 (2C), 130.0, 129.6, 128.5 (2C), 127.1, 127.0 (2C), 126.7, 126.1, 125.5, 124.6, 123.0, 122.4, 121.3, 109.7, 80.6, 67.7, 64.3, 44.3, 39.4, 28.1 (3C) ppm. [α]_D^{rt} = +100.4 ° (c = 1.23 in CHCl₃). **IR** (KBr): v/cm⁻¹ = 3381, 3061, 3028, 3010, 2977, 2929, 1721, 1685, 1613, 1491, 1467, 1371, 1275, 1251, 1159, 1102. **HRMS** (ESI) m/z calcd for $C_{35}H_{31}O_4N_2BrNaS [M + Na]^+ = 677.1080$, found: 677.1082. **HPLC analysis** *ee* = 92 %, (Daicel Chiracel) AD column, heptane/*iso*-propanol, 80:20, 1.0 mL/min, $\lambda = 190$ nm, retention time: $t_{minor} = 8.235$ min, $t_{major} = 48.960$ min.

tert-Butyl ((*R*)-1-benzyl-3-((*R*)-3-(3-bromobenzyl)-2-oxo-2,3-dihydrobenzo[*b*]thiophen-3-yl)-2-oxoindolin-3-yl)carbamate (30)

Adduct **3o** was prepared from 33.6 mg (0.10 mmol, 1.0 equiv) ketimine **1a** and derivative of benzo[*b*]thiophen-2(3*H*)-one **2c** 47.9 mg (0.15 mmol, 1.5 equiv). Product **3o** was obtained as light yellow foam in 81 % yield (53.1 mg).

¹**H NMR** (400 MHz, CDCl₃) δ = 7.57 (d, *J* = 7.3 Hz, 1H), 7.40 (s, 1H), 7.34 (td, *J* = 7.8 Hz, *J*'= 1.2 Hz, 1H), 7.27 – 7.10 (m, 7H), 6.90

(t, *J* = 7.9 Hz, 1H), 6.84 (td, *J* = 7.8 Hz, *J*'= 1.2 Hz, 1H), 6.76 – 6.66 (m, 4H), 6.59 (d, *J* = 7.7 Hz, 1H), 5.91 (d, *J* = 7.8 Hz, 1H), 4.77 (d, *J* = 15.8 Hz, 1H), 4.34 (d, *J* = 15.8 Hz, 1H), 3.84 (d, *J* = 12.9 Hz, 1H), 3.40 (d, *J* = 12.9 Hz, 1H), 1.32 (s, 9H) ppm. ¹³C NMR (101 MHz, CDCl₃) δ = 208.6, 174.6, 154.4, 144.7, 136.9, 135.6, 135.2, 133.4, 133.3, 130.1, 130.0, 129.7, 129.3, 129.2, 128.5 (2C), 127.1, 127.0 (2C), 126.7, 126.2, 125.6, 124.6, 123.0, 122.5, 121.7, 109.7, 80.6, 67.7, 64.3, 44.3, 39.6, 28.1 (3C) ppm. [*α*]_D^{rt} = +108.1 ° (c = 1.18 in CHCl₃). **IR** (KBr): v/cm⁻¹ = 3363, 3067, 3028, 3004, 2977, 2929, 2854, 1718, 1688, 1613, 1568, 1488, 1470, 1365, 1281, 1251, 1180, 1162, 1102. **HRMS** (ESI) m/z calcd for C₃₅H₃₁O4N₂BrNaS [M + Na]⁺ = 677.1080, found: 677.1081. **HPLC analysis** *ee* = 92 %, (Daicel Chiracel) AD column, heptane/*iso*-propanol, 80:20, 1.0 mL/min, λ = 190 nm, retention time: *t_{minor}* = 8.117 min, *t_{major}* = 42.897 min.

tert-Butyl ((*R*)-1-benzyl-3-((*R*)-3-(2-bromobenzyl)-2-oxo-2,3-dihydrobenzo[*b*]thiophen-3-yl)-2-oxoindolin-3-yl)carbamate (3p)

Adduct **3p** was prepared from 33.6 mg (0.10 mmol, 1.0 equiv) ketimine **1a** and derivative of benzo[*b*]thiophen-2(3*H*)-one **2b** 47.9 mg (0.15 mmol, 1.5 equiv). Product **3p** was obtained as light yellow foam in 43 % yield (28,0 mg).

¹**H NMR** (400 MHz, CDCl₃) δ = 7.70 (d, *J* = 7.3 Hz, 1H), 7.40 – 7.28 (m, 3H), 7.24 – 7.07 (m, 6H), 6.95 – 6.87 (m, 2H), 6.77 – 6.63

(m, 4H), 6.54 (d, J = 7.7 Hz, 1H), 6.01 (d, J = 7.8 Hz, 1H), 4.72 (d, J = 15.8 Hz, 1H), 4.33 (d, J = 15.8 Hz, 1H), 4.19 (d, J = 13.9 Hz, 1H), 3.85 (d, J = 14.0 Hz, 1H), 1.30 (s, 9H) ppm. ¹³C **NMR** (101 MHz, CDCl₃) $\delta = 208.4$, 174.5, 154.4, 144.7, 136.4, 135.3, 133.9, 133.4, 133.1, 130.0, 129.9, 129.5, 128.6, 128.5 (3C), 127.1, 127.0 (2C), 126.8, 126.7, 126.1, 125.3, 124.9, 122.6, 122.5, 109.5, 80.5, 68.2, 64.5, 44.3, 38.5, 28.1 (3C) ppm. $[\alpha]_D^{\text{rt}} = +56.7 \circ (c = 0.67 \text{ in CHCl}_3)$. **IR** (KBr): v/cm⁻¹ = 3366, 3064, 3007, 2983, 2926, 2857, 1718, 1691, 1610, 1491, 1464, 1371, 1278, 1251, 1165, 1102. **HRMS** (ESI) m/z calcd for C₃₅H₃₁O₄N₂BrNaS [M + Na]⁺ = 677.1080, found: 677.1078. **HPLC analysis** ee = 80 %, (Daicel Chiracel) AD column, heptane/*iso*-propanol, 80:20, 1.0 mL/min, $\lambda = 210$ nm, retention time: $t_{major} = 17.036$ min, $t_{minor} = 5.775$ min.

tert-Butyl ((*R*)-1-benzyl-3-((*R*)-3-(4-nitrobenzyl)-2-oxo-2,3-dihydrobenzo[*b*]thiophen-3-yl)-2-oxoindolin-3-yl)carbamate (3q)

Adduct **3q** was prepared from 33.6 mg (0.10 mmol, 1.0 equiv) ketimine **1a** and derivative of benzo[*b*]thiophen-2(3*H*)-one **2e** 43.0 mg (0.15 mmol, 1.5 equiv). Product **3q** was obtained as light yellow foam in 91% yield (56.5 mg).

¹**H** NMR (400 MHz, CDCl₃) δ = 7.88 – 7.82 (m, 2H), 7.56 (d, J = 7.3 Hz, 1H), 7.39 – 7.30 (m, 2H), 7.25 – 7.08 (m, 6H), 6.87

- 6.79 (m, 3H), 6.71 (d, J = 6.9 Hz, 2H), 6.59 (d, J = 7.8 Hz, 1H), 5.92 (d, J = 7.8 Hz, 1H), 4.74 (d, J = 15.8 Hz, 1H), 4.33 (d, J = 15.8 Hz, 1H), 3.97 (d, J = 12.7 Hz, 1H), 3.50 (d, J = 12.7 Hz, 1H), 1.30 (s, 9H) ppm. ¹³**C NMR** (101 MHz, CDCl₃) $\delta = 208.3$, 174.4, 154.4, 147.0, 144.7, 141.1, 136.6, 135.1, 133.0, 131.3 (2C), 130.2, 129.9, 128.5 (2C), 127.2, 127.0 (2C), 126.5, 126.1, 125.7, 124.5, 123.2, 122.9 (2C), 122.5, 109.8, 80.7, 67.7, 64.3, 44.3, 39.7, 28.1 (3C) ppm. $[\boldsymbol{\alpha}]_{D}^{rt} = +145.9^{\circ}$ (c = 0.98 in CHCl₃). **IR** (KBr): v/cm⁻¹ = 3360, 3061, 3007, 2980, 2929, 2851, 1721, 1688, 1607, 1521, 1491, 1344, 1281, 1260, 1165, 1105. **HRMS** (ESI) m/z calcd

for C₃₅H₃₁O₆N₃NaS [M + Na]⁺ = 644.1826, found: 644.1822. **HPLC analysis** ee = 93 %, (Daicel Chiracel) AD column, heptane/*iso*-propanol, 80:20, 1.0 mL/min, $\lambda = 207$ nm, retention time: $t_{minor} = 10.458$ min, $t_{major} = 13.636$ min.

tert-Butyl ((*R*)-1-benzyl-3-((*R*)-3-(4-methoxybenzyl)-2-oxo-2,3-dihydrobenzo[*b*]thiophen-3-yl)-2-oxoindolin-3-yl)carbamate (3r)

Adduct **3r** was prepared from 33.6 mg (0.10 mmol, 1.0 equiv) ketimine **1a** and derivative of benzo[b]thiophen-2(3*H*)-one **2f** 40.6 mg (0.15 mmol, 1.5 equiv). Product **3r** was obtained as light yellow foam in 66 % yield (39.9 mg).

