Electronic Supporting Information

Chemoenzymatic Reduction of Citreorosein and its Implications for Aloe-Emodin and Rugulosin C (Bio)synthesis

Amit Mondal, Nirmal Saha, Anshul Rajput, Shailesh Kumar Singh, Brindaban Roy, Syed Masood Husain

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>General Materials and Methods.</td>
<td>S2</td>
</tr>
<tr>
<td>II</td>
<td>Bacterial Culture, Enzyme Expression and Purification.</td>
<td>S3</td>
</tr>
<tr>
<td>III</td>
<td>Substrate Synthesis</td>
<td>S4–S6</td>
</tr>
<tr>
<td>IV</td>
<td>Characterization of citreorosein hydroquinones (10a/10b)</td>
<td>S7–S9</td>
</tr>
<tr>
<td>V</td>
<td>Chemoenzymatic reduction of citreorosein (4)</td>
<td>S9–S11</td>
</tr>
<tr>
<td>VI</td>
<td>Characterization of dihydrocitreorosein tautomers (11/11\textsubscript{dienol})</td>
<td>S11–S14</td>
</tr>
<tr>
<td>VII</td>
<td>Time dependent conversion of 11 to 8</td>
<td>S15</td>
</tr>
<tr>
<td>VIII</td>
<td>Biosynthesis of fungal DHN-melanin starting from</td>
<td>S16</td>
</tr>
<tr>
<td></td>
<td>polyketide based T\textsubscript{4}HN</td>
<td></td>
</tr>
<tr>
<td>IX</td>
<td>Chemoenzymatic reduction of emodin</td>
<td>S16–S17</td>
</tr>
<tr>
<td>X</td>
<td>NMR Spectra</td>
<td>S18–S24</td>
</tr>
<tr>
<td>XI</td>
<td>Circular Dichroism (CD) Spectra</td>
<td>S25</td>
</tr>
<tr>
<td>XII</td>
<td>References</td>
<td>S26</td>
</tr>
</tbody>
</table>
I. General Materials and Methods.

All commercial reagents were obtained from Sigma-Aldrich Chemical Co. and Sisco Research Laboratories, India. Reactions were monitored by thin-layer chromatography (TLC, 0.25 mm E. Merck silica gel plates, 60F254) and the plates were visualized by using UV light. Column chromatography was performed on silica gel 60–120/230–400 mesh obtained from S. D. Fine Chemical Co., India. 10% Oxalic acid impregnated silica gel was prepared by adding silica gel (230–400 mesh size, 10 g) to a solution of oxalic acid (10 g) in H2O (200 mL), filtered the resulting suspension to dryness under reduced pressure and then activating at 125 °C overnight, and finally cooling under argon. Yields refer to chromatographically pure materials; conversions were calculated from the 1H NMR spectra of the crude products. 1H NMR spectra were recorded on Bruker 400 Ultra Shield instruments using deuterated solvents. Proton coupling constants (J) are reported as absolute values in Hz. 13C NMR spectra were recorded on Bruker 400 Ultra Shield instruments operating at 100 MHz. Chemical shifts (δ) of the 1H and 13C NMR spectra are reported in ppm with a solvent resonance as an internal standard. For 1H NMR: chloroform 7.26, acetone-d6 2.05, DMSO-d6 2.50; for 13C NMR: chloroform-d1 77.16, acetone-d6 29.84, DMSO-d6 39.52. The following abbreviations were used to explain the multiplicities: s = singlet, d = doublet, dd = doublet of a doublet, ddd = doublet of a doublet of doublet, t = triplet, dt = doublet of a triplet, q = quartet, quint = quintet, m = multiplet, br = broad, ar = aromatic. Electrospray ionization (ESI) mass spectrometry (MS) experiments were performed on an Agilent 6530 Accurate-Mass Q-TOF LC/MS system (Agilent Technologies). Optical rotations were measured on a DigiPol 781 M6U Automatic Polarimeter. CD spectroscopy was carried out on a Jasco J-1500 CD Spectrometer (Jasco International Co.). UV spectroscopy and activity measurements were performed on Cary 300 UV/Vis spectrophotometer (Agilent Technologies).
II. Bacterial Culture, Enzyme Expression and Purification.

