Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2019

> Exploitation of Donor-Acceptor Cyclopropanes and *N*-Sulfonyl 1-Azadienes Towards the Synthesis of Spiro-Cyclopentane Benzofuran Derivatives

> > Kamal Verma, Irshad Maajid Taily and Prabal Banerjee*

Department of Chemistry, Indian Institute of Technology Ropar,

Nangal Road, Rupnagar, Punjab, India Pin 140001,

E-mail: prabal@iitrpr.ac.in

Experimental Section

All reactions were carried out under inert atmosphere using oven dried glassware. All solvents and reagents were obtained from commercial sources and were purified using standard procedure prior to use. The developed chromatogram was analyzed by UV lamp (254 nm), or *p*-Anisaldehyde solution. Products were purified by flash chromatography on silica gel (mesh size 230-400). The ¹H and ¹³C-NMR spectra were recorded in CDCl₃. Chemical shifts of ¹H and ¹³C-NMR spectra are expressed in parts per million (ppm). All coupling constants are given in absolute values and are expressed in Hz. The description of the signals includes: s = singlet, d = doublet, dd = doublet, t = triplet, dt = doublet of triplet, q = quartet, pent = pentet, br = broad and m = multiplet. The DACs¹ and azadienes^{2c} were prepared according to the known methods.

(**E**)-**N**-((**Z**)-2-benzylidenebenzofuran-3(2H)-ylidene)-4-methylbenzenesulfonamide (2a)^{2c}: ¹H NMR (400 MHz, CDCl₃): δ 8.78 (d, *J* = 8.1 Hz, 1H), 8.00 (d, *J* = 8.2 Hz, 2H), 7.89 (d, *J* = 7.0 Hz, 2H), 7.69 (ddd, *J* = 8.5, 7.2, 1.4 Hz, 1H), 7.47–7.35 (m, 5H), 7.33 (d, *J* = 8.3 Hz, 1H), 7.29 (t, *J* = 7.7 Hz, 1H), 7.12 (s, 1H), 2.48 (s, 3H).

(E)-N-((Z)-2-benzylidenebenzofuran-3(2H)-ylidene)-4-nitrobenzenesulfonamide (2b)^{2b}: ¹H NMR (400 MHz, CDCl₃) δ 8.69 (d, *J* = 8.0 Hz, 1H), 8.46-8.37 (m, 2H), 8.34-8.24 (m, 2H), 7.91-7.88 (m, 2H), 7.76-7.70 (m, 1H), 7.49-7.39 (m, 3H), 7.36 (d, J = 8.4 Hz, 1H), 7.34-7.29 (m, 1H), 7.12 (s, 1H)

(E)-4-methyl-N-((Z)-2-(4-methylbenzylidene)benzofuran-3(2H)-ylidene)benzenesulfonamide $(2c)^{2c}$: ¹H NMR (400 MHz, CDCl₃): δ 8.78 (d, J = 8.1 Hz, 1H), 8.00 (d, J = 8.3 Hz, 2H), 7.79 (d, J = 7.9 Hz, 2H), 7.67 (ddd, J = 8.5, 7.2, 1.4 Hz, 1H), 7.37 (d, J = 8.1 Hz, 2H), 7.32 (d, J = 8.3 Hz, 1H), 7.28 (d, J = 7.8 Hz, 1H), 7.25 (d, J = 8.0 Hz, 2H), 7.12 (s, 1H), 2.47 (s, 3H), 2.40 (s, 3H).

N-((Z)-2-((Z)-4-fluorobenzylidene)benzofuran-3(2H)-ylidene)-4-methylbenzenesulfonamide (2d)^{2a}: ¹**H NMR** (400 MHz, CDCl₃): δ 8.77 (d, *J* = 8.0 Hz, 1H), 7.99 (d, *J* = 8.2 Hz, 2H), 7.87 (dd, *J* = 8.7, 5.6 Hz, 2H), 7.71-7.63 (m, 1H), 7.37 (d, *J* = 8.1 Hz, 2H), 7.33 – 7.27 (m, 2H), 7.11 (t, *J* = 8.7 Hz, 2H), 7.05 (s, 1H), 2.47 (s, 3H).

(E)-N-((Z)-2-(4-chlorobenzylidene)benzofuran-3(2H)-ylidene)-4-methylbenzenesulfonamide (2e)^{2c}:¹H NMR (400 MHz, CDCl₃): δ 8.77 (d, *J* = 8.1 Hz, 1H), 7.99 (d, *J* = 8.3 Hz, 2H), 7.81 (d, *J* = 8.6 Hz, 2H), 7.68 (ddd, *J* = 8.5, 7.3, 1.4 Hz, 1H), 7.43-7.35 (m, 4H), 7.32 (d, *J* = 3.9 Hz, 1H), 7.29 (d, *J* = 3.7 Hz, 1H), 7.03 (s, 1H), 2.47 (s, 3H).

General procedure of 3

A two-necked round bottom flask was charged with DACs 1 (1.0 equiv.), *N*-sulfonyl 1-azadienes 2 (1.0 equiv.) and MgI₂ (0.2 equiv.) under nitrogen atmosphere. DCM was added to the reaction mixture and solution was stirred it at room temperature until the consumption of cyclopropane (as monitored by TLC). Reaction mixture was filtered through thin pad of celite and solvent was concentrated in rotary evaporator. The residue was purified by flash column chromatography on silica gel using ethyl acetate/hexane as eluent.

Diethyl(2**R**,2'**R**,5'**R**,**E**)-5'-(4-methoxyphenyl)-2'-phenyl-3-(tosylimino)-3H-spiro[benzofuran-2,1'-cyclopentane]-3',3'-dicarbo xylate (3aa): Reaction time: 7 h, 1a (62 mg, 0.21 mmol), 2a (80 mg, 0.21 mmol), yield = 69%, 96 mg, nature = viscous liquid. R_f-value: 0.30 (Ethyl acetate/hexane) = 2:8. ¹H-NMR (400 MHz, CDCl₃) δ 8.22 (d, *J* = 8.0 Hz, 1H), 8.03 (d, *J* = 8.4 Hz, 2H), 7.41 (d, *J* =

8.3 Hz, 2H), 7.37-7.33 (m, 1H), 7.19-7.17 (m, 4H), 7.07-7.04 (m, 3H), 6.89 (d, J = 8.4 Hz, 1H), 6.78 (t, J = 8.3 Hz, 1H), 6.64 (d, J = 8.7 Hz, 2H), 4.90 (s, 1H), 4.31-4.23 (m, 1H), 4.20-4.12 (m, 1H), 3.95-3.87 (m, 1H), 3.83 (t, J = 14.1 Hz, 1H), 3.66 (s, 3H), 3.64-3.57 (m, 1H), 3.54-3.46 (m, 1H), 2.57 (dd, J = 6.9, 6.5 Hz, 1H), 2.50 (s, 3H), 1.20 (t, J = 6.9 Hz, 3H), 0.71 (t, J = 7.3 Hz, 3H). ¹³C-NMR (100 MHz, CDCl₃) δ 180.2, 171.9, 170.2, 169.9, 158.9, 143.4, 138.9, 134.0, 130.4, 129.6, 128.1, 127.6, 127.0, 126.1, 121.9, 118.4, 113.6, 112.1, 101.2, 62.8, 62.1, 128.9, 143.4, 138.9, 134.0, 130.4, 129.6, 128.1, 127.6, 127.0, 126.1, 121.9, 118.4, 113.6, 112.1, 101.2, 62.8, 62.1, 128.9, 143.4, 138.9, 134.0, 130.4, 129.6, 128.1, 127.6, 127.0, 126.1, 121.9, 118.4, 113.6, 112.1, 101.2, 62.8, 62.1, 128.9, 143.4, 138.9, 134.0, 130.4, 129.6, 128.1, 127.6, 127.0, 126.1, 121.9, 118.4, 113.6, 112.1, 101.2, 62.8, 62.1, 128.9, 143.4, 138.9, 134.0, 130.4, 129.6, 128.1, 127.6, 127.0, 126.1, 121.9, 118.4, 113.6, 112.1, 101.2, 62.8, 62.1, 128.9, 143.4, 138.9, 134.0, 130.4, 129.6, 128.1, 127.6, 127.0, 126.1, 121.9, 118.4, 113.6, 112.1, 101.2, 62.8, 62.1, 128.9, 143.4, 138.9, 134.0, 130.4, 129.6, 128.1, 127.6, 127.0, 126.1, 121.9, 118.4, 113.6, 112.1, 101.2, 62.8, 62.1, 128.9, 143.4, 138.9, 134.0, 130.4, 129.6, 128.1, 127.6, 127.0, 126.1, 121.9, 118.4, 113.6, 112.1, 101.2, 62.8, 62.1, 128.9, 143.4, 143.6, 142.1, 140.8, 143.6, 142.1, 140.8, 143.6, 143.4, 143.4, 143.6, 143.4, 143.4, 143.4, 143.4, 143.4, 143.4, 143.4, 144.4, 144.4, 144.4, 144.4, 144.4, 144.4, 144.4, 144.4, 144.4, 144.4, 144.4, 144.4, 144.4, 144.4, 1

61.5, 60.0, 55.1, 53.9, 38.5, 21.7, 14.0, 13.3. IR (\bar{v} , cm⁻¹) 2981, 1720, 1576, 1515, 1464, 1302, 1248, 1181, 1147, 1088, 1018, 905, 877, 828, 747, 704. HRMS (ESI) calcd for C₃₈H₃₈NO₈S⁺[M+H]⁺; 668.2318 found 668.2334.