¹**H NMR** (400 MHz, CDCl₃) δ = 7.57 (d, J = 7.2 Hz, 1H), 7.43

(s, 1H), 7.31 (td, J = 7.7 Hz, J' = 1.2 Hz, 1H), 7.23 – 7.07 (m, 6H), 6.79 (td, J = 7.8 Hz, J' = 1.2 Hz, 1H), 6.69 (d, J = 6.7 Hz, 2H), 6.61 – 6.48 (m, 5H), 5.90 (d, J = 7.8 Hz, 1H), 4.75 (d, J = 15.8 Hz, 1H), 4.31 (d, J = 15.8 Hz, 1H), 3.82 (d, J = 13.0 Hz, 1H), 3.67 (s, 3H), 3.37 (d, J = 13.0 Hz, 1H), 1.30 (s, 9H) ppm. ¹³C NMR (101 MHz, CDCl₃) $\delta = 209.0$, 174.8, 158.4, 154.5, 144.7, 137.0, 135.3, 133.9, 131.5 (2C), 129.9, 129.3, 128.5 (2C), 127.1, 127.0 (2C), 126.9, 126.2, 125.3, 125.0, 124.7, 122.9, 122.4, 113.2 (2C), 109.6, 80.4, 67.7, 64.5, 55.0, 44.3, 39.2, 28.1 (3C) ppm. [α]_D^{rt} = +135.6 ° (c = 0.73 in CHCl₃). IR (KBr): v/cm⁻¹ = 3366, 3064, 3031, 3007, 2977, 2929, 2842, 1721, 1679, 1616, 1515, 1371, 1353, 1254, 1183, 1168, 1102, 1036, 1012. HRMS (ESI) m/z calcd for C36 H34 O5 N2 Na S [M + Na]⁺ = 629.2081, found: 629.2077. HPLC analysis ee = 96 %, (Daicel Chiracel) ODH column, heptane/*iso*-propanol, 90:10, 1.0 mL/min, $\lambda = 190$ nm, retention time: $t_{minor} = 9.598$ min, $t_{major} = 12.031$ min.

tert-Butyl ((*R*)-1-benzyl-3-((*R*)-3-isopentyl-2-oxo-2,3-dihydrobenzo[*b*]thiophen-3-yl)-2-oxoindolin-3-yl)carbamate (3s)

Adduct **3s** was prepared from 33.6 mg (0.10 mmol, 1.0 equiv) ketimine **1a** and derivative of benzo[*b*]thiophen-2(3*H*)-one **2g** 33.0 mg (0.15 mmol, 1.5 equiv). Product **3s** was obtained as light yellow foam in 57% yield (31.8 mg).

¹**H NMR** (400 MHz, CDCl₃) δ = 7.47 (d, *J* = 7.3 Hz, 1H), 7.31 (dd, *J* = 7.8 Hz, *J*'= 1.0 Hz, 1H), 7.28 – 7.20 (m, 2H), 7.19 – 7.08 (m,

4H), 7.05 (s, 1H), 6.74 (td, J = 7.7 Hz, J' = 1.2 Hz, 1H), 6.69 (d, J = 6.5 Hz, 2H), 6.48 (d, J = 7.7 Hz, 1H), 5.69 (d, J = 7.8 Hz, 1H), 4.71 (d, J = 15.8 Hz, 1H), 4.30 (d, J = 15.8 Hz, 1H), 2.53 (td, J = 12.6 Hz, J' = 4.4 Hz, 1H), 2.13 (td, J = 12.7 Hz, J' = 4.0 Hz, 1H), 1.50 – 1.36 (m, 1H), 1.27 (s, 9H), 1.13 – 0.98 (m, 1H), 0.81 (d, J = 6.6 Hz, 3H), 0.72 (d, J = 6.6 Hz, 3H), 0.48 – 0.35 (m, 1H) ppm. ¹³C NMR (151 MHz, CDCl₃) $\delta = 209.3$, 174.8, 154.4, 144.6, 136.7, 135.3, 134.5,

129.7, 129.2, 128.5 (3C), 127.1, 127.0 (2C), 125.7, 125.3, 124.6, 122.9, 122.2, 109.4, 80.4, 68.0, 63.6, 44.3, 32.4, 31.8, 28.2, 28.1 (3C), 22.41, 22.13 ppm. $[\alpha]_D^{rt} = +29.5^\circ$ (c = 0,62 in CHCl₃). **IR** (KBr): v = 3369, 3061, 2956, 2929, 2869, 1721, 1679, 1613, 1488, 1467, 1365, 1272, 1254, 1165, 1099 cm⁻¹. **HRMS** (ESI) m/z calcd for C₃₃H₃₆N₂O₄NaS [M + Na]⁺ = 579.2288, found: 579.2289. **HPLC analysis** *ee* = 91 %, (Daicel Chiracel) AD column, heptan/*iso*-propanol, 80:20, 1.0 mL/min, λ = 207 nm, retention time: *t_{minor}* = 4.715 min, *t_{major}* = 13.491 min.

Methyl 3-(3-(1-benzyl-3-((*tert*-butoxycarbonyl)amino)-2-oxoindolin-3-yl)-2-oxo-2,3dihydrobenzo[*b*]thiophen-3-yl)propanoate (3t)

Adduct **3t** was prepared from 33.6 mg (0.10 mmol, 1.0 equiv) ketimine **1a** and Benzo[b]thiophen-2(3H)-one **2h** 35.4 mg (0.15 mmol, 1.5 equiv). Product **3t** was obtained as light yellow foam in 98% yield (56.1 mg). Product **3t** was obtained as mixture of diastereoisomers, dr = 3:2.

Major diastereoisomer: ¹**H NMR** (400 MHz, CDCl₃) $\delta = 7.43 - 1000$ 7.35 (m, 2H), 7.35 - 7.19 (m, 3H), 7.18 - 6.90 (m, 4H), 6.74 (tt, J = 6.4 Hz, J' = 3.2 Hz, 1H), 6.68 (d, J = 6.7 Hz, 2H), 6.49 (d, J = 7.7 Hz, 1H), 5.72 (d, J = 7.8 Hz, 1H), 4.71 (d, J = 15.9 Hz, 1H), 4.30 (d, J = 15.9 Hz, 1H), 3.55 (s, 3H), 2.87 (ddd, J = 13.2 Hz, J' = 12.1 Hz, J'' = 4.8 Hz, 1H), 2.60 - 2.44 (m, 1H), 2.27 - 2.11 (m, 1H), 1.61 (ddd, J = 16.4 Hz, J' = 11.9 Hz, J'' = 4.7Hz, 1H), 1.24 (s, 9H) ppm. ¹³C NMR (151 MHz, CDCl₃) δ = 209.0, 174.5, 172.5, 154.2, 144.5, 136.5, 135.3, 135.2, 133.2, 129.9, 129.7, 128.5 (3C), 126.9 (2C), 126.0, 125.7, 125.2, 124.8, 123.1, 109.5, 80.9, 67.8, 62.9, 51.8, 44.3, 29.4, 28.1 (4C) ppm. Minor diastereoisomer: ¹H **NMR** (400 MHz, CDCl₃) δ = 7.53 (d, J = 7.2 Hz, 2H), 7.35 – 7.19 (m, 3H), 7.18 – 6.91 (m, 4H), 6.83 (t, J = 7.5 Hz, 2H), 6.71 – 6.64 (m, 2H), 6.33 (s, 1H), 5.05 (s, 1H), 4.60 (s, 1H), 3.56 (s, 3H), 3.22 (td, J = 14.2 Hz, J' = 5.0 Hz, 1H), 2.81 – 2.67 (m, 1H), 2.07 – 1.91 (m, 1H), 1.74 -1.66 (m, 1H), 1.33 (t, J = 17.0 Hz, 9H) ppm. ¹³C NMR (151 MHz, CDCl₃) $\delta = 208.6, 173.1,$ 172.3, 153.6, 142.6, 135.0, 133.1, 129.3, 129.3, 128.6 (3C), 128.1, 127.5, 127.1 (2C), 126.4, 126.1, 122.9, 122.6, 121.9, 108.3, 80.4, 64.9, 64.4, 51.7, 44.6, 29.5, 28.2 (3C), 26.4 ppm. **Mixture of diastereoizomers:** $[\alpha]_D^{rt} = -102.8 \circ (c = 0.53 \text{ in CHCl}_3)$. **IR** (KBr): v/cm⁻¹ = 3393, 3372, 3064, 3013, 2983, 2950, 2926, 1987, 1721, 1685, 1613, 1488, 1365, 1272, 1254, 1171. **HRMS** (ESI) m/z calcd for $C_{32}H_{32}O_6N_2NaS$ [M + Na]⁺ = 595.1873, found: 595.1853. **HPLC** analysis: major diastereoisomer: ee = 91 %, (Daicel Chiracel) AD column, heptane/isopropanol, 80:20, 1.0 mL/min, $\lambda = 210$ nm, retention time: $t_{minor} = 8.767$ min, $t_{major} = 41.500$ min, minor diastereoisomer: ee = 77 %, (Daicel Chiracel) AD column, heptane/*iso*-propanol, 80:20, 1.0 mL/min, $\lambda = 210$ nm, retention time: $t_{minor} = 16.153$ min, $t_{major} = 23.590$ min.