The strains *E. coli* DH5α and BL21 (DE3) (Sigma-Aldrich) were used for cloning and expression, respectively. Recombinant plasmids (pET19b) each containing one of T₄HNR_his, MdpC_his, and PHAR_his genes were obtained from Prof. Michael Müller (University of Freiburg, Germany). Cloning details of T₄HNR,¹ MdpC² and PHAR³ in the pET19b vector has been published elsewhere. Glucose dehydrogenase (GDH) plasmid was generously provided by Prof. Werner Hummel (University of Bielefeld, Germany). Competent *E. coli* BL21 (DE3) cells were transformed with plasmid by applying a heat shock at 42°C for 45 seconds and grown overnight on SOB-agar medium containing 100 µg/mL ampicillin. One clone from a colony was picked and dispersed in 5 mL of LB-media (Lennox) containing ampicillin (100 µg·mL⁻¹), followed by incubation overnight (37°C, 160 rpm). For expression of T₄HNR_his, MdpC_his, and GDH, each overnight culture was diluted to 500 mL of medium and incubated at 37°C, 160 rpm. Once the culture reached the mid-log phase (OD₆₀₀ nm = 0.6), IPTG (0.2 mM) was added and cultures were further incubated for 4 h at 37°C, 160 rpm. For expression of PHAR_his, the cultures were incubated for 20 h at 18°C, 160 rpm after the addition of IPTG. Cells were harvested (by centrifugation at 12000 x g, 4°C for 15 minutes) and resuspended in resuspension buffer. For T₄HNR_his, MdpC_his and GDH, the harvested *E. coli* cells were resuspended in HEPES buffer (50 mM, pH = 7.5; 2.5 mL per 500 mL culture medium). For PHAR_his, the harvested *E. coli* cells were resuspended in Tris-HCl buffer (50 mM Tris-HCl, 0.5 mM dithiothreitol, 10% glycerol, 5 mM imidazole, pH = 7.5; 2.5 mL per harvested cells of 500 mL medium). The cells were disrupted by sonication (6 times 10 sec, Vibra-Cell Processors, model no. VCX500, Sonics), followed by centrifugation (12000 x g, 4°C for 40 minutes). The supernatant was supplemented with 20% v/v glycerol and stored at −20°C as crude enzyme until use. T₄HNR_his, MdpC_his, and PHAR_his were purified by Ni-NTA affinity chromatography. Non-specifically bound proteins were washed off with buffer containing 20 and 50 mM imidazole (prepared in the resuspension buffer used earlier for workup). Elution of pure proteins was performed with buffer containing 250 mM imidazole. The eluted fractions were desalted by gel filtration (Econo-Pac 10DG desalting gel column, Bio-Rad). The purified proteins were concentrated by ultrafiltration (Vivaspin 15R centrifugal filter units, 10 kDa nominal molecular weight limit, Sartorius). The concentration of the protein was measured by UV absorption at 280 nm (NanoVue, GE Healthcare).
III. Substrate synthesis

Scheme S1. Synthesis of citreorosein (4) from emodin (1)\(^4\) Reagents and conditions: a) Ac\(_2\)O/py, 70 °C, 4 h, 98%; b) CrO\(_3\), Ac\(_2\)O/AcOH, 70 °C, 24 h, 80%; c) BMS, dry THF, 0 °C, 15 min, 48%; d) 0.5 N KOH, 70 °C, 45 min, 88%.

6-methyl-9,10-dioxo-9,10-dihydroanthracene-1,3,8-triyi triacetate (1a)

C\(_{21}\)H\(_{16}\)O\(_8\): 396.084 g/mol

Emodin (1) (1.0 g, 3.70 mmol) was dissolved in a solution of pyridine (20.0 mL) and acetic anhydride (2.2 mL, 18.5 mmol, 5.0 equiv.). Then, the reaction mixture was heated at 70°C for 4h. The reaction was monitored by TLC. After completion, the reaction mixture was cooled to room temperature and poured onto crushed ice to afford 1, 3, 8-triacyt emodin (TAEM), 1a (1.40 g, 98% yield) as a pale-yellow solid as crystal after filtration.