Diethyl(2R,2'R,5'R,E)-5'-(3,4-dimethoxyphenyl)-2'-phenyl-3-(tosylimino)-3H-spiro[benzofuran-2,1'-cyclopentane]-3',3'-dicarb

oxylate (3ba): Reaction time: 8 h, **1b** (46 mg, 0.14 mmol), **2a** (54 mg, 0.14 mmol), yield = 62%, 61 mg, Nature = yellow solid, Melting Point = 111 °C R_f-value: 0.25 (Ethyl acetate/hexane) = 2:8. ¹H-NMR (400 MHz, CDCl₃) δ 8.22 (d, *J* = 8.1 Hz, 1H), 8.02 (d, *J* = 8.2 Hz, 2H), 7.41 (d, *J* = 8.4 Hz, 2H), 7.37-7.33 (m, 1H), 7.20-7.18 (m, 2H), 7.07-7.06 (m, 3H), 6.87-6.79 (m, 3H), 6.75 (m, 1H), 6.63 (d, *J* = 8.3 Hz, 1H), 4.93 (s, 1H), 4.32-4.24 (m, 1H), 4.21-4.10 (m, 1H), 3.98-3.87 (m, 1H), 3.81 (d, *J* = 14.3 Hz, 1H), 3.78 (s, 3H), 3.74 (s, 3H), 3.63 (dd, *J* = 8.4, 6.7

Hz, 1H), 3.53-3.45 (m, 1H), 2.59 (dd, J = 7.3, 6.5 Hz, 1H), 2.50 (s, 3H), 1.20 (t, J = 7.1 Hz, 3H), 0.71 (t, J = 7.6 Hz, 3H). ¹³C-NMR (100 MHz, CDCl₃) δ 180.3, 171.9, 170.2, 169.9, 148.3, 143.4, 138.9, 133.9, 130.3, 129.6, 128.0, 127.7, 126.9, 122.0, 120.3, 118.4, 112.0, 111.5, 110.4, 101.2, 62.8, 62.1, 61.5, 59.9, 55.9, 55.7, 54.2, 38.1, 21.7, 14.0, 13.3. IR ($\bar{\nu}$, cm⁻¹) 2936, 1718, 1601, 1459, 1145, 1087, 1015, 835, 751, 701. HRMS (ESI) calcd for C₃₉H₄₀NO₉S⁺[M+H]⁺; 698.2424 found 698.2451.

Dimethyl(2R,2'R,5'R,E)-5'-(benzo[d][1,3]dioxol-5-yl)-2'-phenyl-3-(tosylimino)-3H-spiro[benzofuran-2,1'-cyclopentane]-3',3'-di carboxylate (3ca): Reaction time: 8 h, 1c (52 mg, 0.18 mmol), 2a (70 mg, 0.18 mmol), yield = 61%, 72 mg, Nature = viscous liquid.

R_f-value: 0.25 (Ethyl acetate/hexane) = 2:8. ¹H-NMR (400 MHz, CDCl₃) δ 8.24 (d, J = 8.3 Hz, 1H), 8.01 (d, J = 8.4 Hz, 2H), 7.44-7.37 (m, 3H), 7.17-7.14 (m, 2H), 7.09-7.06 (m, 3H), 6.95 (d, J = 8.2 Hz, 1H), 6.84-6.80 (m, 2H), 6.68-6.66 (m, 1H), 6.54 (d, J = 8.7 Hz, 1H), 5.82-5.81 (m, 2H), 4.84 (s, 1H), 3.80-3.73 (m, 1H), 3.75 (s, 3H), 3.58 (dd, J = 7.3, 6.8 Hz, 1H), 326 (s, 3H), 2.57 (dd, J = 6.9, 6.8 Hz, 1H), 2.50 (s, 3H). ¹³C-NMR (100 MHz, CDCl₃) δ 179.7, 172.3, 170.2, 170.1, 147.4, 147.0, 143.5, 138.9, 133.6, 130.5, 130.1, 129.6, 128.1, 127.8, 127.0,

122.2, 122.0, 112.2, 108.8, 107.9, 101.0, 100.9, 62.7, 60.3, 54.2, 53.3, 52.4, 38.7, 21.7. IR ($\bar{\nu}$, cm⁻¹) 2922, 1728, 1595, 1482, 1276, 1144, 1089, 1038, 934, 873, 805, 753, 733, 700. HRMS (ESI) calcd for C₃₆H₃₂NO₉S⁺[M+H]⁺; 654.1798 found 654.1741.

Diethyl(2R,2'R,5'R,E)-2'-phenyl-3-(tosylimino)-5'-(3,4,5-trimethoxyphenyl)-3H-spiro[benzofuran-2,1'-cyclopentane]-3',3'-dica

rboxylate (3da): Reaction time: 6 h, **1d** (55 mg, 0.15 mmol), **2a** (59 mg, 0.15 mmol), yield = 59 %, 64 mg, Nature = viscous liquid. R_f-value: 0.22 (Ethyl acetate/hexane) = 2:8. ¹H-NMR (400 MHz, CDCl₃) δ 8.23 (d, *J* = 8.3 Hz, 1H), 8.01 (d, *J* = 8.2 Hz, 2H), 7.42-7.34 (m, 3H), 7.20-7.18 (m, 2H), 7.09-7.06 (m, 3H), 6.86-6.80 (m, 2H), 6.48 (s, 2H), 4.95 (s, 1H), 4.32-4.24 (m, 1H), 4.21-4.13 (m, 1H), 3.95-3.87 (m, 1H), 3.83 (t, *J* = 13.9 Hz, 1H), 3.78 (s, 6H),

3.68 (s, 3H), 3.64-3.59 (m, 1H), 3.53-3.45 (m, 1H), 2.62 (dd, J = 7.4, 6.0, 1H), 2.49 (s, 3H), 1.21 (t, J = 7.2 Hz, 3H), 0.71 (t, J = 7.2 Hz, 3H). 13 C-NMR (100 MHz, CDCl₃) δ 180.3, 171.8, 170.2, 169.9, 152.7, 143.5, 138.9, 137.3, 133.8, 130.3, 129.7, 129.6, 128.0, 127.8, 126.9, 122.1, 118.5, 112.0, 105.4, 101.1, 62.8, 62.2, 61.6, 60.8, 59.7, 56.2, 54.7, 37.9, 21.7, 14.0, 13.3. IR ($\bar{\nu}$, cm⁻¹) 2936, 1725, 1581, 1509, 1458, 1300, 1250, 1146, 1126, 1086, 1018, 905, 827, 734, 702. HRMS (ESI) calcd for C₄₀H₄₂NO₁₀S⁺[M+H]⁺; 728.2529 found 728.2523.