tert-Butyl ((*R*)-1-benzyl-3-((*R*)-3-benzyl-5-bromo-2-oxo-2,3-dihydrobenzo[*b*]thiophen-3-yl)-2-oxoindolin-3-yl)carbamate (3u)

Adduct **3u** was prepared from 33.6 mg (0.10 mmol, 1.0 equiv) ketimine **1a** and derivative of benzo[*b*]thiophen-2(3*H*)-one **2i** 33.0 mg (0.15 mmol, 1.5 equiv). Product **3u** was obtained as light yellow foam in 74 % yield (48.4 mg)

Mr: 655,61 ¹H NMR (400 MHz, CDCl₃) δ = 7.58 (d, *J* = 7.0 Hz, 1H), 7.40 (td, *J* = 7.8 Hz, *J*'= 1.1 Hz, 1H), 7.33 (s, 1H), 7.26 – 7.14 (m, 5H), 7.12 – 7.05 (m, 1H), 7.05 – 6.99 (m, 2H), 6.87 (d, *J* = 8.3 Hz, 1H), 6.84 – 6.79 (m, 2H), 6.72 (d, *J* = 7.8 Hz, 1H), 6.69 – 6.65 (m, 2H), 5.86 (d, *J* = 1.8 Hz, 1H), 4.76 (d, *J* = 15.6 Hz, 1H), 4.33 (d, *J* = 15.6 Hz, 1H), 3.84 (d, *J* = 12.9 Hz, 1H), 3.36 (d, *J* = 12.9 Hz, 1H), 1.31 (s, 9H) ppm. ¹³C NMR (151 MHz, CDCl₃) δ = 207.73, 174.36, 154.41, 144.48, 135.72, 135.55, 135.16, 132.78, 132.30, 130.44 (2C), 130.19, 129.30, 128.62 (2C), 127.96 (2C), 127.29, 127.15 (2C), 127.10, 126.32, 124.59, 123.76, 122.66, 119.01, 109.62, 80.66, 67.66, 64.76, 44.32, 39.91, 28.09 (3C) ppm. [*α*]_D^{rt} = +83.5 ° (c = 1.06 in CHCl₃). **IR** (KBr): v/cm⁻¹ = 3363, 3067, 3031, 2977, 2929, 2866, 1724, 1685, 1616, 1491, 1473, 1452, 1368, 1272, 1257, 1162, 1099, 1075, 1030, 1006. **HRMS** (ESI) m/z calcd for C35 H31 O4 N2 Br Na S [M + Na]⁺ = 677.1080, found: 677.1075. **HPLC analysis** *ee* = 89 %, (Daicel Chiracel) AD column, heptane/*iso*-propanol, 80:20, 1.0 mL/min, λ = 210 nm, retention time: *t_{minor}* = 5.878 min, *t_{major}* = 19.645 min.

tert-butyl (1-benzyl-3-(5-benzyl-4-oxo-3-phenyl-2-thioxothiazolidin-5-yl)-2-oxoindolin-3-yl)carbamate (6a')

Adduct **6a** was prepared from 33.6 mg (0.10 mmol, 1.0 equiv) ketimine **1a** and derivative of *N*-phenylrhodanine **4** 29.9 mg (0.10 mmol, 1.5 equiv). Product **3u** was obtained as light yellow foam in 32 % yield (48.4 mg)

¹**H NMR** (400 MHz, CDCl₃) δ = 7.50 (d, *J* = 7.0 Hz, 1H), 7.46 – 7.39 (m, 6H), 7.39 – 7.23 (m, 11H), 7.14 (td, *J* = 7.6, 0.7 Hz, 1H), 6.87 (d, *J* = 7.8 Hz, 1H), 5.13 (d, *J* = 15.6 Hz, 1H), 4.80 (d, *J* = 15.6 Hz, 1H),

4.09 (d, J = 13.5 Hz, 1H), 3.47 (d, J = 13.5 Hz, 1H), 1.30 (s, 9H) ppm. ¹³C NMR (101 MHz, CDCl₃) $\delta = 197.3$, 175.7, 174.4, 154.2, 144.0, 135.1, 134.8, 132.1 (3C), 131.5, 130.5, 129.7, 129.4, 128.8 (3C), 128.3 (3C), 128.1, 127.8 (2C), 127.7, 126.1, 125.0, 122.9, 80.9, 77.2, 66.8, 66.5, 44.7, 38.4, 28.0 (3C) ppm. [a]_D^{rt} = +34.8 ° (c = 0.94 in CHCl₃). IR (KBr): v/cm⁻¹ = 3358, 3031, 2983, 2932, 1700, 1610, 1491, 1353, 1248, 1162, 1078, 1027. HRMS (ESI) m/z calcd for C₃₆H₃₃N₃O₄S₂ [M + Na]⁺ = 658.1805, found: 658.1782. HPLC analysis *ee* = 34 %, (Daicel Chiracel) AD column, heptane/*iso*-propanol, 90:10, 1.0 mL/min, $\lambda = 211$ nm, retention time: *t_{major}* = 17.8 min, *t_{minor}* = 23.1 min.

5 Determination of absolute configuration of 3n

Crystallographic data for **3n** was collected on Bruker D8 VENTURE Kappa Duo PHOTON100 by IµS micro-focus sealed tube MoK α (λ = 0.71073) at a temperature of 120(2) K. The structure was solved by direct methods (XT)ⁱ and refined by full matrix least squares based on F^2 (SHELXL2018)ⁱⁱ. The hydrogen atoms on carbon were fixed into idealized positions (riding model) and assigned temperature factors either H_{iso}(H) = 1.2 U_{eq}(pivot atom) or H_{iso}(H) = 1.5 U_{eq} (pivot atom) for methyl moiety. The absolute structure determination was based on anomalous dispersion.

Crystal data for **3n**: C₃₅H₃₁BrN₂O₄S, $M_r = 655.59$; Orthorhombic, $P \ 2_1 \ 2_1 \ 2_1$ (No 19), a = 7.2208 (4) Å, b = 16.3286 (9) Å, c = 27.1076 (12) Å, V = 3196.1 (3) Å³, Z = 4, $D_x = 1.362$ Mg m⁻³, colorless prism of dimensions $0.31 \times 0.09 \times 0.07$ mm, numerical absorption correction ($\mu = 1.39 \text{ mm}^{-1}$) $T_{\text{min}} = 0.74$, $T_{\text{max}} = 0.91$; a total of 32635 measured reflections ($\theta_{\text{max}} = 26.^{\circ}$), from which 6251 were unique ($R_{\text{int}} = 0.064$) and 5023 observed according to the $I > 2\sigma(I)$ criterion. The refinement converged ($\Delta/\sigma_{\text{max}} = 0.001$) to R = 0.036 for observed reflections and w $R(F^2) = 0.072$, GOF = 1.04 for 392 parameters and all 6251 reflections. The final difference map displayed no peaks of chemical significance ($\Delta\rho_{\text{max}} = 0.29$, $\Delta\rho_{\text{min}} - 0.40$ e.Å⁻³). Absolute structure parameter (Flackⁱⁱⁱ) -0.002(4).

X-ray crystallographic data have been deposited with the Cambridge Crystallographic Data Centre under deposition number CCDC 1852707 for **3n**, respectively and can be obtained free of charge from the Centre via its website (<u>www.ccdc.cam.ac.uk/getstructures</u>).

- i SHELXT: Sheldrick, G.M. (2015). Acta Cryst. A71, 3-8.
- ii SHELXL: Sheldrick, G.M. (2015). Acta Cryst. C71, 3-8.
- iii Parsons, S., Flack, H.D. and Wagner, T. (2013) Acta Cryst. B69, 249-259.