TLC (cyclohexane/ethyl acetate, 7:3 v/v): \(R_f = 0.42\);

\(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta 2.35 (s, 3H, CH\(_3\)), 2.43 (s, 6H, OCH\(_3\)), 7.22 (q, \(^4\)J = 0.65 Hz, 1H, H-7), 7.23 (d, \(^4\)J = 2.4 Hz, 1H, H-4), 7.95 (d, \(^4\)J = 2.4 Hz, 1H, H-2), 8.01 (q, \(^4\)J = 0.6 Hz, 1H, H-5).

\(^{13}\)C NMR (100 MHz, CDCl\(_3\)): \(\delta 21.2, 21.2, 21.8, 118.2, 126.2, 130.9, 134.0, 135.79, 146.18, 150.31, 151.6, 154.7, 168.22, 169.15, 169.78, 180.50, 182.49\).
4,5,7-triacetoxy-9,10-dioxo-9,10-dihydroanthracene-2-carboxylic acid (1b):

\[
\begin{align*}
\text{C}_{21}\text{H}_{14}\text{O}_{10} & : 426.33 \text{ g/mol} \\
\text{1a (1.4 g, 3.53 mmol) was dissolved in a mixture of acetic acid (30.0 mL) and acetic anhydride (50.0 mL). Then, the solution of chromium trioxide (3.53 g, 35.3 mmol, 10.0 equiv.) dissolved, in acetic acid (20.0 mL) was gradually added to the solution of 1a and the reaction mixture was stirred at 70°C for 24 h. Then, the reaction mixture was cooled to room temperature, extracted with ethyl acetate, washed with water and dried over anhydrous sodium sulphate. The extracted organic layer was concentrated on rotary evaporator and purified by the column chromatography (silica gel 230-400 mess size, CH}_2\text{Cl}_2: \text{MeOH 1:19) to afforded 4,5,7-triacetoxy-9,10-dioxo-9,10-dihydroanthracene-2-carboxylic acid (TAEA, 1b) (1.2 g, 80\% yield).} \\
\text{TLC (cyclohexane/ethyl acetate, 1:1 v/v): } R_f = 0.8. \\
\text{1H NMR (400 MHz, acetone-}d_6): \delta 2.37 (s, 3H, OCH}_3), 2.41 (s, 3H, OCH}_3), 2.43 (s, 3H, OCH}_3), 7.43 (d, \text{ }^4J = 2.4 \text{ Hz, H-8}), 7.97 (d, \text{ }^4J = 2.4 \text{ Hz, H-6}), 8.08 (d, \text{ }^4J = 1.7 \text{ Hz, H-1}), 8.75 (d, \text{ }^4J = 1.7 \text{ Hz, H-3}). \\
\text{13C NMR (100 MHz, acetone-}d_6): \delta 20.9, 21.0, 21.0, 119.0, 124.3, 124.8, 126.4, 129.3, 131.6, 135.5, 136.5, 137.0, 151.5, 152.7, 156.2, 156.3, 168.9, 169.4, 169.6, 180.5, 181.3. \\
\text{6-(hydroxymethyl)-9,10-dioxo-9,10-dihydroanthracene-1,3,8-triyl triacetate (1c)} \\
\end{align*}
\]

\[
\begin{align*}
\text{C}_{21}\text{H}_{16}\text{O}_9 & : 412.35 \text{ g/mol} \\
\text{1b (400.0 mg, 0.94 mmol) was dissolved in anhydrous THF (40.0 mL), followed by the addition of BMS (24.0 mL, 2 M in THF) at 0°C for 15 min. The reaction mixture was monitored by TLC. After completion, the reaction was stopped by adding water, and the mixture was extracted with diethyl ether, washed with saturated brine solution and dried over anhydrous sodium sulphate. The extracted organic layer was concentrated on rotary evaporator, followed by purification using column chromatography (silica gel, CH}_2\text{Cl}_2: \text{MeOH 1: 24) to afford 1c (186.0 mg, 48\% yield).} \\
\text{TLC (CHCl}_3/\text{MeOH, 9:1 v/v): } R_f = 0. \\
\end{align*}
\]
1H NMR (400 MHz, acetone-d6): δ 2.36 (s, 3H, OCH3), 2.39 (s, 3H, OCH3), 2.40 (s, 3H, OCH3), 4.75 (t, 3J = 5.7 Hz, 1H, aliphatic–OH), 4.85 (d, 3J = 5.6 Hz, 2H, CH2), 7.39 (d, 4J = 2.4 Hz, 1H, H-4), 7.53–7.54 (m, 1H, H-7), 7.93 (d, 4J = 2.4 Hz, 1H, H-2), 8.17–8.18 (m, 1H, H-5).