Diethyl(2**S**,2'**R**,5'**R**,**E**)-5'-(furan-2-yl)-2'-phenyl-3-(tosylimino)-3H-spiro[benzofuran-2,1'-cyclopentane]-3',3'-dicarboxylate (**3ea**): Reaction time: 8 h, **1e** (39 mg, 0.15 mmol), **2a** (57 mg, 0.15 mmol), yield = 66%, 62 mg, Nature = viscous liquid. R_f-value:

0.28 (Ethyl acetate/hexane) = 2:8. ¹H-NMR (400 MHz, CDCl₃) δ 8.33 (d, *J* = 8.1 Hz, 1H), 8.00 (d, *J* = 8.5 Hz, 2H), 7.44-7.37 (m, 3H), 7.19-7.13 (m, 2H), 7.10-7.04 (m, 4H), 6.93 (d, *J* = 8.3 Hz, 1H), 6.90-6.86 (m, 1H), 6.10-6.07 (m, 2H), 4.84 (s, 1H), 4.30-4.22 (m, 1H), 4.20-4.12 (m, 1H), 3.94-3.86 (m, 1H), 3.81-3.70 (m, 2H), 3.53-3.45 (m, 1H), 2.71-2.61 (m, 1H), 2.48 (s, 3H), 1.20 (t, *J* = 7.0 Hz, 3H), 0.70 (t, *J* = 7.0 Hz, 3H). ¹³C-NMR (100 MHz, 100 MHz)

CDCl₃) δ 179.7, 171.6, 170.1, 169.5, 149.2, 143.4, 142.0, 138.8, 133.5, 130.6, 130.3, 129.5, 128.0, 127.8, 127.0, 122.0, 118.2, 112.2, 110.0, 107.8, 100.3, 62.9, 62.2, 61.6, 59.7, 48.3, 36.8, 21.7, 14.0, 13.3. IR (\bar{v} , cm⁻¹) 2980, 1721, 1578, 1515, 1463, 1302, 1249, 1222, 1181, 1147, 1088, 905, 876, 827, 747, 705. HRMS (ESI) calcd for C₃₅H₃₄NO₈S⁺ [M+H]⁺; 628.2005 found 628.2000.

Diethyl(2S,2'S,5'R,E)-5'-(1,3-dioxoisoindolin-2-yl)-2'-phenyl-3-(tosylimino)-3H-spiro[benzofuran-2,1'-cyclopentane]-3',3'-dicar boxylate (3fa) : Reaction time: 6 h, 1f (72 mg, 0.21 mmol), 2a (80 mg, 0.21 mmol), yield = 55%, 81 mg, Nature = white solid,

Melting Point = 98 °C, R_f-value: 0.28 (Ethyl acetate/hexane) = 2:8. ¹H-NMR (400 MHz, CDCl₃) δ 8.31 (d, J =

8.2 Hz, 1H), 8.15 (d, J = 8.2 Hz, 2H), 7.74-7.72 (m, 2H), 7.63-7.61 (m, 2H), 7.43 (d, J = 8.2 Hz, 2H), 7.37-7.33 (m, 1H), 7.25-7.22 (m, 2H), 7.10-7.07 (m, 3H), 7.00 (d, J = 8.4 Hz, 1H), 6.85-6.81 (m, 1H), 5.07-5.01 (m, 1H), 4.97-4.89 (m, 2H), 4.27-4.19 (m, 1H), 4.18-4.10 (m, 1H), 3.94-3.86 (m, 1H), 3.56-3.48 (m, 1H), 2.53 (dd, J = 6.8, 6.5 Hz, 1H), 2.50 (s, 3H), 1.18 (t, J = 6.9 Hz, 3H), 0.72 (t, J = 6.8 Hz, 3H). ¹³C-NMR (100 MHz, CDCl₃) δ 177.6, 171.2, 169.7, 168.7, 167.3, 143.4, 138.9, 134.0, 133.2, 131.2, 130.6, 129.5, 128.0, 127.8, 127.3, 123.5, 122.3, 117.7, 112.3, 99.5, 62.3, 61.8, 61.7, 57.7, 33.2, 21.7, 13.9, 13.3. IR ($\bar{\nu}$, cm⁻¹) 2926, 1723, 1600, 1462, 1366, 1266, 1155, 1090, 877, 829, 703. HRMS (ESI) calcd for C₃₉H₃₅N₂O₉S⁺[M+H]⁺; 707.2063 Found 707.2072.

Diethyl(2**R**,2'**R**,5'**R**,**E**)-2'-phenyl-5'-(p-tolyl)-3-(tosylimino)-3**H**-spiro[benzofuran-2,1'-cyclo pentane]-3',3'-dicarboxylate (3ga) : Reaction time: 10 h, 1g (59 mg, 0.21 mmol), 2a (80 mg, 0.21 mmol), yield = 57%, 78 mg, Nature = viscous liquid, R_f-value: 0.29

(Ethyl acetate/hexane) = 2:8. ¹H-NMR (400 MHz, CDCl₃) δ 8.22 (d, *J* = 8.0 Hz, 1H), 8.03 (d, *J* = 8.0 Hz, 2H), 7.41 (d, *J* = 8.2 Hz, 2H), 7.36-7.32 (m, 1H), 7.20-7.14 (m, 4H), 7.07-7.05 (m, 3H), 6.90 (t, *J* = 8.6 Hz, 3H), 6.80-6.76 (m, 1H), 4.90 (s, 1H), 4.31-6-4.23 (m, 1H), 4.20-4.11 (m, 1H), 3.96-3.89 (m, 1H), 3.85-3.82 (m, 1H), 3.61 (dd, *J* = 7.8, 6.2 Hz, 1H), 3.54-3.46 (m, 1H), 2.58 (dd, *J* = 7.0, 6.1 Hz, 1H), 2.50 (s, 3H), 2.15 (s, 3H), 1.20 (t, *J* = 7.0 Hz, 3H), 0.71 (t, *J* = 7.3 Hz, 3H). ¹³C-NMR (100 MHz, CDCl₃) δ 180.1, 171.9, 170.1, 169.9, 143.4, 138.8,

137.3, 133.9, 131.0, 130.4, 130.3, 129.6, 128.8, 128.4, 127.9, 127.7, 127.0, 121.9, 118.4, 112.1, 101.2, 62.8, 62.1, 61.5, 60.2, 54.2, 38.5, 21.7, 21.0, 14.0, 13.3. IR (\bar{v} , cm⁻¹) 2977, 1718, 1577, 1463, 1303, 1273, 1208, 1183, 1147, 1117, 1088, 1017, 905, 877, 827, 705. HRMS (ESI) calcd for C₃₈H₃₈NO₇S⁺[M+H]⁺; 652.2369 found 652.2322.

Diethyl(2**R**,2'**S**,5'**S**,**E**)-5'-(4-isopropylphenyl)-2'-phenyl-3-(tosylimino)-3H-spiro[benzofuran-2,1'-cyclopentane]-3',3'-dicarboxy late (3ha) : Reaction time: 12 h, 1h (65 mg, 0.21 mmol), 2a (80 mg, 0.21 mmol), yield = 56%, 80 mg, Nature = viscous liquid, R_f-

value: 0.32 (Ethyl acetate/hexane) = 2:8. ¹H-NMR (400 MHz, CDCl₃) δ 8.21 (d, *J* = 8.2 Hz, 1H), 8.03 (d, *J* = 8.2 Hz, 2H), 7.41 (d, *J* = 8.2 Hz, 2H), 7.32 (t, *J* = 7.7 Hz, 1H), 7.21-7.16 (m, 4H), 7.08-7.03 (m, 3H), 6.95 (d, *J* = 8.2 Hz, 2H), 6.86 (d, *J* = 8.6 Hz, 1H), 6.76 (t, *J* = 8.2 Hz, 1H), 4.92 (s, 1H), 4.30-4.22 (m, 1H), 4.20-4.12 (m, 1H), 3.95-3.87 (m, 1H), 3.84 (d, *J* = 13.9 Hz, 1H), 3.62 (dd, *J* = 7.5, 6.6 Hz, 1H), 3.54-3.46 (m, 1H), 2.71 (septet, *J* = 6.6 Hz, 1H), 5.65 (m, 1H

7.5, 6.9, 6.9, 1H), 2.59 (dd, J = 7.1, 6.5 Hz, 1H), 2.50 (s, 3H), 1.19 (t, J = 7.3 Hz, 3H), 1.08 (d, J = 6.9 Hz, 6H), 0.71 (t, J = 6.9 Hz, 3H). ¹³C-NMR (100 MHz, CDCl₃) δ 180.2, 171.9, 170.1, 169.9, 148.2, 143.4, 139.0, 138.6, 134.0, 131.3, 130.3, 129.6, 128.5, 127.9, 127.7, 127.0, 126.1, 121.8, 118.4, 112.2, 101.3, 62.9, 62.1, 61.5, 60.0, 54.3, 38.4, 33.6, 23.8, 21.7, 14.0, 13.3. IR ($\bar{\nu}$, cm⁻¹) 2979, 1723, 1574, 1463, 1306, 1258, 1203, 1181, 1147, 1088, 1018, 852, 827, 748, 704. HRMS (ESI) calcd for C₄₀H₄₂NO₇S⁺ [M+H]⁺; 680.2682 found 680.2656.