Figure 1. View on molecule of **3n**, displaying *R*,*R* configuration on C2, C21 respectively. The displacement ellipsoids at 30% probability level.

Computing details

Data collection: Bruker Instrument Service vV6.2.6; cell refinement: *SAINT* V8.38A (Bruker AXS Inc., 2017); data reduction: *SAINT* V8.38A (Bruker AXS Inc., 2017); program(s) used to solve structure: SHELXT 2014/5 (Sheldrick, 2014); program(s) used to refine structure: *SHELXL2018*/1 (Sheldrick, 2018).

3a (fm309)

Crystal data

$C_{35}H_{31}BrN_2O_4S$	$D_{\rm x} = 1.362 {\rm ~Mg~m^{-3}}$
$M_r = 655.59$	Mo K α radiation, $\lambda = 0.71073$ Å
Orthorhombic, $P2_12_12_1$	Cell parameters from 7766 reflections
a = 7.2208 (4) Å	$\theta = 2.5 - 25.9^{\circ}$
b = 16.3286 (9) Å	$\mu = 1.39 \text{ mm}^{-1}$
c = 27.1076 (12) Å	T = 150 K
$V = 3196.1(3) \text{ Å}^3$	Prism, colourless
Z = 4	$0.31 \times 0.09 \times 0.07 \text{ mm}$
F(000) = 1352	

Data collection

Bruker D8 VENTURE Kappa Duo	6251 independent reflections
PHOTON 100 CMOS	
diffractometer	
Radiation source: IµS micro-focus sealed	5023 reflections with $I > 2\sigma(I)$
tube	
Quazar Mo multilayer optic	$R_{\rm int} = 0.064$
monochromator	
ϕ and ω scans	$\theta_{\text{max}} = 26.0^\circ, \ \theta_{\text{min}} = 2.5^\circ$
Absorption correction: numerical Mu	$h = -8 \rightarrow 8$
From Formula	
SADABS2016/2 - Bruker AXS area detector	
scaling and absorption correction	
$T_{\min} = 0.74, \ T_{\max} = 0.91$	$k = -19 \rightarrow 20$
32635 measured reflections	<i>l</i> = -33→33

Refinement

Refinement on F^2	H-atom parameters constrained					
Least-squares matrix: full	$w = 1/[\sigma^2(F_o^2) + (0.0265P)^2 + 1.1717P]$					
	where $P = (F_0^2 + 2F_c^2)/3$					
$R[F^2 > 2\sigma(F^2)] = 0.036$	$(\Delta/\sigma)_{max} < 0.001$					
$wR(F^2) = 0.072$	Δ _{max} = 0.29 e Å ⁻³					
S = 1.04	Δ _{min} = -0.40 e Å ⁻³					
6251 reflections	Extinction correction: SHELXL2018/1					
	(Sheldrick 2018),					
	$Fc^* = kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$					
392 parameters	Extinction coefficient: 0.0036 (4)					
0 restraints	Absolute structure: Flack x determined					
	using 1839 quotients [(I+)-(I-)]/[(I+)+(I-)]					
	(Parsons, Flack and Wagner, Acta Cryst. B69					
	(2013) 249-259).					
Hydrogen site location: mixed	Absolute structure parameter: -0.002 (4)					

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å²)

	x	y	z	$U_{\rm iso}*/U_{\rm eq}$
Br1	1.03963 (7)	0.26127 (3)	0.05528 (2)	0.04551
				(16)
S1	0.48421	0.20397 (6)	0.22350 (3)	0.0307 (2)
	(13)			
01	0.3206 (3)	0.24578	0.33765 (9)	0.0283 (6)
		(18)		
02	0.4674 (4)	0.37889	0.42406 (8)	0.0293 (6)
	0.4706(4)	(15)	0.200.47 (0)	0.0296 (6)
03	0.4726 (4)	0.49856	0.38047 (9)	0.0286 (6)
04	0.4700 (4)	(15)	0.24800 (0)	0.0204 (6)
04	0.4790 (4)	(16)	0.24699 (9)	0.0294 (0)
N1	0 5211 (4)	0 19183	0 3953/	0.0200 (6)
111	0.5211 (4)	(17)	(10)	0.0200 (0)
N2	0.5906 (4)	0.38680	0.34690	0.0224 (7)
		(19)	(10)	
H2	0.574951	0.415778	0.316834	0.027*
C1	0.4699 (5)	0.2443 (2)	0.35826	0.0204 (8)
			(10)	
C2	0.6383 (5)	0.3000 (2)	0.34608	0.0188 (8)
			(12)	
C3	0.7718 (5)	0.2773 (2)	0.38647	0.0187 (8)
			(12)	
C4	0.9396 (5)	0.3109 (2)	0.39969	0.0227 (8)
			(12)	
H4	0.989001	0.356219	0.382062	0.027*
C5	1.0357 (5)	0.2772 (2)	0.43948	0.0253 (8)
115	1 1 5 0 0 0 4	0.200221	(11)	0.020*
H5 CC	1.152094	0.299321	0.448868	0.030*
Co	0.9631 (5)	0.2121 (2)	0.40519	0.0257 (9)
Н6	1.030515	0 180073	0.402166	0.031*
C7	0.7924 (5)	0.1778 (2)	0.492100	0.031
C /	0.772+(3)	0.1770 (2)	(12)	0.0232())
H7	0.742579	0,132654	0.470210	0.028*
C8	0.6988 (4)	0.2125 (2)	0.41305	0.0182 (8)
			(12)	
C9	0.3946 (5)	0.1357 (2)	0.41913	0.0260 (9)
			(14)	
H9A	0.270821	0.141656	0.403821	0.031*
H9B	0.383072	0.151161	0.454314	0.031*
C10	0.4529 (5)	0.0470 (2)	0.41599	0.0248 (8)
			(13)	
C11	0.5302 (6)	0.0148 (2)	0.37331	0.0335 (10)
	0		(14)	
H11	0.550598	0.049394	0.345646	0.040*