13C NMR (100 MHz, acetone-d6): δ 21.0, 21.1, 63.38, 118.9, 123.1, 124.3, 124.6, 124.9, 128.6, 135.2, 136.6, 151.5, 151.9, 152.6, 155.9, 168.9, 169.4, 169.6, 180.6, 181.9.

1,3,8-trihydroxy-6-(hydroxymethyl)anthracene-9,10-dione (citreorosein, 4)

C15H10O6: 286.23 g/mol

1c (200.0 mg, 0.485 mmol) was dissolved in 0.5(N) KOH solution (50 mL) and the reaction mixture was stirred at 70°C for 45 min. After completion of reaction as monitored through TLC, acidification was done with 10 % HCl solution and the reaction mixture was extracted with ethyl acetate (3 X 40 mL), washed with brine solution and dried over anhydrous sodium sulphate. The extracted organic layer was concentrated on rotary evaporator and purified by the column chromatography (silica gel, CH2Cl2: MeOH 1: 19) to afforded citreorosein, 4 (122 mg, 88% yield).

TLC (MeOH: CHCl3, 1:9 v/v): Rf = 0.36.

1H NMR (400 MHz, DMSO-d6): δ 4.57 (s, 2H, CH2), 6.51 (d, 4J = 2.4 Hz, 1H, H-2), 7.04 (d, 4J = 2.4 Hz, 1H, H-4), 7.17 (s, 1H, H-7), 7.55 (s, 1H, H-5), 12.00 (s, 2H, OH-1, OH-8).

13C NMR (100 MHz, DMSO-d6): δ 62.4 (CH2), 108.3(C-2), 109.2 (C-4), 109.3 (C-9a), 114.4 (C-8a), 117.4 (C-5), 121.1 (C-7), 133.2 (C-5a), 135.4 (10a), 153.2 (C-6), 161.9 (C-8), 164.9 (C-3), 166.1 (C-1), 181.6 (C-10), 190.0 (C-9).
Characterization of citreorosein hydroquinones (10a/10b)

Reduction of Citreorosein (4) by sodium dithionite (Na$_2$S$_2$O$_4$) to citreorosein hydroquinones (10a/10b)

To investigate the reduction of 4 by sodium dithionite, the anthraquinone (4) was treated as follows: 6.0 mg (20.9 µmol) of 4 was dissolved in 800 µL of acetonitrile-d_3 and 800 µL of argon-flushed water. Phase separation occurred on the addition of 70.0 mg (402.0 µmol) of Na$_2$S$_2$O$_4$. The mixture was shaken for 3 minutes and the organic phase was directly subjected to NMR analysis which showed 10a and 10b in a ratio of 2:1 at room temperature.

3,8,9,10-tetrahydroxy-6-(hydroxymethyl)anthracene-1(4H)-one (10a).

1H NMR (400 MHz, acetonitrile-d_3 + water from extraction): δ 3.57 (s, 1 H, H-4), 4.61 (s, 1 H, H-10), 5.27 (s, 1 H, H-2), 6.60 (d, 4J = 1.2 Hz, 1 H, H-7), 7.39 (s, 1 H, H-5).

13C NMR (100 MHz, acetonitrile-d_3 + water from extraction): δ 34.9 (C-4), 64.1 (C-6a), 99.8 (C-2), 107.2 (C-7), 109.1 (C-5), 158.3 (C-8), 148.2 (C-9) 143.1 (C-10).

HRMS (ESI-TOF) m/z: [M+H]$^+$: Calculated for C$_{15}$H$_{14}$O$_6$ 289.0707: Found 289.0721.

All the 1H attached with carbon are assigned from HSQC (1H-13C) experiment.

1,3,8,10-tetrahydroxy-6-(hydroxymethyl)anthracen-9(10H)-one (10b).

1H NMR (400 MHz, acetonitrile-d_3 + water from extraction): δ 4.61 (s, 1 H, H-6a), 5.55 (s, 1 H, H-10), 6.30 (d, 4J = 2.3 Hz, 1 H, H-2), 6.76 (s, 4J = 1.1 Hz, 1 H, H-7), 6.85 (s, 1 H, H-5), 7.22 (s, 1 H, H-5).