Diethyl(2S,2'R,5'R,E)-5'-mesityl-2'-phenyl-3-(tosylimino)-3H-spiro[benzofuran-2,1'-cyclopentane]-3',3'-dicarboxylate (3ia): Reaction Time: 7 h, 1i (52 mg, 0.17 mmol), 2a (64 mg, 0.17 mmol), yield = 63%, 72 mg, Nature = viscous liquid, R_{f} -value: 0.27

(Ethyl acetate/hexane) = 2:8, ¹H-NMR (400 MHz, CDCl₃) δ 8.22 (d, *J* = 8.2 Hz, 1H), 7.98 (d, *J* = 8.2 Hz, 2H), 7.42-7.37 (m, 3H), 7.19-7.16 (m, 2H), 7.08-7.04 (m, 3H), 6.96 (d, *J* = 8.3 Hz, 1H), 6.84-6.80 (m, 1H), 6.65 (d, *J* = 8.1 Hz, 2H), 4.91 (s, 1H), 4.29-4.12 (m, 4H), 3.99-3.91 (m, 1H), 3.58-3.50 (m, 1H), 2.83 (s, 3H), 2.50 (s, 3H), 2.47 (m, 1H), 2.29 (s, 3H), 2.07 (s, 3H), 1.18 (t, *J* = 7.3 Hz, 3H), 0.74 (t, *J* = 7.3 Hz, 3H). ¹³C-NMR (100 MHz, CDCl₃)

δ 180.1, 172.1, 170.4, 169.5, 143.4, 138.8, 138.6, 136.6, 133.7, 131.8, 130.5, 129.8, 129.6, 127.9, 127.7, 127.6, 127.1, 121.9, 117.7, 111.6, 103.5, 63.2, 61.9, 61.5, 60.8, 49.1, 37.5, 23.0, 22.4, 21.7, 20.5, 14.0, 13.3. IR (\bar{v} , cm⁻¹) 2980, 1726, 1600, 1461, 1264, 1183, 1155, 1089, 908, 830, 732, 702. HRMS (ESI) calcd for C₄₀H₄₂NO₇S⁺[M+H]⁺; 680.2682 found 680.2658.

Diethy(2R,2'R,5'R,E)-5'-(4-fluorophenyl)-2'-phenyl-3-(tosylimino)-3H-spiro[benzofuran-2,1'-cyclopentane]-3',3'-dicarboxylate (3ja): Reaction time: 9 h, 1j (45 mg, 0.16 mmol), 2a (61 mg, 0.16 mmol), yield = 68%, 71 mg, Nature = viscous liquid, R_f-value: 0.30

(Ethyl acetate/hexane) = 2:8. ¹H-NMR (400 MHz, CDCl₃) δ 8.22 (d, J = 8.2 Hz, 1H), 8.02 (d, J = 8.3 Hz, 2H), 7.41 (d, J = 8.1 Hz, 2H), 7.38-7.34 (m, 1H), 7.25-7.21 (m, 2H), 7.19-716 (m, 2H), 7.08-7.04 (m, 3H), 6.88 (d, J = 8.7 Hz, 1H), 6.83-6.77 (m, 3H), 4.90 (s, 1H), 4.32-4.24 (m, 1H), 4.20-4.12 (m, 1H), 3.96-3.88 (m, 1H), 3.82 (t, J = 13.6 Hz, 1H), 3.62 (dd, J = 7.7, 6.2 Hz, 1H), 3.54-3.46 (m, 1H), 2.59 (dd, J = 6.9, 6.8 Hz, 1H), 2.50 (s, 3H),

1.20 (t, J = 7.2 Hz, 3H), 0.71 (t, J = 7.0 Hz, 3H). ¹³C-NMR (100 MHz, CDCl₃) δ 179.8, 171.8, 170.6, 169.8, 162.2 (d, J = 246.5 Hz), 143.5, 139.0, 133.7, 130.4, 130.3, 130.1 (d, J = 8.3 Hz), 129.8 (d, J = 2.8 Hz) 129.6, 127.9 (d, J = 22.7 Hz),

127.0, 122.1, 115.0 (d, J = 21.1 Hz), 112.1, 101.0, 62.8, 62.1, 61.6, 59.9, 53.9, 38.4, 21.7, 14.0, 13.3. IR ($\bar{\nu}$, cm⁻¹) 2924, 1727, 1601, 1532, 1462, 1308, 1254, 1158, 1089, 830, 703. HRMS (ESI) calcd for C₃₇H₃₅FNO₇S⁺[M+H]⁺; 656.2118 found 656.2126.

Diethy(**2S**,**2'R**,**5'R**,**E**)-**2'**,**5'-diphenyl-3-(tosylimino)-3H-spiro[benzofuran-2,1'-cyclopentane]-3'**,**3'-dicarboxylate** (**3ka**) : Reaction time: 11 h, **1k** (56 mg, 0.21 mmol), **2a** (80 mg, 0.21 mmol), yield = 52%, 70 mg, Nature = viscous liquid, R_f-value: 0.39 (Ethyl

acetate/hexane) = 2:8. ¹H-NMR (400 MHz, CDCl₃) δ 8.21 (d, J = 8.3 Hz, 1H), 8.03 (d, J = 8.4 Hz, 2H), 7.41 (d, J = 8.3 Hz, 2H), 7.35-7.31 (m, 1H), 7.28-7.25 (m, 1H), 7.20-7.18 (m, 2H), 7.13-7.04 (m, 7H), 6.87 (d, J = 8.3 Hz, 1H), 6.80-6.76 (m, 1H), 4.92 (s, 1H), 4.31-4.23 (m, 1H), 4.20-4.13 (m, 1H), 3.96-3.85 (m, 2H), 3.64 (dd, J = 8.2, 6.2 Hz, 1H), 3.54-3.46 (m, 1H), 2.61 (dd, J = 7.1, 6.5 Hz, 1H), 2.50 (s, 3H), 1.20 (t, J = 7.2 Hz, 3H), 0.71 (t, J =

7.4 Hz, 3H). ¹³C-NMR (100 MHz, CDCl₃) δ 180.0, 171.9, 170.0, 169.9, 143.4, 138.8, 134.1, 133.9, 130.4, 130.3,

129.6, 128.6, 128.1, 128.0, 127.7, 127.0, 121.9, 118.3, 112.1, 101.2, 62.9, 62.1, 61.6, 60.0, 54.5, 38.2, 21.7, 14.0, 13.3. IR ($\bar{\nu}$, cm⁻¹) 2964, 1726, 1576, 1461, 1314, 1262, 1149, 1086, 1018, 876, 826, 750, 700. HRMS (ESI) calcd for C₃₇H₃₆NO₇S⁺[M+H]⁺; 638.2212 found 638.2206.

Diethyl(2R,2'R,5'R,E)-5'-(4-methoxyphenyl)-3-(((4-nitrophenyl)sulfonyl)imino)-2'-phenyl-3H-spiro[benzofuran-2,1'-cyclopent ane]-3',3'-dicarboxylate (3ab): Reaction time: 10 h, 1a (44 mg, 0.15 mmol), 2b (62 mg, 0.15 mmol), yield = 66%, 69 mg, Nature =

viscous liquid, R_f -value: 0.26 (Ethyl acetate/hexane) = 2:8. ¹H-NMR (400 MHz, CDCl₃) δ 8.49 (d, J = 9.1 Hz, 2H), 8.38 (d, J = 9.1 Hz, 2H), 8.15 (d, J = 8.0 Hz, 1H), 7.43-7.39 (m, 1H), 7.19-7.15 (m, 4H), 7.10-706 (m, 3H), 6.91 (d, J = 8.4 Hz, 1H), 6.86-6.83 (m, 1H), 6.65 (d, J = 8.7 Hz, 2H), 4.95 (s, 1H), 4.33-4.25 (m, 1H), 4.20-4.12 (m, 1H), 3.94-3.80 (m, 2H), 3.66 (s, 3H), 3.59 (dd, J = 8.0, 6.4 Hz, 1H), 3.52-3.44 (m, 1H), 2.58 (dd, J = 7.2, 6.3

Hz, 1H), 1.21 (t, J = 7.0 Hz, 3H), 0.70 (t, J = 7.2 Hz, 3H). ¹³C-NMR (100 MHz, CDCl₃) δ 182.3, 171.9, 170.7, 169.6, 159.1, 150.1, 147.5, 139.9, 133.7, 130.2, 129.9, 129.4, 128.3, 128.1, 127.9, 125.7, 124.3, 122.3, 118.2, 113.6, 112.4, 101.5, 62.9, 62.3, 61.6, 60.1, 55.1, 54.2, 38.6, 14.0, 13.3. IR (\bar{v} , cm⁻¹) 2930, 1724, 1574, 1529, 1460, 1305, 1250, 1156, 1088, 1014, 903, 826, 701. HRMS (ESI) calcd for C₃₇H₃₅N₂O₁₀S⁺ [M+H]⁺; 699.2012 found 699.2010.