C12	0.5781 (6)	-0.0675 (3)	0.37072	0.0426 (12)
			(17)	
H12	0.633051	-0.088541	0.341508	0.051*
C13	0.5468 (7)	-0.1183 (3)	0.40985	0.0451 (11)
1112	0.577000	0 174901	(18)	0.05.4*
H13	0.577000	-0.1/4801	0.407738	0.054*
C14	0.4714(7)	-0.0869 (3)	0.45221	0.0479(12)
H14	0.451873	-0.121838	0.479728	0.057*
C15	0.4232 (6)	-0.0047 (3)	0.45553	0.0380 (11)
010	0.1202 (0)		(14)	0.00000 (11)
H15	0.369661	0.015989	0.485027	0.046*
C16	0.5048 (5)	0.4184 (2)	0.38746	0.0243 (9)
			(13)	
C17	0.3793 (6)	0.5479 (3)	0.41937	0.0313 (10)
C19	0 1790 (6)	0.5194 (2)	(14)	0.0519.(14)
C18	0.1789(0)	0.5184 (3)	0.42545	0.0518 (14)
H18A	0 108870	0 555823	0 444658	0.078*
H18R	0.176775	0.463239	0.437736	0.078*
H18C	0.122606	0.517065	0.390557	0.078*
C19	0.4814 (9)	0.5434 (3)	0.46693	0.0592 (16)
015	0.1011())	010 10 1 (0)	(15)	0.0072 (10)
H19A	0.426627	0.581885	0.490512	0.089*
H19B	0.611651	0.557627	0.461483	0.089*
H19C	0.473224	0.487629	0.480133	0.089*
C20	0.3869 (6)	0.6330 (3)	0.39817	0.0405 (11)
			(16)	
H20A	0.327416	0.671375	0.421003	0.061*
H20B	0.321862	0.634001	0.366447	0.061*
H20C	0.516386	0.649011	0.393254	0.061*
C21	0.7078 (4)	0.2768 (2)	0.29274	0.0171 (8)
~~~			(12)	
C22	0.7556 (5)	0.1867 (2)	0.28855	0.0202 (8)
C22	0 2005 (5)	0.1465 (2)	(12)	0.0240.(0)
C25	0.8993 (3)	0.1403 (2)	(13)	0.0240 (9)
H23	0.974434	0.174845	0.335463	0.029*
C24	0.9334 (6)	0.0645 (3)	0.30176	0.0317 (10)
			(14)	~ /
H24	1.031313	0.036835	0.318225	0.038*
C25	0.8266 (6)	0.0224 (3)	0.26771	0.0344 (11)
			(15)	
H25	0.850005	-0.033853	0.261449	0.041*
C26	0.6856 (6)	0.0625 (3)	0.24276	0.0321 (10)
	0 (1 (1 0 1	0.024571	(14)	0.020#
H26	0.614101	0.034571	0.218614	0.039*
C27	0.6509 (5)	0.1441 (2)	0.25372	0.0237 (9)
C28	0 5472 (5)	0.2028 (2)	0 25610	0.0224 (8)
C20	0.5472 (5)	0.2928 (2)	(12)	0.0224 (8)
C29	0.8757 (5)	0 3297 (2)	0 27584	0.0234 (9)
		0.02) ( (2)	(12)	0.0201(2)
H29A	0.846121	0.388348	0.280569	0.028*
H29B	0.984538	0.316484	0.296583	0.028*
C30	0.9234 (5)	0.3145 (2)	0.22186	0.0216 (8)
			(12)	
C31	0.8558 (5)	0.3666 (2)	0.18551	0.0252 (9)

			(13)	
H31	0.783370	0.412705	0.194683	0.030*
C32	0.8928 (5)	0.3521 (3)	0.13572	0.0308 (10)
			(13)	
H32	0.847381	0.388038	0.110980	0.037*
C33	0.9966 (5)	0.2845 (2)	0.12328	0.0278 (9)
			(12)	
C34	1.0666 (5)	0.2330 (3)	0.15833	0.0326 (10)
			(13)	
H34	1.138786	0.186873	0.149005	0.039*
C35	1.0311 (5)	0.2489 (3)	0.20778	0.0299 (9)
			(12)	
H35	1.081929	0.213889	0.232294	0.036*

## Atomic displacement parameters (Å²)

		$U^{11}$		$U^{22}$		$U^{33}$		$U^{12}$		$U^{13}$		$U^{23}$
Br1		0.059		0.056		0.020		-		0.008		-
	9 (3)		1 (3)		54 (18	)	0.0196	5(2)	8 (2)		0.0061	0 (19)
S1		0.022		0.042		0.026		0.002		-		-
	6 (5)		6 (6)		9 (5)		1 (5)		0.0075	i (4)	0.0079	9 (4)
01		0.017		0.040		0.027		0.001		-		0.002
	0 (12)		4 (19)		5 (13)		1 (12)		0.0016	5 (11)	4 (13)	
O2		0.042		0.024		0.020		0.004		0.006		0.004
	5 (16)		6 (15)		8 (12)		5 (14)		4 (13)		5 (11)	
O3		0.038		0.022		0.024		0.008		0.010		0.001
-	9 (16)		1 (15)		6 (12)		0 (14)		4 (13)		5 (10)	
O4		0.029		0.033		0.025		0.007		-		0.006
	4 (14)		6 (17)		2 (12)		0 (13)		0.0009	0 (13)	5 (12)	
N1		0.015		0.022		0.022		-		0.003		0.002
	1 (14)		6 (17)		4 (14)		0.0006	6 (14)	2 (13)		5 (12)	
N2	0 (10)	0.029	1 (10)	0.021		0.016	o (1 1)	0.005		0.004	a (1 a)	0.002
~.	9 (18)		1 (19)		3 (14)		9 (14)		2 (13)		3 (13)	
C1	0 (10)	0.019		0.024	0 (15)	0.017	4 (10)	0.001	0 (15)	0.004	0.0010	-
	9 (18)	0.010	(2)	0.000	3 (15)	0.01.6	4 (18)	0.000	9 (15)	0.000	0.0012	2 (15)
C2	4 (17)	0.019	$\langle \mathbf{O} \rangle$	0.020	(17)	0.016	C (1 C)	0.002	0 (15)	0.000	2 (10)	0.001
	4(1/)	0.010	(2)	0.001	6(1/)	0.016	6 (16)	0.000	0(15)	0.001	2 (16)	
03	(17)	0.018	$(\mathbf{a})$	0.021	c(10)	0.016	7 (10)	0.002	4 (15)	0.001	0.0026	-
<u> </u>	6(17)	0.025	(2)	0.024	6(16)	0.010	/(16)		4 (15)	0.002	0.0025	5 (15)
C4	5 (10)	0.025	( <b>2</b> )	0.024	9 (17)	0.018	0.0004	-	$\epsilon$ (1 $\epsilon$ )	0.002	0.0011	-
C5	5 (19)	0.021	(2)	0.026	0(17)	0.010	0.0004	$\frac{10}{0.000}$	0(10)		0.0011	(13)
C5	0(17)	0.021	(2)	0.050	0(16)	0.019	1 (18)	0.000	0.0016	-	0.004/	-
C6	0(17)	0.025	(2)	0.034	0(10)	0.017	1 (10)	0.004	0.0010	)(17)	0.0044	•(10)
CO	4 (18)	0.025	(2)	0.034	9(16)	0.017	7 (19)	0.004	0 0000	-	0.0013	$\frac{-}{3}(16)$
C7	4 (10)	0.026	(2)	0.027	9(10)	0.016	7 (19)	0.006	0.0003	$\frac{1}{0.003}$	0.001.	$\frac{10}{0.004}$
C/	4 (19)	0.020	(2)	0.027	4 (18)	0.010	9 (16)	0.000	3 (16)	0.005	0(16)	0.004
C8	1(1))	0.015	(2)	0.023	1 (10)	0.016	> (10)	0.003	5 (10)	0.003	0 (10)	-
00	4 (17)	0.012	(2)	0.025	2(17)	0.010	2 (15)	0.005	7 (15)	0.005	0.0021	(15)
C9	. (17)	0.023	(=)	0.029	= (17)	0.026	= (10)	0.000	, (10)	0.006	0.002	0.004
	(2)		(3)		(2)		0(17)		9 (17)		9 (17)	
C10		0.021		0.026		0.027		-		-		0.002
	0 (18)		(2)		5 (18)		0.0029	(18)	0.0034	(18)	9 (16)	
C11		0.035		0.031		0.035		-		0.006		0.001
	(2)		(3)		(2)		0.001	(2)	(2)		9 (17)	
C12		0.042		0.033		0.052		-		0.006		-
	(3)		(3)		(3)		0.003	(2)	(2)		0.010	(2)
C13		0.043		0.027		0.065		0.001		-		-

	(3)		(3)		(3)		(2)	0.013 (3)	0.002 (2)
C14		0.062		0.035		0.046	-	-	0.016
	(3)		(3)		(3)		0.006 (2)	0.021 (3)	(2)
C15		0.050		0.038		0.026	-	-	0.005
	(3)		(3)		(2)		0.005 (2)	0.004 (2)	5 (18)
C16		0.025		0.024		0.023	0.005	-	0.000
	(2)		(2)		7 (18)		3 (17)	0.0013 (17)	9 (16)
C17		0.044		0.027		0.023	0.007	0.010	-
	(2)		(3)		0 (19)		(2)	0 (19)	0.0046 (18)