13C NMR (100 MHz, acetonitrile-d_3 + water from extraction): δ 63.1 (H-6a), 65.7 (C-10), 102.2 (C-2), 106.2 (C-2) 107.9 (C-4), 130.2 (C-5).

HRMS (ESI-TOF) m/z: [M+H]$^+$: Calcd for C$_{15}$H$_{14}$O$_6$ 289.0707: Found 289.0721.

All the 1H attached with carbon are assigned from HSQC (1H-13C) experiment.
1H NMR (400 MHz, CD$_3$CN)

13C NMR (100 MHz, CD$_3$CN)
V. Chemoenzymatic Reduction of Citreorosein (4)
Potassium phosphate buffer (50 mM, 1 mM EDTA, 1 mM DTT, pH 7; 100 mL) was degassed under reduced pressure for 20 minutes to remove molecular oxygen, followed by stirring under argon atmosphere. Under argon counter flow, D-glucose (314.8 mg, 1.75 mmol, 5 equiv.), NADP⁺ (27.5 mg, 34.9 µmol, 0.1 equiv.), Na₂S₂O₄ (1216.7 mg, 6.99 mmol, 20 equiv.), and citerorosein (4; 100 mg, 349.3 µmol) in DMSO (10 mL, 10% v/v), GDH (200 U), and PHAR_his (4 mL, 2.1 mg/mL) were added to the buffer and the mixture was stirred under argon atmosphere for 24 h. The solution was extracted with EtOAc (3x50 mL), dried over Na₂SO₄, and the solvent was removed under reduced pressure. Flash column chromatography (silica gel; DCM/MeOH, 90:10) afforded the title compound 12 (75.0 mg, 74%) as an orange solid. Conversion: > 99 % (¹H NMR in acetone-d₆)

TLC (MeOH: CHCl₃, 1:9 v/v): Rₚ = 0.2. Yield: 75.0 mg (74%),

¹H NMR (400 MHz, acetone-d₆): δ 2.80 (dd, ²J = 17.0 Hz, ³J = 7.0 Hz, 1H, H-4), 3.01 (dd, ²J = 17.1 Hz, ³J = 3.3 Hz, 1H, H-4), 3.09 (dd, ²J = 16.3 Hz, ³J = 6.7 Hz, 1H, H-2), 3.28 (dd, ²J = 16.4 Hz, ³J = 3.7 Hz, 1H, H-2), 4.39 (dd, ²J = 10.8 Hz, ³J = 4.8 Hz, 1H), 4.46 (m, 1H, H-3), 4.75 (d, ²J = 5.6 Hz, 2H), 6.84 (s, 1H, ArH), 7.67 (s, 1H, ArH), 7.69 (s, 1H, OH-10), 9.81 (s, 1H, OH-8), 15.90 (s, 1H, OH-9).

¹³C-NMR (100 MHz, acetone-d₆): δ 32.6 (C-4), 46.8 (C-2), 64.7 (CH₂), 66.0 (C-3), 110.0 (C-5), 110.3 (C-7), 110.6, 112.4, 117.8, 133.9, 142.1, 148.1 (C-10), 159.0 (C-8), 160.0 (C-9), 205.1 (C-1).

Assignment of protonated carbons is done by 2D-HSQC (¹H-¹³C), COSY (¹H-¹H) experiments.

CD (c 50 µM, 1,4-dioxane): λ [nm] (mdeg) 215 (–1.39), 228 (–1.15), 240 (–0.45), 250 (–1.10), 259 (–1.44), 270 (–1.34), 300 (–0.09), 310 (0.41), 320 (0.60), 348 (0.22), 360 (0.35), 380 (0.78), 419 (1.53), 450 (1.09), 497 (0.09).

[α]D²⁷ = +22.4 (c = 0.025, acetonitrile).
1,8-dihydroxy-3-(hydroxymethyl)anthracene-9,10-dione (aloe-emodin, 8).

![Chemical Structure]

The formation of the title compound aloe-emodin (8) (9 mg, 8.0 %) was observed after workup and it was isolated as a pure compound using column chromatography and DCM as an eluent during the purification of 12.