Diethyl(2R,2'R,5'R,E)-5'-(4-methoxyphenyl)-2'-(p-tolyl)-3-(tosylimino)-3H-spiro[benzofuran-2,1'-

cyclopentane]-3',3'-dicarboxylate (3ac): Reaction time: 9 h, **1a** (60 mg, 0.20 mmol), **2c** (80 mg, 0.20 mmol), yield = 67%, 91 mg, Nature = viscous liquid. R_f-value: 0.29 (Ethyl acetate/hexane) = 2:8. ¹H-NMR (400 MHz, CDCl₃) δ 8.22 (d, *J* = 8.2 Hz, 1H), 8.02 (d, *J* = 8.2 Hz, 2H), 7.40 (d, *J* = 8.2 Hz, 2H), 7.34 (t, *J* = 8.0 Hz, 1H), 7.17 (d, *J* = 8.8 Hz, 2H), 7.06 (d, *J* = 8.2 Hz, 2H), 6.89-6.84 (m, 3H), 6.78 (t, *J* = 7.7 Hz, 1H), 6.63 (d, *J* = 8.7 Hz, 2H),

4.86 (s, 1H), 4.30-4.22 (m, 1H), 4.19-4.11 (m, 1H), 3.97-3.89 (m, 1H), 3.81 (t, J = 14.0 Hz, 1H), 3.65 (s, 3H), 3.61-3.49 (m, 2H), 2.55 (dd, J = 7.0, 6.5 Hz, 1H), 2.49 (s, 3H), 2.15 (s, 3H), 1.19 (t, J = 7.1 Hz, 3H), 0.74 (t, J = 7.3 Hz, 3H). ¹³C-NMR (100 MHz, CDCl₃) δ 180.3, 171.9, 170.2, 170.0, 158.9, 143.4, 138.9, 137.2, 130.8, 130.3, 130.1, 129.6, 128.6, 127.0, 126.2, 121.8, 118.4, 113.4, 112.1, 101.4, 62.8, 62.0, 61.5, 59.7, 55.1, 54.0, 38.5, 21.7, 21.0, 14.0, 13.3. IR (\bar{v} , cm⁻¹) 2926, 1726, 1601, 1513, 1461, 1251, 1156, 1089, 1033, 826, 734. HRMS (ESI) calcd for C₃₉H₄₀NO₈S⁺[M+H]⁺; 682.2475 found 682.2463.

Diethyl(2R,2'R,5'R,E)-2'-(4-fluorophenyl)-5'-(4-methoxyphenyl)-3-(tosylimino)-3H-spiro[b enzofuran-2,1'-cyclopentane]-3',3'dicarboxylate (3ad): Reaction time: 8 h, 1a (52 mg, 0.17 mmol), 2d (70 mg, 0.17 mmol), yield = 68%, 79 mg, Nature = viscous

liquid. R_f-value: 0.31 (Ethyl acetate/hexane) = 2:8. ¹H-NMR (400 MHz, CDCl₃) δ 8.24 (d, *J* = 8.4 Hz, 1H), 8.02 (d, *J* = 8.4 Hz, 2H), 7.41 (d, *J* = 7.9 Hz, 2H), 7.39-7.35 (m, 1H), 7.18-7.14 (m, 4H), 6.88 (d, *J* = 8.3 Hz, 1H), 6.84-6.80 (m, 1H), 6.75 (t, *J* = 7.7 Hz, 2H), 6.64 (d, *J* = 8.9 Hz, 2H), 4.88 (s, 1H), 4.31-4.23 (m, 1H), 4.20-4.12 (m, 1H), 4.00-3.91 (m, 1H), 3.80 (t, *J* = 13.8 Hz, 1H), 3.66 (s, 3H), 3.61-3.51 (m, 2H), 2.57 (dd, *J* = 7.2, 6.5 Hz, 1H), 2.50

(s, 3H), 1.21 (t, J = 7.1 Hz, 3H), 0.74 (t, J = 7.3 Hz, 3H). ¹³C-NMR (100 MHz, CDCl₃) δ 179.9, 171.8, 170.0, 169.8, 162.3 (d, J = 246.5 Hz), 159.0, 143.5, 139.0, 131.9 (d, J = 7.4 Hz), 130.4, 129.8 (d, J = 2.7 Hz, 129.6 (d, J = 6.0 Hz), 127.0, 126.2, 126.0, 122.1, 118.3, 114.9 (d, J = 20.8 Hz), 113.5, 112.1, 101.1, 62.7, 62.2, 61.6, 59.2, 55.1, 53.9, 38.4, 21.7, 14.0, 13.4. IR ($\bar{\nu}$, cm⁻¹) 2981, 1727, 1601, 1582, 1511, 1462, 1303, 1250, 1225, 1182, 1160, 1089, 1017, 880. HRMS (ESI) calcd for C₃₈H₃₇NO₈FS⁺ [M+H]⁺; 686.2224 found 686.2209.

Diethyl(2R,2'R,5'R,E)-2'-(4-chlorophenyl)-5'-(4-methoxyphenyl)-3-(tosylimino)-3H-spiro[b enzofuran-2,1'cyclopentane]-3',3'-dicarboxylate (3ae): Reaction time: 7 h, 1a (50 mg, 0.17 mmol), 2e (71 mg, 0.17 mmol), yield = 69%, 78 mg, Nature = viscous liquid, R_f-value: 0.30 (Ethyl acetate/hexane) = 2:8. ¹H-NMR (400 MHz, CDCl₃) δ 8.24 (d, *J* = 8.0 Hz, 1H), 8.01 (d, *J* = 8.2 Hz, 2H), 7.42-7.36 (m, 3H), 7.18-7.12 (m, 4H), 7.04 (d, *J* = 8.4 Hz, 2H), 6.89 (d, *J* = 8.5 Hz, 1H), 6.85-6.81 (m, 1H), 6.64 (d, *J* = 8.9 Hz, 2H), 4.86 (s, 1H), 4.31-4.23 (m, 1H),

4.20-4.12(m, 1H), 4.01-3.92 (m, 1H), 3.80 (t, J = 13.9, 1H), 3.66 (s, 3H), 3.62-3.52 (m, 2H), 2.57 (dd, J = 7.0, 6.7 Hz, 1H), 2.50 (s, 3H), 1.20 (t, J = 7.3 Hz, 3H), 0.79 (t, J = 7.2 Hz, 3H). ¹³C-NMR (100 MHz, CDCl₃) δ 179.8, 171.7, 170.0, 169.7, 159.0, 143.5, 139.1, 133.7, 132.6, 131.6, 130.4, 129.6, 129.5, 128.1, 127.0, 125.8, 122.1, 118.3, 113.5, 112.1, 101.1, 62.7, 62.2, 61.7, 59.1, 55.1, 54.0, 38.4, 21.7, 14.0, 13.4. IR ($\bar{\nu}$, cm⁻¹) 2922, 1739, 1709, 1549, 1491, 1450, 1289, 1239, 1196, 1166, 1133, 969, 900, 805, 726. HRMS (ESI) calcd for C₃₈H₃₇ClNNaO₈S⁺ [M+Na]⁺; 724.1648 found 724.1681.

5.4.4 Procedure for the synthesis of (1'R,2'S,5'S)-diethyl 5'-(4-methoxyphenyl)-3-oxo-2'-phenyl-3H-spiro[benzofuran-2,1'-cyclopentane]-3',3'-dicarboxylate (4ab): 3ab (80 mg) was dissolved in toluene (2 mL) and basic alumina (Brockmann activity I, 1.5 g) was added. The reaction mixture was refluxed for overnight. The reaction mixture was purified by silica gel column chromatography.

Reaction time: 14 h, **4ab** (80 mg, 0.11 mmol), yield = 80%, 47 mg, Nature = white solid , Melting point = 115 °C, R_f-value: 0.30 (Ethyl acetate/hexane) = 2:8. ¹H-NMR (400 MHz, CDCl₃) δ 7.35-7.30 (m, 3H), 7.27-7.21 (m, 3H), 7.08-7.04 (m, 3H), 6.94 (d, *J* = 8.2 Hz, 1H), 6.73 (t, *J* = 7.6 Hz, 1H), 6.64 (d, *J* = 8.7 Hz, 2H), 4.92 (s, 1H), 4.34-4.19 (m, 2H), 3.95-3.87 (m, 1H), 3.80 (t, *J* = 14.4, 1H), 3.69-3.62 (m, 1H), 3.66 (s, 3H), 3.53-3.45 (m, 1H), 2.62 (dd, *J* = 7.0, 6.3 Hz, 1H), 1.25 (t, *J* = 7.2 Hz, 3H), 0.71 (t, *J* = 6.9 Hz, 3H). ¹³C-NMR (100 MHz, CDCl₃) δ 200.5,

172.0, 171.3, 170.0, 158.8, 138.0, 134.3, 130.4, 129.7, 127.8, 127.5, 126.6, 123.8, 121.6, 121.4, 113.4, 112.8, 99.0, 63.2, 62.1, 61.5, 57.6, 55.1, 51.3, 38.9, 14.1, 13.3. IR (\bar{v} , cm⁻¹) 2923, 1724, 1611, 1514, 1461, 1245, 1218, 1178, 1098, 1030, 919, 870, 755, 702. HRMS (ESI) calcd for C₃₁H₃₁O₇⁺ [M+H]⁺; 515.2070 found 515.2065.