C18		0.050		0.038		0.067	0.005	0.032	0.002
	(3)		(3)		(3)		(2)	(3)	(2)
C19		0.100		0.041		0.037	0.011	-	-
	(5)		(3)		(2)		(3)	0.013 (3)	0.014 (2)
C20		0.048		0.026		0.048	0.007	0.014	0.002
	(3)		(3)		(3)		(2)	(2)	(2)
C21		0.014		0.022		0.014	0.000	-	-
	3 (16)		(2)		9 (16)		4 (15)	0.0011 (14)	0.0022 (15)
C22		0.016		0.027		0.016	0.002	0.005	0.002
	7 (17)		(2)		5 (18)		9 (16)	6 (15)	0 (16)
C23		0.019		0.032		0.020	0.003	0.001	-
	6 (19)		(3)		6 (18)		7 (17)	5 (16)	0.0005 (17)
C24		0.028		0.033		0.034	0.011	0.001	-
	(2)		(3)		(2)		2 (19)	6 (19)	0.0015 (18)
C25		0.038		0.027		0.039	0.008	0.006	-
	(2)		(3)		(2)		0 (19)	(2)	0.007 (2)
C26		0.031		0.037		0.028	-	0.000	-
	(2)		(3)		(2)		0.0031 (19)	5 (18)	0.0103 (19)
C27		0.018		0.031		0.022	-	0.003	-
	4 (18)		(3)		1 (18)		0.0020 (16)	1 (16)	0.0041 (18)
C28		0.017		0.032		0.017	-	0.003	0.002
	6 (16)		(2)		3 (16)		0.0010 (18)	3 (16)	5 (15)
C29		0.021		0.029		0.019	-	-	0.000
	5 (18)		(2)		7 (18)		0.0030 (16)	0.0013 (16)	6 (17)
C30		0.017		0.030		0.017	-	-	0.001
	4 (18)		(2)		3 (17)		0.0070 (16)	0.0009 (15)	3 (16)
C31		0.028		0.021		0.027	-	0.002	0.000
	(2)		(2)		(2)		0.0034 (17)	2 (17)	8 (17)
C32		0.032		0.040		0.020	-	-	0.010
	(2)		(3)		8 (19)		0.010 (2)	0.0016 (17)	0 (18)
C33		0.023		0.037		0.023	-	0.003	-
	(2)		(3)		0 (18)		0.0100 (18)	9 (16)	0.0023 (16)
C34		0.031		0.036		0.031	0.001	0.008	-
	(2)		(3)		1 (19)		(2)	3 (18)	0.0029 (19)
C35		0.021		0.046		0.022	0.005	0.004	0.007
	2 (17)		(3)		6 (16)		(2)	2 (16)	4 (18)

## Geometric parameters (Å, °)

Br1-C33	1.907 (3)	C15—H15	0.9500
S1—C27	1.753 (4)	C17—C19	1.487 (6)
S1—C28	1.758 (4)	C17—C20	1.504 (6)
01—C1	1.215 (4)	C17—C18	1.530 (6)
O2—C16	1.214 (4)	C18—H18A	0.9800
O3—C16	1.343 (4)	C18—H18B	0.9800
O3—C17	1.489 (4)	C18—H18C	0.9800
O4—C28	1.209 (4)	C19—H19A	0.9800
N1-C1	1.371 (4)	C19—H19B	0.9800
N1—C8	1.411 (4)	C19—H19C	0.9800

N1-C9	1.446 (4)	C20—H20A	0.9800
N2-C16	1.364 (4)	C20—H20B	0.9800
N2-C2	1.459 (5)	C20—H20C	0.9800
N2—H2	0.9491	C21—C22	1.515 (5)
C1—C2	1.554 (5)	C21—C28	1.549 (5)
C2-C3	1.505 (5)	C21—C29	1.557 (5)
C2-C21	1 576 (5)	C22—C23	1 387 (5)
C3-C4	1 378 (5)	<u> </u>	1 395 (5)
<u>C3</u> —C8	1 383 (5)	C23-C24	1 392 (5)
<u> </u>	1.305 (5)	С23—Н23	0.9500
C4 C3	0.9500	C24 C25	1 385 (6)
$C_{4}$	1 374 (5)	C24-C25	0.9500
C5 U5	0.0500	C24—I124	1 386 (6)
	1 206 (5)	C25_H25	0.0500
	1.390 (3)	C25—H25	0.9300
C6—H6	0.9500	C26-C27	1.389 (6)
C/—C8	1.387 (5)	C26—H26	0.9500
C/—H/	0.9500	C29—C30	1.524 (5)
<u>C9–C10</u>	1.512(5)	C29—H29A	0.9900
C9—H9A	0.9900	C29—H29B	0.9900
С9—Н9В	0.9900	C30—C35	1.378 (5)
C10—C15	1.380 (5)	<u>C30–C31</u>	1.390 (5)
C10-C11	1.388 (5)	C31—C32	1.396 (5)
C11—C12	1.389 (6)	C31—H31	0.9500
C11—H11	0.9500	C32—C33	1.376 (6)
C12—C13	1.366 (6)	С32—Н32	0.9500
C12—H12	0.9500	C33—C34	1.366 (5)
C13—C14	1.370 (6)	C34—C35	1.389 (5)
C13—H13	0.9500	C34—H34	0.9500
C14—C15	1.390 (6)	C35—H35	0.9500
C14—H14	0.9500		
C27—S1—C28	92.69 (18)	C17—C18— H18B	109.5
C16—O3—C17	120.4 (3)	H18A—C18— H18B	109.5
C1—N1—C8	110.2 (3)	C17—C18— H18C	109.5
C1—N1—C9	123.5 (3)	H18A—C18— H18C	109.5
C8—N1—C9	125.1 (3)	H18B—C18— H18C	109.5
C16—N2—C2	119.1 (3)	C17—C19— H19A	109.5
C16—N2—H2	116.7	C17—C19— H19B	109.5
C2—N2—H2	120.0	H19A—C19— H19B	109.5
01—C1—N1	126.1 (3)	C17—C19— H19C	109.5
01—C1—C2	125.8 (3)	H19A—C19— H19C	109.5
N1—C1—C2	108.1 (3)	H19B—C19— H19C	109.5
N2—C2—C3	112.3 (3)	C17—C20— H20A	109.5
N2—C2—C1	112.4 (3)	С17—С20— Н20В	109.5

	C3—C2—C1	101.7 (3)	H20A—C20—	109.5
			H20B	
	N2-C2-C21	108.8 (3)	C17—C20—	109.5
			H20C	
	C3—C2—C21	113.9 (3)	H20A—C20—	109.5
	<u> </u>		H20C	100 5
	C1—C2—C21	107.7 (3)	H20B—C20—	109.5
	G4 G2 G2	120.2 (2)	H20C	106.6 (0)
	C4—C3—C8	120.3 (3)	C22 - C21 - C21	106.6 (3)
	C4 C2 C2	120.9.(2)	C28	100.9 (2)
	C4—C3—C2	150.8 (5)	$C_{22} - C_{21} - C_{20}$	109.8 (3)
	$C_8 C_3 C_2$	108.0 (3)	C29	107 5 (3)
	0 05 02	100.9 (5)	C29 C21	107.5 (5)
	$C_{3}-C_{4}-C_{5}$	1187(3)	C22 - C21 - C2	112.0 (3)
	C3-C4-H4	120.6	$C_{28} - C_{21} - C_{2}$	108.0 (3)
	C5-C4-H4	120.6	C20 C21 C2	112 6 (3)
	C6-C5-C4	120.5 (3)	$C^{23}$	112.0 (3)
	0-05-04	120.3 (3)	C23—C22—	110.7 (4)
	C6-C5-H5	1197	C23-C22-	126 5 (3)
	00 00 110	11)./	C21	120.0 (0)
	С4—С5—Н5	119.7	C27—C22—	114.3 (3)
	0. 00 110		C21	
	C5—C6—C7	121.5 (3)	C22—C23—	119.5 (4)
			C24	
	С5—С6—Н6	119.3	C22—C23—	120.2
			H23	
	С7—С6—Н6	119.3	C24—C23—	120.2
			H23	
	C8—C7—C6	117.1 (3)	C25—C24—	121.0 (4)
			C23	
	С8—С7—Н7	121.5	C25—C24—	119.5
			H24	
	С6—С/—Н/	121.5	C23—C24—	119.5
	<b>GO GO G</b>	101.0 (0)	H24	120 1 (4)
	C3-C8-C7	121.9 (3)	C24—C25—	120.1 (4)
	C2 C9 N1	110 c (2)	C20	120.0
	C3-C8-N1	110.0 (5)	U24—U25—	120.0
	C7 C9 N1	127 4 (2)	C26 C25	120.0
	C/CoNI	127.4 (3)	Н25	120.0
	N1-C9-C10	1140(3)	C25—C26—	1187(4)
			C27	
	N1—C9—H9A	108.8	C25—C26—	120.6
			H26	
	С10—С9—	108.8	C27—C26—	120.6
H9A			H26	
	N1—C9—H9B	108.8	C26—C27—	121.7 (3)
			C22	
	С10—С9—	108.8	C26—C27—S1	124.0 (3)
H9B				
	Н9А—С9—	107.7	C22—C27—S1	114.2 (3)
H9B	<u></u>	440		4.0.0.0
011	C15—C10—	118.6 (4)	O4—C28—C21	123.9 (3)
CII	C15 C10 C0	110.0 (2)	04 022 01	102.9 (2)
	C13 - C10 - C9	119.9 (3)	04 - 028 - 51	123.8 (3)
	<u>CII</u> <u>CI0</u> <u>C</u> 9	121.4 (3)	C21—C28—S1	112.2 (3)
	C10—C11—	120.5 (4)	C30—C29—	111.6 (3)

C12			C21	
H11	C10—C11—	119.7	C30—C29— H29A	109.3
H11	C12—C11—	119.7	C21—C29—	109.3
C11	C13—C12—	120.5 (4)	C30—C29—	109.3
	C13—C12—	119.8	C21—C29—	109.3
HI2	C11—C12—	119.8	H29B H29A—C29—	108.0