TLC (cyclohexane/ethyl acetate, 7:3 v/v): $R_f = 0.7$,

1H NMR (400 MHz, DMSO-d$_6$): δ 4.63 (d, $J = 5.6$ Hz, 2H), 5.62 (t, $J = 5.6$ Hz, 1H), 7.29 (s, 1H), 7.39 (d, $J = 8.2$ Hz, 1H), 7.69 (s, 1H), 7.72 (d, $J = 7.6$ Hz, 1H), 7.81 (t, $J = 7.9$ Hz, 1H), 11.92 (s, 1H), 11.98 (s, 1H).

13C NMR (100 MHz, DMSO-d$_6$): δ 62.1, 114.5, 116.0, 117.1, 119.4, 120.7, 124.5, 133.2, 133.4, 137.4, 153.7, 161.4, 161.6, 181.5, 191.7.

VI. Characterization of 3,4-Dihydro Citreorosein (11) and its tautomer (11$_{dienol}$)

![Chemical Reaction]

3,4-Dihydrocitreorosein (11)

![Chemical Structure]

C$_{15}$H$_{12}$O$_6$: 288.25 g.mol$^{-1}$

To an ice-cold suspension of 12 (15.0 mg, 51.6 µmol, 1.0 equiv.) in acetic acid (0.15 mL) was added lead tetraacetate (22.0 mg, 51 µmol, 1.0 equiv) at 0 °C. The reaction was monitored through TLC (MeOH/CHCl$_3$ 1:9). After 20 minutes colour of the reaction mixture was turned into orange. To this ice-cold water was added and the reaction mixture was extracted with ethyl acetate (3x10 mL), followed by removal of solvent under reduced pressure. Flash column
chromatography (0.2 N oxalic acid impregnated silica gel 230-400; acetone/benzene, 3:17) afforded the mixture of 11 and 11_dienol (8.0 mg, 54%) as an orange solid. TLC (MeOH/CHCl₃, 1:9 v/v): Rₐ = 0.4,

1H NMR of 11 (400 MHz, acetone-d₆): δ 2.70 (ddd, 2J = 15.1 Hz, 3J = 7.0 Hz, 4J = 1.1 Hz, 1H, H-2), 2.95 (ddd, 2J = 18.3 Hz, 3J = 10.1 Hz, 4J = 2.3 Hz, 2H, H-2/H-4), 3.19 (dd, 2J = 19.8 Hz, 3J = 4.1 Hz, 1H, H-4), 4.58–4.48 (m, 1H, H-3), 4.75 (s, 2H, OH-6), 7.32 (s, 1H, H-7), 7.59 (s, 1H, H-5), 12.15 (s, 1H, OH-8).

HRMS (ESI-TOF) m/z: [M+H]⁺: Calcd for C₁₅H₁₃O₆ 289.0707: Found 289.0721.

1H NMR (400 MHz, acetone-d₆)
1D-1H-1H Selective Gradient TOTal Correlation Spectroscopy Experiment

1D-TOCSY (400 MHz, acetone-d_6): Selective gradient excitation at freq: 2.70 ppm, 2.95 ppm, 3.19 ppm, 4.54 ppm.

This study confirms the spin system of keto tautomer 11 (First intermediate).

Pulse programme: seldigpzs, Acquisition time [AQ]= 4.08 Sec, Dwell time [DW]= 62.4 µsec, Pre-scan delay [DE]= 6.5 µsec.

Figure S1. 1D-1H-1H Selective Gradient TOtal Correlation Spectra (11).
1D-TOCSY (400 MHz, acetone-d_6): Selective gradient excitation at freq: 4.80 ppm, 6.92 ppm.

This study confirms the spin system of enol tautomer 11_{dienol} (second intermediate).

[Pulse programme: seldigpzs, Acquisition time [AQ]= 4.08 Sec, Dwell time [DW]= 62.4 µsec, Pre-scan delay [DE]= 6.5 µsec].

Figure S2: 1D-1H-1H TOtal Correlation Spectra (1D-TOCSY, 11_{dienol}).
VII. Measurement of conversion from dihydro citreorosein (11) into aloe-emodin (8) with time through 1H NMR study.