160.0	150.0	140.0		20.0	110.0	100.0	90.0	80.0	70.0	/ <mark>60.0</mark>	50.0	40.0	30.0	20.0	10.0	0	-10.0
		138.9297	130.3867 130.3009 129.6335 128.0031 127.7361 127.0496	121.9391	113.5010					62.1191 61.5852 60.0310	55.1398 53.9956	38.5306		21.7688	14.0458 13.3497		

HRMS Spectra of 3aa:

M

| | | | | |

3.5338 3.5178 3.5178 3.4915 3.4915 3.4915 3.4823 3.4823

m. The second Thur 4.2254 4.2946 4.2946 4.2966 4.2773 4.2589 4.2589 4.2589 4.2589 4.2 7,2005 7,2006 7,1202 12,005 10,005 10,005 10,005 10,005 10,005 10,005 10,005 10 7.1 7.0 6.9 4.0 | |4 | | | 6.6484 ----4.1936 4.1753 4.1753 4.1581 4.1490 4.1306 4.1135 3.9771 3.9542 3.9359 3.9176 3.9096 3.9096 3.8912 3.8775 3.6873 3.6564 3.6404 3.6152 3.6152 7,4251 7,4045 7,3524 7,3552 7,3369 7,3346 7,3025 3.8420 3.8076 .7480 7847

HRMS Spectra of 3ba:

HRMS Spectra of 3ca:

Single Mass Analysis

Tolerance = 10.0 PPM / DBE: min = -1.5, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3

6.8672 6.8443 6.8225 6.8054

7.4216 7.4010 7.3884 7.3850 7.3701 7.3644 7.3644 7.3648 7.3648

7.2647

7.0963 7.0872 7.0814 7.0814 7.0711

1.9508 1.9348 1.9164 1.9084 1.8916 1.8918 1.8718 1.8718 1.8728 7973 3.7435 3.6805 3.6484 3.6324 3.6083 3.6083 3.7114

3.5350 3.5167 3.4983 3.4903 3.4720 3.4537

4.2452 4.1994 4.1994 4.1822 4.1537 4.1547 4.1547

HRMS Spectra of 3da:

Single Mass Analysis

Tolerance = 100.0 PPM / DBE: min = -1.5, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron Ions

44 formula(e) evaluated with 1 results within limits (up to 50 closest results for each mass) Elements Used:

HRMS Spectra of 3ea:

Single Mass Analysis

Tolerance = 10.0 PPM / DBE: min = -1.5, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3

HRMS Spectra of 3fa:

Single Mass Analysis

Tolerance = 50.0 PPM / DBE: min = -1.5, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron Ions

33 formula(e) evaluated with 1 results within limits (up to 50 best isotopic matches for each mass)

 Elements Used:
 C: 8-40
 H: 30-35
 N: 0-2
 O: 0-9
 S: 0-1

 Sample Name
 : 07-04-120
 I.I.T.ROPAR
 XEVO G2-XS QTOF

 Test Name
 : HRMS-1
 030119-07-04-120 14 (0.148) AM2 (Ar, 19000.0,0.00); Cm (14:19)
 1: TOF MS ES+

4.0 3.7 1,000

160.0	150.0	140.0		0.0 110.0	100.0	90.0	80.0	70.0	//	50.0	40.0	30.0	^{20.0}	∦ 10.0	
		138,9011	130.3676 129.5953 128.8516 127.9649 127.7742 127.0782	112.1757					62.1000 61.5852 60.2408	54.2149	38.5115	31.0745	21.7783 21.0727	14.0171 13.3402	

HRMS Spectra of 3ga:

Single Mass Analysis

Tolerance = 10.0 PPM / DBE: min = -1.5, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron Ions

: HRMS-1

Test Name

33 formula(e) evaluated with 1 results within limits (up to 50 closest results for each mass) Elements Used:

260218-15-01-027 11 (0.123) AM (Top,4, Ar,10000.0,0.00,0.00); Sm (Mn, 1x3.00); Cm (6:18)

C: 35-40 H: 31-42 N: 0-2 O: 0-10 S: 0-1 Sample Name : 15-01-027 INDIAN INSTITUTE OF TECHNOLOGY

XEVO G2-XS QTOF

1: TOF MS ES+

ROPAR

HRMS Spectra of 3ha:

Single Mass Analysis

Tolerance = 10.0 PPM / DBE: min = -1.5, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron Ions

49 formula(e) evaluated with 1 results within limits (up to 50 best isotopic matches for each mass)

HRMS Spectra of 3ia:

Single Mass Analysis

Tolerance = 10.0 PPM / DBE: min = -1.5, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron Ions 67 formula(e) evaluated with 1 results within limits (up to 50 best isotopic matches for each mass) Elements Used: C: 35-40 H: 35-42 N: 0-2 O: 0-7 Na: 0-1 S: 0-1 CI: 0-1 Sample Name : 07-04-068 I.I.T.ROPAR XEVO G2-XS QTOF : HRMS-1 Test Name 150518-07-04-068 16 (0.165) AM2 (Ar, 16000.0, 0.00, 0.00); Cm (16:19) 1: TOF MS ES+ 5.74e+007 680.2658 100-702.2458 % 703.2487 682.2681 704.2484 683.2702 705.2504 753.3520 555.1507 617.9352 780.1913 739.3359 666.2501 584,2659 634.2288 0----- m/z 680 560 640 700 720 580 620 600 660 740 760 780 800 Minimum: -1.5 Maximum: 5.0 10.0 50.0 i-FIT Mass Calc. Mass mDa PPM DBE Conf(%) Formula Norm 680.2658 680.2682 -2.4 -3.5 20.5 421.6 n/a n/a C40 H42 N O7 S

HRMS Spectra of 3ja:

- مر I

. will a like	MMM	milli
	4.9 \\\ ¹ .9 3.5 \\\ ¹ .9 97-87 980571 980571 980571 980571 97-87	3.7

HRMS Spectra of 3ka:

Single Mass Analysis

Tolerance = 5.0 PPM / DBE: min = -1.5, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron Ions 24 formula(e) evaluated with 1 results within limits (up to 50 best isotopic matches for each mass) Elements Used: C: 8-40 H: 35-45 N: 0-2 O: 1-7 S: 0-2 Sample Name : 07-04-137 I.I.T.ROPAR XEVO G2-XS QTOF Test Name : HRMS-1 190219-07-04-137- 17 (0.174) AM2 (Ar,21000.0,0.00,0.00); Cm (17:19) 1: TOF MS ES+ 7.15e+006 638.2206 100-660.2025 % 661.2059 784.6345 662.2056 392.8215 785.6379 566.4680 638.1286 676.1773 730.4888 368.1060 393.8251 848.5529 m/z 492.1280 0 350 400 450 500 550 600 650 700 750 800 850 Minimum: -1.5 Maximum: 5.0 5.0 50.0 Mass Calc. Mass mDa PPM DBE i-FIT Norm Conf(%) Formula 638.2206 638.2212 -0.6 -0.9 20.5 446.8 n/a n/a C37 H36 N O7 S

M

7.3

7.2636

HRMS Spectra of 3ab:

Single Mass Analysis

Tolerance = 15.0 PPM / DBE: min = -1.5, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3

 Monoisotopic Mass, Even Electron Ions

 37 formula(e) evaluated with 1 results within limits (up to 50 best isotopic matches for each mass)

 Elements Used:

 C: 35-39
 H: 30-35
 N: 0-2
 O: 0-10
 S: 0-1

 Sample Name
 : 07-04-079
 I.I.T.ROPAR
 XEVO G2-XS QTOF

 Test Name
 : HRMS-1
 1: TOF MS ES+
 210518-07-04-079 19 (0.203) AM2 (Ar,16000.0,0.00); Cm (19)
 1: TOF MS ES+

HRMS Spectra of 3ac:

HRMS Spectra of 3ad:

Single Mass Analysis

Tolerance = 25.0 PPM / DBE: min = -1.5, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron Ions 58 formula(e) evaluated with 1 results within limits (up to 50 best isotopic matches for each mass) Elements Used: C: 32-39 H: 32-40 N: 0-2 O: 0-8 F: 0-1 S: 0-1 Sample Name : 07-04-050 I.I.T.ROPAR Test Name : HRMS-1 010518-07-04-050 15 (0.157) AM (Top,4, Ar, 10000.0,0.00); Cm (15:18)

1: TOF MS ES+ 2.58e+007

XEVO G2-XS QTOF

HRMS Spectra of 3ae:

Single Mass Analysis

Tolerance = 10.0 PPM / DBE: min = -1.5, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron Ions

112 formula(e) evaluated with 1 results within limits (up to 50 best isotopic matches for each mass)

Elements Used: C: 35-40 H: 35-40 N: 0-2 O: 0-8 S: 0-1 Cl: 0-1 Na: 0-1

Sample Name : 07-04-067 Test Name : HRMS-1

150518-07-04-067 13 (0.140) AM2 (Ar,16000.0,0.00,0.00); Cm (13:18)

I.I.T.ROPAR

XEVO G2-XS QTOF

1: TOF MS ES+

HRMS Spectra of 4ab:

Single Mass Analysis

Tolerance = 10.0 PPM / DBE: min = -1.5, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron Ions 3 formula(e) evaluated with 1 results within limits (up to 50 closest results for each mass) Elements Used: C: 25-35 H: 31-35 O: 0-7 Sample Name : 15-01-129 I.I.T.ROPAR XEVO G2-XS QTOF Test Name : HRMS-1 090818-15-01-129 19 (0.203) AM2 (Ar, 19000.0,0.00,0.00); Cm (19)

1: TOF MS ES+

2. X-Ray diffraction:

For the determination of X-ray crystal structures of **3ba** and **4ab** a single crystal was selected and mounted with paratone oil on a glass fiber using gum. The data was collected at 293K on a CMOS based Bruker D8 Venture PHOTON 100 diffractometer equipped with INCOATEC micro-focus source with graphite monochromatic Mo K α radiation (λ = 0.71073 Å) operation at 50 kV and 30 mA. For the integration of diffraction profiles SAINT program³ was used. Absorption correction was done applying SADABS program.⁴ The crystal structure was solved by SIR 92⁵ and refined by full matrix least square method using SHELXL-97⁶ WinGX system, Ver 1.70.01.⁷ All the non-hydrogen atoms in the structure were located the Fourier map and refined anisotropically. The hydrogen atoms were fixed by HFIX in their ideal positions and refined using riding model with isotropic thermal parameters.

Figure 1: ORTEP structure of 3ba

CCDC No.	CCDC 1860991
Formula	C39 H39 N O9 S
Formula weight	697.78
Crystal System	Monoclinic
Space group	P21/c
a, b, c (Å)	17.483(5), 8.483(5), 24.544(5)
α, β, γ (°)	90, 97.103(5), 90
V (Å ³)	3612(2)

Z	4
Calculated Density (g/cm ³)	1.283
Absorption coefficient (mm ⁻¹)	0.146
F(000)	1472
Theta range for data collection:	2.3 to 28.4
Data set	-23: 23; -10: 11; -32: 32
Reflection	178649
Independent refl.	9006, (R(int) = 0.178)
data $[I > 2\sigma(I)]$	4870
R indices (all data)	R = 0.1027, wR ₂ = 0.1748
S	1.16
Min. and Max. Resd. Dens. (e/Å ³)	-0.31 and 0.19

Table 1 Selected bond lengths [Å] of 3ba.

S1-01	1.435(3)	C10-C11	1.373(7)
S1-O2	1.429(3)	C11-C12	1.379(7)
S1-N1	1.632(3)	C12-C13	1.362(6)
S1-C5	1.754(4)	C13-C14	1.382(5)
O3-C34	1.367(4)	C15-C16	1.542(4)
O3-C38	1.399(5)	C15-C19	1.531(4)
O4-C35	1.368(4)	C16-C17	1.525(4)
O4-C39	1.399(5)	C16-C32	1.516(4)
O5-C14	1.355(4)	C17-C18	1.541(4)
O5-C15	1.449(3)	C18-C19	1.573(4)
O6-C29	1.195(4)	C18-C26	1.523(4)
O7-C29	1.327(4)	C18-C29	1.524(4)
O7-C30	1.453(4)	C19-C20	1.508(4)
O8-C26	1.329(4)	C20-C21	1.389(5)
O8-C27	1.460(4)	C20-C25	1.382(5)
O9-C26	1.189(4)	C21-C22	1.374(5)
N1-C8	1.291(4)	C22-C23	1.364(6)

1.505(6)	C23-C24	1.359(7)
1.364(6)	C24-C25	1.381(6)
1.365(6)	C27-C28	1.484(6)
1.380(6)	C30-C31	1.496(6)
1.378(5)	C32-C33	1.402(4)
1.369(5)	C32-C37	1.371(4)
1.374(6)	C33-C34	1.373(4)
1.439(5)	C34-C35	1.395(5)
1.511(4)	C35-C36	1.371(5)
1.402(5)	C36-C37	1.390(5)
1.386(5)	C1-H1A	0.9600
	$\begin{array}{c} 1.505(6)\\ 1.364(6)\\ 1.365(6)\\ 1.380(6)\\ 1.378(5)\\ 1.369(5)\\ 1.374(6)\\ 1.439(5)\\ 1.511(4)\\ 1.402(5)\\ 1.386(5) \end{array}$	1.505(6) C23-C24 1.364(6) C24-C25 1.365(6) C27-C28 1.380(6) C30-C31 1.378(5) C32-C33 1.369(5) C32-C37 1.374(6) C33-C34 1.439(5) C34-C35 1.511(4) C35-C36 1.402(5) C36-C37 1.386(5) C1-H1A

Table 2 Selected bond angles [°] of 3ba

01-S1-O2	116.93(17) C	9-C10-C11	118.3(4)
01-S1-N1	108.61(14) C	C10-C11-C12	120.6(4)
O1-S1-C5	108.30(16) C	C11-C12-C13	122.7(4)
O2-S1-N1	112.23(15) C	212-C13-C14	116.7(3)
O2-S1-C5	108.95(15)	O5-C14-C9	114.5(3)
N1-S1-C5	100.50(14) (D5-C14-C13	122.9(3)
C34-O3-C38	118.4(3)	C9-C14-C13	122.6(3)
C35-O4-C39	117.4(3)	O5-C15-C8	105.6(2)
C14-O5-C15	106.9(2)	O5-C15-C16	107.6(2)
C29-O7-C30	116.0(3)	O5-C15-C19	112.9(2)
C26-O8-C27	117.9(2)	C8-C15-C16	113.4(2)
S1-N1-C8	124.1(2) C	8-C15-C19	114.2(2)
C1-C2-C3	121.5(4) C	16-C15-C19	103.2(2)
C1-C2-C7	121.8(4) C	15-C16-C17	101.6(2)
C3-C2-C7	116.8(4) C	15-C16-C32	115.5(2)
C2-C3-C4	122.1(4) C	17-C16-C32	116.2(2)
C3-C4-C5	119.9(4) C	16-C17-C18	105.4(2)
S1-C5-C4	117.6(3) C	17-C18-C19	104.7(2)
S1-C5-C6	123.6(3) C	17-C18-C26	109.3(2)

C4-C5-C6	118.8(3) C17-C18-C29	111.4(2)
C5-C6-C7	119.6(4) C19-C18-C26	110.3(2)
C2-C7-C6	122.8(4) C19-C18-C29	111.8(2)
N1-C8-C9	137.2(3) C26-C18-C29	109.3(2)
N1-C8-C15	116.8(3) C15-C19-C18	105.4(2)
C9-C8-C15	106.1(3) C15-C19-C20	118.2(2)
C8-C9-C10	134.5(3) C18-C19-C20	117.2(2)
C8-C9 -C14	106.4(3) C19-C20-C21	123.5(3)
C10-C9-C14	119.1(3) C19-C20-C25	118.5(3)
C2-C20-C25	117.9(3) C2-C1-H1C	109.00
C20-C21-C22	120.7(3) H1A-C1-H1B	109.00
C21-C22-C23	120.3(4) H1A -C1-H1C	110.00
C22-C23-C24	120.2(4) H1B-C1-H1C	109.00
C23-C24-C25	120.1(4) C2-C3-H3	119.00
C20-C25-C24	120.8(4) C4-C3-H3	119.00
O8-C26-O9	123.5(3) C3-C4-H4	120.00
O8-C26-C18	110.7(3) C5-C4-H4	120.00
O9-C26-C18	125.7(3) C5-C6-H6	120.00
O8-C27-C28	106.9(3) C7-C6-H6	120.00
O6-C29-O7	124.6(3) C2-C7-H7	119.00
O6-C29-C18	124.9(3) C6-C7-H7	119.00
O7-C29-C18	110.5(3) C9-C10-H10	121.00
O7-C30-C31	106.8(3) C11-C10-H10	121.00
C16-C32-C33	120.4(2) C10-C11-H11	120.00
C16-C32-C37	122.1(3) C12-C11-H11	120.00
C33-C32-C37	117.6(3) C11-C12-H12	119.00
C32-C33-C34	121.5(3) C13-C12-H12	119.00
O3-C34-C33	125.3(3) C12-C13-H13	122.00
O3-C34-C35	114.7(3) C14-C13-H13	122.00
C33-C34 -C35	120.0(3) C15-C16-H16	108.00
O4 -C35-C34	116.1(3) C17-C16-H16	108.00
O4-C35-C36	125.0(3) C32-C16-H16	108.00
C34-C35-C36	118.9(3) C16-C17-H17A	111.00