HI2	C12—C13—	119.3 (4)	C35—C30—	118.5 (3)
C14	C12—C13—	120.4	C31 C35—C30—	121.3 (3)
H13	C14—C13—	120.4	C29 C31—C30—	120.1 (3)
H13	C13—C14—	121.0 (4)	C29 C30—C31—	120.9 (4)
	C13—C14—	119.5	C32 C30—C31—	119.5
H14	C15—C14—	119.5	H31 C32—C31—	119.5
H14	C10—C15—	120.0 (4)	C33—C32—	118.5 (4)
C14	C10—C15—	120.0	C31 C33—C32—	120.7
H15	C14—C15—	120.0	H32 C31—C32—	120.7
ніз	O2-C16-O3	126.5 (3)	H32 C34—C33—	121.7 (3)
	O2-C16-N2	124.0 (3)	C32 C34—C33—	119.3 (3)
	O3-C16-N2	109.5 (3)	C32—C33—	119.0 (3)
	C19—C17—O3	111.3 (3)	C33—C34—	119.2 (4)
C20	C19—C17—	111.1 (4)	C33—C34—	120.4
0.20	O3—C17—C20	102.3 (3)	C35—C34—	120.4
C18	C19—C17—	113.0 (4)	C30—C35—	121.1 (3)
	O3—C17—C18	108.0 (3)	C30—C35—	119.4
C18	C20—C17—	110.7 (4)	C34—C35—	119.4
H18A	C17—C18—	109.5		

Document origin: publCIF [Westrip, S. P. (2010). J. Apply. Cryst., 43, 920-925].
#### 6 Literature

- ¹ Urban, M.; Franc, M.; Hofmanová, M.; Veselý, J. Org. Biomol. Chem. 2017, 15, 9077.
- ² Ohmatsu, Kohsuke et al *Chem. Sci.* **2014**, *5*, 3645.
- ³ a) Giles, R. G.; Lewis, N. J.; Quick, J. K.; Sasse, M. J.; Urquhart, M. W. J.; Youssef,
  L. *Tetrahedron*, **2000**, *56*, 4531. b) Kamlar, M.; Císařová, I.; Veselý, J. Org.
  *Biomol. Chem.* **2015**, *13*, 2884.
- ⁴ a) Cao, S; Zhu, L.; Zhao, Ch.; Tang, X.; Sun, H.; Feng, X.; Quian, X. Monatsh Chem, 2008, 139, 923. b) Indian J. Chem., Sec. B, 2000, 39B, 853.

#### 7 NMR Spectra of Compounds

#### 2b 3-(2-Bromobenzyl)benzo[*b*]thiophen-2(3*H*)-on



2c 3-(3-Bromobenzyl)benzo[*b*]thiophen-2(3*H*)-one



2d 3-(4-Bromobenzyl)benzo[*b*]thiophen-2(3*H*)-one



#### 2e 3-(4-Nitrobenzyl)benzo[*b*]thiophen-2(3*H*)-one



2i 3-Benzyl-5-bromobenzo[*b*]thiophen-2(3*H*)-one



**3a** *tert*-Butyl ((*R*)-*N*-1-benzyl-3-((*R*)-3-benzyl-2-oxo-2,3-dihydrobenzo[*b*]thiophen-3-yl)-2-oxoindolin-3-yl)carbamate



**3b** *tert*-Butyl ((*R*)-*N*-1-acetyl-3-((*R*)-3-benzyl-2-oxo-2,3-dihydrobenzo[*b*]thiophen-3-yl)-2-oxoindolin-3-yl)carbamate



**3c** *tert*-Butyl 3-((R)-3-benzyl-2-oxo-2,3-dihydrobenzo[*b*]thiophen-3-yl)-3-((R)-(tert-butoxycarbonyl)amino)-2-oxoindolin-*N*-1-carboxylate



**3d** *tert*-Butyl ((*R*)-*N*-1-allyl-3-((*R*)-3-benzyl-2-oxo-2,3-dihydrobenzo[*b*]thiophen-3-yl)-2-oxoindolin-3-yl)carbamate



**3e** *tert*-Butyl (3-((R)-3-benzyl-2-oxo-2,3-dihydrobenzo[b]thiophen-3-yl)- (R)-1- (methoxymethyl)-2-oxoindolin-3-yl)carbamate



**3h** *tert*-Butyl ((*R*)-1-benzyl-3-((*R*)-3-benzyl-2-oxo-2,3-dihydrobenzo[*b*]thiophen-3-yl)-5-bromo-2-oxoindolin-3-yl)carbamate



**3i** *tert*-Butyl ((*R*)-1-benzyl-3-((*R*)-3-benzyl-2-oxo-2,3-dihydrobenzo[*b*]thiophen-3-yl)-6-bromo-2-oxoindolin-3-yl)carbamate



**3j** *tert*-Butyl ((*R*)-1-benzyl-3-((*R*)-3-benzyl-2-oxo-2,3-dihydrobenzo[*b*]thiophen-3-yl)-7-bromo-2-oxoindolin-3-yl)carbamate



**3k** *tert*-Butyl ((*R*)-1-benzyl-3-((*R*)-3-benzyl-2-oxo-2,3-dihydrobenzo[*b*]thiophen-3-yl)-5-chloro-2-oxoindolin-3-yl)carbamate



**3l** *tert*-Butyl ((*R*)-1-benzyl-3-((*R*)-3-benzyl-2-oxo-2,3-dihydrobenzo[*b*]thiophen-3-yl) 5-methyl-2-oxoindolin-3-yl)carbamate



**3m** *tert*-Butyl ((*R*)-1-benzyl-3-((*R*)-3-benzyl-2-oxo-2,3-dihydrobenzo[*b*]thiophen-3-yl)-5-nitro-2-oxoindolin-3-yl)carbamate



**3n** *tert*-Butyl ((*R*)-1-benzyl-3-((*R*)-3-(4-bromobenzyl)-2-oxo-2,3dihydrobenzo[*b*]thiophen-3-yl)-2-oxoindolin-3-yl)carbamate



**3o** *tert*-Butyl ((*R*)-1-benzyl-3-((*R*)-3-(3-bromobenzyl)-2-oxo-2,3dihydrobenzo[*b*]thiophen-3-yl)-2-oxoindolin-3-yl)carbamate



**3p** *tert*-Butyl ((*R*)-1-benzyl-3-((*R*)-3-(2-bromobenzyl)-2-oxo-2,3dihydrobenzo[*b*]thiophen-3-yl)-2-oxoindolin-3-yl)carbamate



**3q** *tert*-Butyl ((*R*)-1-benzyl-3-((*R*)-3-(4-nitrobenzyl)-2-oxo-2,3dihydrobenzo[*b*]thiophen-3-yl)-2-oxoindolin-3-yl)carbamate



**3r** *tert*-Butyl ((*R*)-1-benzyl-3-((*R*)-3-(4-methoxybenzyl)-2-oxo-2,3dihydrobenzo[*b*]thiophen-3-yl)-2-oxoindolin-3-yl)carbamate



**3s** *tert*-Butyl ((*R*)-1-benzyl-3-((*R*)-3-isopentyl-2-oxo-2,3-dihydrobenzo[*b*]thiophen-3-yl)-2-oxoindolin-3-yl)carbamate



**3t** Methyl 3-(3-(1-benzyl-3-((*tert*-butoxycarbonyl)amino)-2-oxoindolin-3-yl)-2-oxo-2,3dihydrobenzo[*b*]thiophen-3-yl)propanoate



**3u** *tert*-Butyl ((*R*)-1-benzyl-3-((*R*)-3-benzyl-5-bromo-2-oxo-2,3dihydrobenzo[*b*]thiophen-3-yl)-2-oxoindolin-3-yl)carbamate



(6a[•]) *tert*-butyl (1-benzyl-3-(5-benzyl-4-oxo-3-phenyl-2-thioxothiazolidin-5-yl)-2-oxoindolin-3-yl)carbamate



#### 8 HPLC Analysis of Compounds

### *tert*-Butyl ((*R*)-*N*-1-benzyl-3-((*R*)-3-benzyl-2-oxo-2,3-dihydrobenzo[*b*]thiophen-3-yl)-2-oxoindolin-3-yl)carbamate (3a)

HPLC 3a: Chiral column AD, n-heptane/isopropanol (80:20), 1.0 mL, 210 nm, 25 °C







### *tert*-Butyl ((*R*)-1-acetyl-3-((*R*)-3-benzyl-2-oxo-2,3-dihydrobenzo[*b*]thiophen-3-yl)-2-oxoindolin-3-yl)carbamate (3b) – major diastereoisomer

HPLC 3b: Chiral column AD, n-heptane/isopropanol (90:10), 1.0 mL, 210 nm, 25 °C



Chiral ee = 71 %



### *tert*-Butyl ((S)-1-acetyl-3-((S)-3-benzyl-2-oxo-2,3-dihydrobenzo[b]thiophen-3-yl)-2-oxoindolin-3-yl)carbamate (3b⁴) - minor diastereoisomer

HPLC 3b': Chiral column AD, n-heptane/isopropanol (90:10), 1.0 mL, 210 nm, 25 °C



Chiral ee = 69 %