Figure S3. Measurement of spontaneous conversion of 11 into 8 with time through 1H NMR study.
VIII. Biosynthesis of fungal DHN-melanin starting from polyketide based T₄HN

Scheme S2. Native reactions catalyzed by T₄HNR and T₃HNR of *M. grisea* and scytalone dehydratase (SD)

IX. Chemoenzymatic Reduction of emodin (1)

(R)-3,8,9,10-Tetrahydroxy-6-methyl-3,4-dihydroanthracen-1(2H)-one (9)

[C₁₅H₁₄O₅]: 274.27 g·mol⁻¹

Potassium phosphate buffer (50 mM, 1 mM EDTA, 1 mM DTT, pH 7; 100 mL) was degassed under reduced pressure for 20 minutes to remove molecular oxygen, followed by stirring under argon atmosphere. Under argon counterflow, D-glucose (166.68 mg, 0.93 mmol, 5 equiv.), NADP⁺ (15.76 mg, 18.50 µmol, 0.1 equiv.), Na₂S₂O₄ (643.8 mg, 3.70 mmol, 20 equiv.), and emodin (1; 50.0 mg, 185.02 µmol) in DMSO (5 mL, 10% v/v), GDH (100 U), and MdpC_his (3 mL, 2.8 mg/mL) were added to the buffer and the mixture was stirred under argon atmosphere for 24 h. The solution was extracted with EtOAc (3x30 mL), dried over Na₂SO₄, and the solvent was removed under reduced pressure. Flash column chromatography (silica gel; hexane/EtOAc, 1:4) afforded the title compound 9 (38.2 mg, 75%) as a yellow solid. TLC: (cyclohexane/EtOAc, 1:1 v/v): Rₛ = 0.29.

¹H NMR (400 MHz, acetone-d₆): δ 2.44 (s, 3H, CH₃), 2.80 (ddd, 2J = 17.1 Hz, 3J = 7.1 Hz, 4J = 1.1 Hz, 1H, H-2), 3.0 (dd, 2J = 17.1 Hz, 3J = 2.9 Hz, 1H, H-2), 3.07 (dd, 2J = 16.4 Hz, 3J = 6.8 Hz, 1H, H-4), 3.26 (dd, 2J = 16.4 Hz, 3J = 3.6 Hz, 1H, H-4), 4.37 (bs, 1H, OH-3), 4.42–4.48 (m, 1H, H-3), 6.69 (s, 1H, H-7), 7.47 (s, 1H, H-5), 7.64 (s, 1H, OH-10), 9.78 (s, 1H, OH-8), 15.94 (s, 1H, OH-9).
\(^{13}\)C NMR (100 MHz, acetone-\(d_6\)): \(\delta\) 21.5 (CH\(_3\)), 31.7 (C-4), 45.8 (C-2), 65.0 (C-3), 109.1 (8a/9a), 110.7 (8a/9a), 112.5 (C-5/C-7), 112.6 (C-5/C-7), 116.8 (C-10a), 133.1 (C-5a), 140.7 (C-10), 142.8 (C-6), 158.0 (C-8/C-9), 159.3 (C-8/C-9), 204.0 (C-1).

CD (c 50 µM, 1,4-dioxane): \(\lambda\) [nm] (mdeg) 220 (0.13), 224 (–1.14), 231 (–1.90), 240 (–0.73), 245 (–0.41), 260 (–1.31), 267 (–1.76), 280 (–0.44), 288 (–0.16), 295 (–0.21), 323 (0.27), 350 (0.00), 418 (0.19).\(^{26}\)
X. NMR Spectra

1H NMR (400 MHz, CDCl$_3$)

13C NMR (100 MHz, CDCl$_3$)
1H NMR (400 MHz, acetone-d_6)

13C NMR (100 MHz, acetone-d_6)
1H NMR (400 MHz, acetone-d_6)

13C NMR (100 MHz, acetone-d_6)
1H NMR (400 MHz, DMSO-d_6)

1H NMR (400 MHz, DMSO-d_6)
1H NMR (400 MHz, acetone-d_6)

13C NMR (100 MHz, acetone-d_6)
HSQC (\(^1\)H\(^{13}\)C)
1H NMR (400 MHz, DMSO-d_6)

13C NMR (100 MHz, DMSO-d_6)
XI. CD Spectra

Figure S4. Comparison of CD spectra of 12 with 9.
XII. References

(5) A. A. Bell, R. D. Stipanovic and J. E. Puhalla, Tetrahedron, 1976, 32, 1353.