C35-C36-C37	120.7(3) C16-C17-H17B	111.00
C32-C37-C36	121.3(3) C18-C17-H17A	111.00
C2-C1-H1A	109.00 C18-C17-H17B	111.00
C2-C1-H1B	109.00 H17A-C17 -H17B	109.00

Figure 2: ORTEP structure of 4ab

CCDC No.	CCDC 1862808
Formula	C31H30O7
Formula weight	514.55
Crystal System	Triclinic
Space group	P-1
a, b, c (Å)	9.539, 9.870, 15.022
α, β, γ (°)	95.6, 97.2, 99.2
V (Å ³)	1374.4(11)
Z	2
Calculated Density (g/cm ³)	1.243
Absorption coefficient (mm ⁻¹)	0.088
F(000)	544
Theta range for data collection:	2.2 to 28.3

Data set	-12: 12; -13:13; -20: 19
Reflection	24174
Independent refl.	6760, (R(int) = 0.077)
data $[I > 2\sigma(I)]$	3531
R indices (all data)	$R = 0.0806, wR_2 = 0.0806$
S	1.04
Min. and Max. Resd. Dens. (e/Å ³)	-0.24 and 0.31

Table 3 Selected bond lengths [Å] of 4ab.

O1-C4	1.445(4)	C16-C17	1.404(6)
O1-C31	1.364(4)	C18-C19	1.389(4)
O2-C25	1.211(4)	C18-C23	1.378(5)
O3-C15	1.199(4)	C19-C20	1.365(5)
O4-C15	1.333(4)	C20-C21	1.366(5)
O4-C16	1.458(5)	C21-C22	1.387(5)
O5-C12	1.326(4)	C22-C23	1.382(6)
O5-C13	1.452(7)	C25-C26	1.440(5)
O6-C12	1.194(4)	C26-C27	1.403(5)
O7-C21	1.369(4)	C26-C31	1.386(5)
O7-C24	1.406(5)	C27-C28	1.355(7)
C1-C2	1.545(4)	C28-C29	1.384(8)
C1-C5	1.585(4)	C29-C30	1.379(7)
C1-C12	1.528(4)	C30-C31	1.377(5)
C1-C15	1.515(4)	C2-H2A	0.9700
C2-C3	1.525(4)	C2-H2B	0.9700
C3-C4	1.546(4)	C3-H3	0.9800
C3-C18	1.503(4)	C5-H5	0.9800
C4-C5	1.526(4)	C7-H7	0.9300
C4-C25	1.529(4)	C8-H8	0.9300
C5-C6	1.504(4)	C9-H9	0.9300
C6-C7	1.391(5)	C10-H10	0.9300

C6-C11	1.376(5)	C11-H11	0.9300
C7-C8	1.383(5)	C13-H13A	0.9700
C8-C9	1.366(7)	C13-H13B	0.9700
C9-C10	1.367(6)	C14-H14A	0.9600
C10-C11	1.390(6)	C14-H14B	0.9600
C13-C14	1.295(9)	C14-H14C	0.9600

Table 4 Selected bond angles [°] of 4ab.

C4-O1-C31	108.2(2) C8-C9-C10	119.2(4)
C15-O4-C16	119.0(3) C9-C10-C11	120.3(4)
C12-O5-C13	116.7(3) C6-C11-C10	121.5(3)
C21-O7-C24	118.9(3) O5-C12-O6	124.5(3)
C2-C1-C5	104.6(2) O5-C12-C1	110.7(3)
C2 -C1 -C12	111.8(2) O6-C12-C1	124.8(3)
C2-C1-C15	108.3(2) O5-C13-C14	115.4(6)
C5-C1-C12	111.5(2) O3-C15-O4	123.3(3)
C5-C1-C15	110.5(2) O3-C15-C1	125.4(3)
C12-C1-C15	110.0(2) O4-C15-C1	111.2(2)
C1-C2-C3	105.4(2) O4-C16-C17	110.3(3)
C2-C3-C4	101.1(2) C3-C18-C19	120.3(3)
C2-C3-C18	117.3(2) C3-C18-C23	123.3(3)
C4-C3-C18	116.0(2) C19-C18-C23	116.4(3)
O1-C4-C3	109.2(2) C18-C19-C20	122.0(3)
O1-C4-C5	112.8(2) C19-C20-C21	120.6(3)
O1-C4-C25	105.0(2) O7-C21-C20	116.7(3)
C3-C4-C5	103.0(2) O7-C21-C22	123.9(3)
C3-C4-C25	112.7(2) C20-C21-C22	119.4(3)
C5-C4-C25	114.2(2) C21-C22-C23	118.9(4)
C1-C5-C4	104.7(2) C18-C23-C22	122.7(4)
C1-C5-C6	118.2(2) O2-C25-C4	123.7(3)
C4-C5-C6	117.9(2) O2-C25-C26	130.3(3)
C5-C6-C7	123.8(3) C4-C25-C26	106.1(2)

C5-C6-C11	119.2(3) C25-C26-C27	133.9(3)
C7-C6-C11	117.1(3) C25-C26-C31	107.1(3)
C6-C7-C8	121.2(4) C27-C26-C31	119.0(3)
C7-C8-C9	120.6(4) C26-C27-C28	118.7(4)
C27-C28-C29	121.0(5) O5-C13-H13B	108.00
C28-C29-C30	122.0(5) C14-C13-H13A	108.00
C29 -C30-C31	116.4(4) C14-C13-H13B	108.00
O1-C31-C26	113.6(3) H13A-C13-H13B	107.00
O1-C31-C30	123.5(3) C13-C14-H14A	109.00
C26-C31-C30	122.8(3) C13-C14-H14B	109.00

Reference:

- (a) E. J. Corey, M. Chaykovsky, J. Am. Chem. Soc. 1965, 87, 1345. (b) W. Fraser, C. J. Suckling, H. C. S. Wood, J. Chem. Soc., Perkin Trans.1 1990, 3137. (c) A. F. G. Goldberg, N. R. O'Connor, R. A. Craig, B. M. Soltz, Org. Lett. 2012, 14, 5314.
 (d) X. He, G. Qiu, J. Yang, Y. Xiao, Z. Wu, G. Qiu, X. Hu, Eur. J. Med. Chem. 2010, 45, 3818. (e) R. Talukdar, D. P. Tiwari, A. Saha, M. K. Ghorai, Org. Lett. 2014, 16, 3954. (f) F. Benfatti, F. D. Nanteuil, J. Waser, Chem. Eur. J. 2012, 18 (16), 4844.
- (a) J. Chen, Y. Huang, Org. Lett., 2017, 19, 5609. (b) Z. Gu, J. Zhou, G.-F. Jiang, Y.-G. Zhou, Org. Chem. Front., 2018, 5, 1148. (c) Z. -Q. Rong, M. Wang, C. H. E. Chow, Y. A. Zhao, Chem. Eur. J. 2016, 22, 9483.
- 3. Bruker, SAINT V7.68A, Bruker AXS Inc., Madison (WI, U.S.A), 2005.
- 4. G. M. Sheldrick, SADABS 2008/2, GÖttingen, 2008.
- 5. A. Altomare, G. Cascarano, C. Giacovazzo, A. Guagliardi, J. Appl. Cryst. 1993, 26, 343.
- 6. G. M. Sheldrick, SHELXL-97, Program for *Crystal Structure Solution And Refinement*; University of GÖttingen, Germany, 1997.
- 7. L. Farrugia, WinGX-A Windows Program for Crystal Structure Analysis, J. Appl. Cryst. 1999, 32, 837.