# *tert*-Butyl 3-(3-benzyl-2-oxo-2,3-dihydrobenzo[b]thiophen-3-yl)-3-((*tert*-butoxycarbonyl)amino)-2-oxoindolin-N-1-carboxylate (3c) – major diastereoisomer HPLC 3c: Chiral column AD, *n*-heptane/isopropanol (95:5), 0.25 mL, 210 nm, 15 °C



#### Chiral ee = 86 %



### *tert*-Butyl 3-(3-benzyl-2-oxo-2,3-dihydrobenzo[b]thiophen-3-yl)-3-((*tert*-butoxycarbonyl)amino)-2-oxoindolin-N-1-carboxylate (3c⁺) – minor diastereoisomer

HPLC 3c': Chiral column AD, n-heptane/isopropanol (95:5), 0.25 mL, 210 nm, 15 °C

#### Racemate



#### Chiral ee = 82 %



### $tert\mbox{-Butyl}\ ((R)\mbox{-}N\mbox{-}1\mbox{-}allyl\mbox{-}3\mbox{-}(R)\mbox{-}3\mbox{-}blyl\mbox{-}2\mbox{-}oxo\mbox{-}2\mbox{-}3\mbox{-}dhyd\mbox{robenzo}[b]\mbox{thiophen-}3\mbox{-}yl)\mbox{-}2\mbox{-}oxo\mbox{indolin-}3\mbox{-}yl)\mbox{carbamate}\ (3d)$

HPLC 3d: Chiral column AD, n-heptane/isopropanol (80:20), 1.0 mL, 210 nm, 25 °C

#### Racemate



#### Chiral ee = 94 %



#### *tert*-Butyl ((*R*)-3-(3-benzyl-2-oxo-2,3-dihydrobenzo[*b*]thiophen-3-yl)- (*R*)-1-(methoxymethyl)-2-oxoindolin-3-yl)carbamate (3e)

HPLC 3e: Chiral column AD, n-heptane/isopropanol (80:20), 1.0 mL, 210 nm, 25 °C

#### Racemate



#### Chiral ee = 94 %



## *tert*-Butyl ((*R*)-1-benzyl-3-((*R*)-3-benzyl-2-oxo-2,3-dihydrobenzo[*b*]thiophen-3-yl)-5-bromo-2-oxoindolin-3-yl)carbamate (3h)

HPLC 3h: Chiral column AD, n-heptane/isopropanol (80:20), 1.0 mL, 210 nm, 25 °C



Chiral ee = 90 %



#### *tert*-Butyl ((*R*)-1-benzyl-3-((*R*)3-benzyl-2-oxo-2,3-dihydrobenzo[*b*]thiophen-3-yl)-6bromo-2-oxoindolin-3-yl)carbamate (3i)

HPLC 3i: Chiral column AD, *n*-heptane/isopropanol (80:20), 1.0 mL, 210 nm, 25 °C



Chiral ee = 91 %



# *tert*-Butyl ((*R*)-1-benzyl-3-((*R*)3-benzyl-2-oxo-2,3-dihydrobenzo[*b*]thiophen-3-yl)-7-bromo-2-oxoindolin-3-yl)carbamate (3j)

HPLC 3j: Chiral column AD, n-heptane/isopropanol (80:20), 1.0 mL, 210 nm, 25 °C



Chiral ee = 89 %



### *tert*-Butyl ((*R*)-1-benzyl-3-((*R*)-3-benzyl-2-oxo-2,3-dihydrobenzo[*b*]thiophen-3-yl)-5-chloro-2-oxoindolin-3-yl)carbamate (3k)

HPLC 3k: Chiral column AD, n-heptane/isopropanol (80:20), 1.0 mL, 210 nm, 25 °C


#### Chiral ee = 88 %



# *tert*-Butyl ((*R*)-1-benzyl-3-((*R*)-3-benzyl-2-oxo-2,3-dihydrobenzo[*b*]thiophen-3-yl) 5methyl-2-oxoindolin-3-yl)carbamate (3l)

HPLC 31: Chiral column AD, n-heptane/isopropanol (80:20), 1.0 mL, 210 nm, 25 °C

Racemate



Chiral ee = 94 %



# *tert*-Butyl ((*R*)-1-benzyl-3-((*R*)-3-benzyl-2-oxo-2,3-dihydrobenzo[*b*]thiophen-3-yl)-5nitro-2-oxoindolin-3-yl)carbamate (3m) – major diastereoizomer

HPLC 3m: Chiral column IB, n-heptane/isopropanol (95:5), 1.0 mL, 250 nm, 25 °C



#### Chiral ee = 23 %



# *tert*-Butyl ((S)-1-benzyl-3-((S)-3-benzyl-2-oxo-2,3-dihydrobenzo[b]thiophen-3-yl)-5-nitro-2-oxoindolin-3-yl)carbamate (3m⁴) – minor diastereoizomer

HPLC 3m': Chiral column IB, n-heptane/isopropanol (95:5), 1.0 mL, 250 nm, 25 °C



#### Chiral ee = 99 %



*tert*-Butyl ((*R*)-1-benzyl-3-((*R*)-3-(4-bromobenzyl)-2-oxo-2,3-dihydrobenzo[*b*]thiophen-3-yl)-2-oxoindolin-3-yl)carbamate (3n)

# HPLC 3n: Chiral column AD, n-heptane/isopropanol (80:20), 1.0 mL, 210 nm, 25 °C

Racemate



## Chiral ee = 92 %



*tert*-Butyl ((*R*)-1-benzyl-3-((*R*)-3-(3-bromobenzyl)-2-oxo-2,3-dihydrobenzo[*b*]thiophen-3-yl)-2-oxoindolin-3-yl)carbamate (30)

# HPLC 30: Chiral column AD, n-heptane/isopropanol (80:20), 1.0 mL, 210 nm, 25 °C

Racemate



Chiral ee = 92 %



*tert*-Butyl ((*R*)-1-benzyl-3-((*R*)-3-(3-bromobenzyl)-2-oxo-2,3-dihydrobenzo[*b*]thiophen-3-yl)-2-oxoindolin-3-yl)carbamate (3p)

# HPLC 3p: Chiral column AD, n-heptane/isopropanol (80:20), 1.0 mL, 210 nm, 25 °C

### Racemate



## Chiral ee = 80 %



*tert*-Butyl ((*R*)-1-benzyl-3-((*R*)-3-(4-nitrobenzyl)-2-oxo-2,3-dihydrobenzo[*b*]thiophen-3-yl)-2-oxoindolin-3-yl)carbamate (3q)

# HPLC 3q: Chiral column IB, n-heptane/isopropanol (80:20), 1.0 mL, 207 nm, 25 °C

#### Racemate



#### Chiral ee = 93 %



*tert*-Butyl ((*R*)-1-benzyl-3-((*R*)-3-(4-methoxybenzyl)-2-oxo-2,3-dihydrobenzo[*b*]thiophen-3-yl)-2-oxoindolin-3-yl)carbamate (3r)

# HPLC 3r: Chiral column ODH, n-heptane/isopropanol (90:10), 1.0 mL, 190 nm, 25 °C

#### Racemate



#### Chiral ee = 96 %



# *tert*-Butyl ((*R*)-1-benzyl-3-((*R*)-3-isopentyl-2-oxo-2,3-dihydrobenzo[*b*]thiophen-3-yl)-2-oxoindolin-3-yl)carbamate (3s)

HPLC 3s: Chiral column AD, n-heptane/isopropanol (80:20), 1.0 mL, 207 nm, 25 °C



# Chiral *ee* = 91 %



# Methyl 3-(3-(1-benzyl-3-((*tert*-butoxycarbonyl)amino)-2-oxoindolin-3-yl)-2-oxo-2,3dihydrobenzo[*b*]thiophen-3-yl)propanoate (3t) – major diastereoizomer

HPLC 3t: Chiral column AD, n-heptane/isopropanol (80:20), 1.0 mL, 210 nm, 25 °C

Racemate



Chiral ee = 91 %



# Methyl 3-(3-(1-benzyl-3-((*tert*-butoxycarbonyl)amino)-2-oxoindolin-3-yl)-2-oxo-2,3dihydrobenzo[*b*]thiophen-3-yl)propanoate (3t') - minor diastereoizomer

HPLC 3t': Chiral column AD, n-heptane/isopropanol (80:20), 1.0 mL, 210 nm, 25 °C

Racemate



Chiral ee = 77 %



# *tert*-Butyl ((*R*)-1-benzyl-3-((*R*)-3-benzyl-5-bromo-2-oxo-2,3-dihydrobenzo[*b*]thiophen-3-yl)-2-oxoindolin-3-yl)carbamate (3u)

HPLC 3u: Chiral column AD, n-heptane/isopropanol (80:20), 1.0 mL, 210 nm, 25 °C



#### Chiral ee = 89 %



# *tert*-butyl (1-benzyl-3-(5-benzyl-4-oxo-3-phenyl-2-thioxothiazolidin-5-yl)-2-oxoindolin-3-yl)carbamate (6a')

HPLC 6a': Chiral column AD, n-heptane/isopropanol (90:10), 1.0 mL, 211 nm, 25 °C

## Racemate



## Chiral ee = 34 %

